自动增益控制的原理图

合集下载

一种自动增益控制放大器的设计

一种自动增益控制放大器的设计

一种自动增益控制放大器的设计摘要:本文介绍了一种自动增益控制放大器的设计方法,该方法采用反馈电路实现自动增益控制,使放大器在输入信号强度变化时保持输出信号稳定。

设计中采用了MOSFET管和电容的组合连接方式,使放大器具有高增益和低噪声系数,同时实现了高稳定性和可靠性。

实验结果表明,该自动增益控制放大器具有优良的性能,适用于信号放大和处理的多种应用场景。

关键词:自动增益控制;放大器设计;反馈电路;MOSFET管;电容连接;稳定性正文:1.引言随着科技的不断发展,信号处理技术在通信、电子、计算机等领域得到了广泛应用。

在众多信号处理技术中,信号放大是其中的重要环节之一。

而自动增益控制放大器是实现信号放大的重要器件之一。

它可以在输入信号强度变化时自动调整增益,使输出信号稳定。

因此,本文提出了一种自动增益控制放大器的设计方法,旨在提高放大器的性能和稳定性,并适用于多种信号处理场景。

2.设计原理自动增益控制放大器的设计原理是基于反馈电路实现自动调节增益。

如图1所示,当输入信号Uin经过放大器后,产生的输出信号Uout被反馈到放大器的控制端A处,与输入信号进行比较,产生一个误差电压Ue。

该误差电压被输入到一个控制器中进行处理,控制器通过调节放大器的增益,使误差电压接近于0,从而实现自动增益控制。

图1 自动增益控制放大器原理图在设计中,我们采用了MOSFET管和电容的组合连接方式,如图2所示。

MOSFET管可以提供高增益和低噪声系数,电容与MOSFET管的组合连接方式可以提供稳定性。

此外,在设计中还考虑了放大器的输出阻抗和带宽等因素,使放大器的性能更加优良。

图2 自动增益控制放大器组合连接示意图3.实验方法为验证设计的可行性和有效性,我们进行了一系列实验。

实验中,我们利用模拟电路软件对自动增益控制放大器进行模拟分析,并对其输出信号进行测量分析。

实验结果表明,该放大器具有优良的性能和稳定性。

4.实验结果与分析实验结果显示,该自动增益控制放大器在不同频率和输入信号强度下均能达到稳定的输出信号。

自动增益控制(AGC)电路

自动增益控制(AGC)电路
一、控制的原理框图
二、电视机自动增益控制电路
1、工作原理:
V1、V2构成差分射级输出器,实现隔离作用;V3、V4构成差分放大器,提高共模抑制比;V5是V3、V4的多发射级恒流源,稳定直流工作点。
三级中放总增益为80dB,均可自动增益控制。
控制过程:当AGC不起控时信号最弱,则V6饱和导通,V5发射级电流最大,等效为V3、V4的发射级电阻最小,则V3、V4的增益最大;当AGC起控时,V6退出饱和,V5发射级电流减小,负反馈作在深度饱和状态,V7工作在中饱和状态,V8因V9、V10恒流源的分流作用工作在浅饱和状态。
当信号最弱时,UAGC很高,增益在最大状态
当信号增强时,UAGC减小,V8首先进入放大状态,然后是V7,最后才是V6。
当信号最强时,UAGC很小,V8、V7、V6、都在截止状态,增益在最小状态。
自动增益(AGC)电路
在放大电路的应用中,经常会碰到一些要求增益会自动调节的电路。
自动增益电路的目的:无论信号的强弱、天气的变化和距离的远近,输出端输出的信号都能保证在稳定的状态。
应用在目标检测(机器人技术)、自动跟踪(军事领域)和稳定输出(电视机)
控制方式:在保证输出的信号稳定的前提下,应考虑的问题是——如何提高信噪比——所以控制方式是后级逐渐向前级控制。

自动增益控制电路

自动增益控制电路

自动增益控制电路前言在通信、导航、遥测遥控系统中,由于受发射功率大小、收发距离远近、电波传播衰落等各种因素的影响,接收机所接收的信号变化范围很大,信号最强时与最弱时可相差几十分贝。

如果接收机增益不变,则信号太强时会造成接收机饱和或阻塞,而信号太弱时又可能被丢失。

因此,必须采用自动增益控制电路,使接收机的增益随输入信号的强弱而变化。

这是接收机中几乎不可缺少的辅助电路。

在发射机中或其他电子设备中,自动增益控制电路也有广泛的应用。

一、工作原理1.电路组成与框图自动增益控制电路是一种在输入信号变化很大的情况下,通过调节可控增益放大器的增益,使输入信号幅值基本恒定或仅在小范围内变化的一种电路,其组成方框图如下: 输入信号振幅为,输出信号振幅为,可控放大器增益为,即其是控制信号的函数,则有:= ()2.比较过程在AGC电路里,比较参量是信号电平,所以采用电压比较器。

网络由电平检测器、低通滤波器和直流放大器组成。

反馈网络检测出信号振幅电平(平均电平或峰值电平),滤去不需要的较高频率分量,然后进行适当放大后与恒定的参考电平比较,产生一个误差信号。

控制信号发生器在这里可看作是一个比例环节,增益为k 。

若减小而使减小时,环路产生的控制信号将使增益1增大,从而使趋于增大。

若增大而使增大时,环路产生的控制信号将使减小,从而使趋于减小。

无论何种情况,通过环路反馈不断地循环反馈,都应该使输出信号振幅保持基本不变或仅在较小范围内变化。

,.滤波器的作用环路中的低通滤波器是非常重要的。

由于发射机功率变化,距离远近变化,电波传播衰落等引起信号强度的变化是比较缓慢的,所以整个环路应具有低通传输特性,这样才能保证仅对信号电平的缓慢变化有控制作用。

尤其当输入为调幅信号时,为了使调幅波的有用幅值变化不会被自动增益控制电路的控制作用所抵消(此现象称为反调制),必须恰当的选择环路的频率响应特性,使对高于某一频率的调制信号的变化无响应,而仅对低于这一频率的缓慢变化才有控制作用。

自动增益控制的工作原理

自动增益控制的工作原理

自动增益控制的工作原理
自动增益控制(AGC)是一种可以根据输入信号强度自动调节放大倍数的技术,广泛应用于通信系统中。

其工作原理可以从以下几个方面阐述:
1. AGC的作用
AGC的主要作用是在信号传输链路上的不同节点之间自动调节信号的增益,以抑制信号的动态范围,使信号保持在后级电路的适用输入水平,既防止因信号过大而造成失真,也防止信号过小下降至噪声水平。

2. AGC的关键部件
一个AGC系统主要包含检波器、放大器、反馈环路三个部分。

检波器检测输入信号强度;放大器提供可变增益;反馈环路将检波器输出作为控制信号调节放大器增益。

3. AGC的工作原理
当输入信号增大时,检波器输出增加,经过反馈环路后控制放大器减小增益;当输入信号减小时,放大器增益增加以补偿信号损失。

这样就实现了输出信号振幅的动态范围压缩。

4. AGC放大器的实现
AGC放大器的增益控制可以通过改变放大管的偏置电流,或者使用可变电阻调节反馈网络来实现。

也可以采用FET来构建可变增益放大器。

5. AGC的增益控制特性
一个理想的AGC系统应具有快速响应速度、足够大的动态范围、低噪声和小失真等特性。

对控制电路和反馈环路的精心设计可以优化这些指标。

6. AGC的应用
无线通信系统中广泛使用了AGC技术,对输入的高频信号进行精准控制。

它也应用在音频放大器中进行音量自动控制。

还可以用在雷达接收机的前端进行回波增益控制。

总之,AGC技术对于保证通信系统信号稳定至关重要。

随着科技的进步,AGC控制的性能也在不断提升和完善。

自动增益控制(AGC)

自动增益控制(AGC)
图3-5-6 FET - 关系曲线
(2)改变放大器的负载
由于放大器的增益与负载 有关,调节 也可以实现对放大器增益的控制。例如广播收音机中常采用变阻二极管(或称阻尼二极管)作为混频级或中频放大级集电极LC回路的一部分,随着外加控制电压的增加,使阻尼二极管从反向偏置逐渐变为正向偏置,导极二极管动态电导增大从而使回路有效 值降低,促使放大器增益显著降低。图3-5-7为收音机电路采用阻尼二极管的AGC电路, 为阻尼二极管。
一般广播收音机的AGC动态范围指标为:输入信号强度变化26dB时,输出电压的变化不超过5dB。在高级通信用接收机中,输入信号强度变化60dB时,输出电压变化不应超过6dB,输入信号在10μV以下时,AGC不起作用。黑白电视机输出电平变化为±1.5dB时,甲级机要求输入电平变化不小于60dB,乙级机要求输入电平变化不小于40dB。
对接收机中AGC的要求是:在接收机输入端的信号超过某一值后,输出信号儿乎不再随输入信号的增大而增大。
图3-5-10是以MC1350作为小信号选频放大器并带有AGC的电路图, 为陶瓷滤波器(中心频率为4.5 ),选频放大器的输出信号通过耦合电容连接到输出插孔J3。同时,输出信号通过检波二极管 进入AGC反馈电路。 、 为检波负载,这是一个简单的二极管包络检波器。运算放大器 为直流放大器,其作用是提高控制灵敏度。检波负载的时间常数 应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。这样,控制电压是正比于载波幅度的。时间常数过大也不好,它将跟不上信号在传播过程中发生的随机变化。
图3-5-8 改变电流分配比的增益控制电电路
当放大器工作频率较高时,对放大器的增益控制往往不通过直接改变放大器增益的
方法来实现,而是改变接在放大级之间或接在放大器输出端由二极管和电阻网络构成的电控衰减器来控制增益,这样可使放大器本身工作在理想放大状态,避免产生不必要的失真。

《高频电子线路》自动增益控制实验(AGC)

《高频电子线路》自动增益控制实验(AGC)

《高频电子线路》自动增益控制实验(AGC)一、实验目的1、掌握AGC工作原理。

2、掌握AGC主放大器的增益控制范围。

二、实验内容1、比较没有AGC和有AGC两种情况下输出电压的变化范围。

2、测量AGC的增益控制范围。

三、实验仪器1、1号模块 1块2、6号模块 1块3、2号模块 1块4、双踪示波器 1台四、实验原理图15-1是以MC1350作为小信号选频放大器并带有AGC的电路图,F1、F2为陶瓷滤波器(中心频率分别为4.5MHz和10.7MHz),选频放大器的输出信号通过耦合电容连接到输出插孔P4。

输出信号另一路通过检波二极管D1进入AGC反馈电路。

R14、C18为检波负载,这是一个简单的二极管包络检波器。

运算放大器U2B为直流放大器,其作用是提高控制灵敏度。

检波负载的时间常数C18•R14应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。

这样,控制电压是正比于载波幅度的。

时间常数过大也不好,因为那样的话,它将跟不上信号在传播过程中发生的随机变化。

跨接于运放U2B的输出端与反相输入端的电容C17,其作用是进一步滤除控制信号中的调制频率分量。

二极管D3可对U2B输出控制电压进行限幅。

W4提供比较电压,反相放大器U2A的2、3两端电位相等(虚短),等于W4提供的比较电压,只有当U2B输出的直流控制信号大于此比较电压时,U2A才能输出AGC控制电压。

图15-1 自动增益控制电路原理图(AGC)对接收机中AGC的要求是在接收机输入端的信号超过某一值后,输出信号几乎不再随输入信号的增大而增大。

根据这一要求,可以拟出实现AGC控制的方框图,如图15-2所示。

图15-2自动增益控制方框图图中,检波器将选频回路输出的高频信号变换为与高频载波幅度成比例的直流信号,经直流放大器放大后,和基准电压进行比较放大后作为接收机的增益调节电压。

不超过所设定的电压值时,直流放大器的输出电压也较小,加到比较器上的电压低于基准电压,此时环路断开,AGC电路不起控。

自动增益控制AGC电路

自动增益控制AGC电路

第8章 反馈控制系统 图8-5 延迟AGC特性曲线
第8章 反馈控制系统
第8章 反馈控制系统 图8-3 平均值式AGC电路
第8章 反馈控制系统
图中,由D、C1、C2、RL1、R L2构成大信号峰值包络检 波器。中频信号ui (t)经检波后,在负载RL2两端得到原调制信 号和直流成分,其中一路经Cc耦合送至低频放大器,得到调 制信号uΩ(t)(收音机中即为音频信号)。另一路经Rp、Cp组成 的低通滤波器,得到直流电压UAGC,去控制中放级的增益。 由于此电路中得到的UAGC为检波输出电压中的平均值,因此 称之为平均值式AGC电路。
第8章 反馈控制系统
8.2.2 AGC 接收机的AGC电压大都是利用它的中频输出信号经检波后
产生的。按照AGC电压产生的方法不同,有平均值式AGC电 路、延迟式AGC电路等。
1. 平均值式AGC 平均值式AGC电路是利用检波器输出电压中的平均直流分 量作为AGC电压的,如图8-3所示为典型的平均值式AGC电 路,常用于超外差收音机电路中。
第8章 反馈控制系统
8.1 概 述
在电子电路中,为提高系统的性能,广泛采用具有自动 调节作用的控制电路,如自动增益控制(AGC)电路、自动频 率控制(AFC)电路和自动相位控制(APC)电路。
第8章 反馈控制系统
在具有自动调节作用的控制电路中,最常用反馈控制电 路,其电路组成如图8-1所示。其中Xi为系统的输入量,也就 是反馈控制电路的比较标准量;Xo为系统输出量。根据工作 的实际需要,每个反馈控制电路的Xi和Xo之间都具有确定的 关系,例如满足Xi=g(Xo)。系统在工作过程中,这一关系一 旦受到破坏,反馈控制电路能够检测出输出量与输入量的偏 离程度,并产生相应的误差量Xe控制被控对象对输出量Xo进 行调整,使输出量与输入量之间的关系接近或恢复到预定的 关系Xi=g(Xo)。

自动增益控制(AGC)

自动增益控制(AGC)

任务一自动增益控制(AGC)电路任务引入在调幅接收机接收电台信号时,由于各发射台功率有大有小,发射台离接收机的距离远近不一,无线电波传播过程中的多径效应和衰落等原因,使接收天线上感生的有用信号强度相差非常悬殊,而且往往有很大的起伏变化(约为~倍),有可能在接收微弱信号时造成某些电路(例如检波器)不能正常工作而丢失信号,而在接收强信号时造成放大电路的阻塞(非线性失真)。

为此在接收设备中几乎无例外的都必须采用自动增益控制电路,用来压缩有用信号强度的变化范围。

任务分析自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。

自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。

它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。

其中可控增益放大器是实现增益控制的关键。

相关知识一、自动增益控制电路(AGC)的工作原理1.AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。

2.AGC的组成框图自动增益控制电路的组成框图如图3-5-2所示。

图3-5-2 自动增益控制电路的组成框图由图可见,自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。

可控增益放大器的输入信号就是AGC电路的输入信号,其输出信号,其增益为增益受控制电压的控制,控制电压是由电压比较器产生的误差电压经控制电压产生器变换后得到的,增益可写成或,它是误差电压(或控制电压)的函数。

也可以直接用误差电压控制可控增益放大器的增益。

3.AGC各单元电路的功能与基本工作原理(1)电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动增益控制的原理图
自动增益控制的原理
[导读] 自动增益控制的原理自动增益控制电路的作用是:当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。

具体地说,当
关键词:增益控制左手665收藏时间:2015年4月23日20:17
自动增益控制的原理
自动增益控制电路的作用是:当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。

具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。

这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。

因此对AGC电路的要求是:在输入信号较小时,AGC电路不起作用,只有当输入信号增大到一定程度后,AGC电路才起控制作用,使增益随输入信号的增大而减少。

为实现上述要求,必须有一个能随外来信号强弱而变化的控制电压或电流信号,利用这个信号对放大器的增益自动
进行控制。

由上述分析可知,调幅中频信号经幅度检波后,在它的输出中除音频信号外,还含有直流分量。

直流分量大小与中频载波的振幅成正比,也即与外来高频信号成正比。

因此,可将检波器输出的直流分量作为AGC控制信号。

AGC电路工作原理:可以分为增益受控放大电路和控制电压形成电路。

增益受控放大电路位于正向放大通路,其增益随控制电压U0而改变。

控制电压形成电路的基本部件是AGC 整流器和低通平滑滤波器,有时也包含门电路和直流放大器等部件。

放大器及AGC电路
上图是由两级AD603构成的具有自动增益控制的放大电路, 图中由Q1 和R8 组成一个检波器,用于检测输出信号幅度的变化。

由CA V 形成自动增益控制电压V A GC , 流进电容CA V 的电流Q2 和Q1两管的集电极电流之差, 而且其大小随A2 输出信号的幅度大小变化而变化, 这使得加在A1、A2 放大器1 脚的自动增益控制电压V A GC 随输出信号幅度变化而变化, 从而达到自动调整放大器增益的目的。

左手665收藏时间:2015年4月23日20:17。

相关文档
最新文档