五年级数学下列方解应用题找等量关系练习题
五年级下册数学-应用题中的数量关系精选练习(含答案)

答案:(1)x,48-x,2x,4(48-x),2x+4(48-x);(2)x,3x+4,x+5,4(x+5)-6
例4.列方程解应用题:
地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?
小明和小丽数学作业本上的红花,小丽比小明多7朵。如果小明少得2朵,小丽再得3朵,小丽的红花数就是小明的3倍。小明小丽各得多少朵?
教法说明:首先找出等量关系3(小明-2)=小丽+3;再把“较小量”即小明的红花设为x
解:设小明得了 朵红花,则小丽得了 朵红花。
答:小明得了8朵红花,小丽得了15朵红花。
试一试:甲有36本课外书,乙有24本课外书,两人捐出同样多的本数后,甲剩下的本数是乙剩下的本数的3倍,两人各捐出多少本书?
试一试:两筐苹果共重60千克。如果从第一框取出6千克放入第二框,那么第一框还比第二框少4千克。原来两筐各有苹果多少千克?
答案:原来第一框有34千克,第二框有26千克。
1.根据所设未知数,将下列问题中的数量用x表示:
(1)甲、乙两地的公路长285千米,客、货两车分别从甲、乙两地同时出发,相向而行,经过3小时两车相遇。已知客车每小时行45千米,货车每小时行多少千米?
答案:减数是268.
※例8.列方程解应用题
两筐苹果共重60千克。如果从第一框取出6千克放入第二框,那么第一框还比第二框多4千克。原来两筐苹果各有多少千克?
教法说明:首先找出等量关系:第一框-6=(第二框+6)+4
解:设原来第一框有 千克,则第二框有 千克。
找等量关系练习题

找等量关系练习题在数学学习中,等量关系是一个非常重要的概念。
它是指具有相同数量的两个或多个事物之间的关系。
理解和掌握等量关系的概念和运用方法,对于解决各种数学问题具有重要的作用。
接下来,我将为您提供一些关于等量关系的练习题,帮助您进一步巩固和应用这一知识。
练习题一:已知A、B两个正数的和为10,且A比B大2.5,求A和B各自的值。
解答:首先设A=x,B=y,则由题意可以列出以下两个等式:x + y = 10 (式1)x - y = 2.5 (式2)将式2两边分别加上式1两边,可以消去y的项,得到:2x = 12.5解得:x = 6.25将x的值代入式1,可得:6.25 + y = 10解得:y = 3.75因此,A = 6.25,B = 3.75。
练习题二:一个班级里男生人数是女生人数的2倍,如果班级总人数是36人,求男生和女生人数分别是多少?解答:设男生人数为x,女生人数为y,则由题意可以得到以下两个等式:x = 2y (式1)x + y = 36 (式2)将式1代入式2,得到:2y + y = 36解得:y = 12将y的值代入式1,可得:x = 2 * 12 = 24因此,男生人数是24人,女生人数是12人。
练习题三:一个长方形的宽是5cm,周长和面积之间有着怎样的等量关系?解答:设长方形的长为x,根据长方形的性质可知,周长等于两倍的长加上两倍的宽,即:2x + 2 * 5 = 10 + 2x而长方形的面积等于长乘以宽,即:x * 5 = 5x比较上面两个等式,可以得出周长和面积之间的等量关系为:周长 = 2 * 面积练习题四:某商店原价出售一件衣服120元,现在正举行折扣活动,打6折出售。
求折后的价格以及折扣的金额是多少?解答:首先将原价打6折,折扣后价格为120 * 0.6 = 72元。
折扣的金额为原价减去折后价格,即120 - 72 = 48元。
练习题五:甲、乙两个数之间的等量关系是:甲是乙的3倍减去2,如果甲的值是10,求乙的值。
五年级下册数学试题 - 列方程解应用题 北师大版含解析

列方程解应用题7359一、列方程解应用题73591.找等量关系列方程,解应用题:学校图书馆第一天共借出182本书,下午借出84本书,这天上午借出________本书?2.找等量关系列方程,解应用题:学校图书馆第二天比第一天多借出18本书,第二天借出182本书,第一天借出________本书?3.在一次跳远比赛中,肖强跳了3.06米,比小海多跳0.18米,比大宇少跳0.14米.你能提出不同的问题并列方程解答吗?4.列方程解决实际问题.小虎买一本《昆虫王国的奥秘》,付给营业员10元,找回2.45元.一本《昆虫王国的奥秘》________元?5.列方程解决实际问题.超音速飞机每秒飞行0.5千米,是火车每秒行驶路程的20倍.火车每秒行驶________千米?6.列方程解决实际问题.________7.看图列方程并解答.(1)(2)(3)(4)8.选择合适的式子填在下面的圈里.6+x 3+7=10 20÷x=5 13+x>4060÷25=2.4 3+y x-48<34 9=279.为了方便残疾人的生活,很多公共场所都修建了残疾人无障碍设施.如:便于轮椅通行的斜坡.按规定每l米高的斜坡,水平长度至少是12米(如下图).(1)1.5米高的斜坡,至少需要________米的水平长度?x米高的斜坡呢?________ (2)一家医院门前轮椅通道的水平长度是30米,这家医院门前斜坡最高是________米?10.列方程解答下列的题.一只长颈鹿的身高大约是6米,比一只大猩猩高4.35米.这只大猩猩身高大约是________米?答案解析部分一、列方程解应用题73591.【答案】98【考点】1000以内数的连减运算【解析】【解答】上午借出图书:182-84=98分。
【分析】一天借出的图书-上午借出的图书=下午借出的图书2.【答案】164【考点】1000以内数的连减运算【解析】【解答】第1天接收图书:182-18=164本【分析】第2天借出的图书去掉18本等于第1天借出的图书。
人教版五年级数学上册列方程解决问题专项复习

五年级数学列方程解应用题练习题一、找找数量间的等量关系,再把每个方程补充完整。
水果店运来X箱苹果,每箱重10千克,卖出75千克,还剩下5千克。
等量关系:方程:=5水欣原野有画片45张,送给豆豆和乐乐各X张后,还剩13张。
等量关系:方程:=13一个长方形长13米,宽X米,周长38米。
等量关系:方程:=38小华拿8元钱去买作业本,每本作业0.75元,买了X本后,找回3.5元。
等量关系:方程:=3.5二、列方程解决问题。
共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。
天安门广场的面积多少万平方米?宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。
大象最快能达到每小时多少千米?世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。
大洋洲的面积是多少万平方千米?大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。
住宅每层高多少米?太阳系的九大行星中,离太阳最近的是水星。
地球绕太阳一周是365天,比水星绕太阳一周所用时间的4倍还多13天,水星绕太阳一周是多少天?地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。
地球上的海洋面积和陆地面积分别是多少亿平方千米?6个易拉缺罐,9个饮料瓶,每个的价钱都一样,一共是1.5元。
每个多少钱?两个相邻自然数的和是97,这两个自然分别是多少?鸡和兔的数量相同,两种动物的腿加起来共有48条。
鸡和兔各有多少只?妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。
儿子和妈妈今年分别是多少岁?我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛书的本数相同,共花了22元。
解分数应用题找等量关系式专项训练

【解分数应用题找等量关系式】专项训练一、自学例题:(1)粮店运来大米36袋,面粉的袋数比大米少94,运来的面粉有多少袋? 等量关系式1:大米的袋数×(1-94)=面粉的袋数 算法一:36×(1-94) 数量关系式2:大米的袋数-面粉比大米少的袋数=面粉的袋数 算法二:36-36×94 (2)粮店运来面粉20袋,面粉的袋数比大米少94,运来的大米有多少袋? 等量关系式1:大米的袋数×(1-94)=面粉的袋数 方程:(1-94)χ=20 数量关系式2:面粉的袋数÷(1-94)=大米的袋数 算术:20÷(1-94) 等量关系式3:大米的袋数-面粉比大米少的袋数=面粉的袋数 方程:χ-94χ=20 二、写出下面各题的等量关系式,并列出算式或方程(不需要解答):1、(1)光明养鸡场去年养鸡2000只,今年比去年增加51,今年养鸡多少只? 等量关系式1: 算法一:等量关系式2: 算法二:(2)光明养鸡场今年养鸡2400只,比去年增加51,去年养鸡多少只? 等量关系式1: 方程法:等量关系式2: 算术法:等量关系式3: 方程法:2、(1)向阳村上午割水稻36亩,下午比上午少割41,下午割了多少亩? 等量关系式1: 算法一:等量关系式2: 算法二:(2)向阳村下午割水稻27亩,下午比上午少割41,上午割了多少亩? 等量关系式1: 方程法:等量关系式2: 算术法:等量关系式3: 方程法:3、(1)学校元月份用水84吨,二月份比元月份节约了73。
二月份用水多少吨? 等量关系式1: 算法一:等量关系式2: 算法二:(2)学校二月份用水48吨,比元月节约了73,元月份用水多少吨? 等量关系式1: 方程法:等量关系式2: 算术法:等量关系式3: 方程法:4、(1)故宫的面积是72万米2,天安门广场的面积比故宫的面积少187,天安门的面积是多少? 等量关系式1: 算法一:等量关系式2: 算法二:(2)天安门广场的面积是44万米2,比故宫的面积少187,故宫的面积是多少? 等量关系式1: 方程法:等量关系式2: 算术法:等量关系式3: 方程法:5、(1)一件衣服原来的价钱是180元,现在比原来降价94,现在的价钱是多少元? 等量关系式1: 算法一:等量关系式2: 算法二:(2)一件衣服现在的价钱是100元,比原来降价94,原来的价钱是多少元? 等量关系式1: 方程法:等量关系式2: 算术法:等量关系式3: 方程法:6、(1)铺路队昨天铺路240米,今天比昨天少铺了41。
小学五年级数学上册列方程解应用题练习(含答案)

小学五年级数学上册列方程解应用题练习(含答案)小学五年级数学上册列方程解应用题练习(含答案)一、北京故宫占地面积大约72公顷,比天安门广场的2倍少8公顷。
天安门广场大约占地多少公顷?解析:可以设__________为未知数,等量关系式是:_________________________。
下一步:天安门广场的面积,天安门广场的面积×2-8=故宫的占地面积根据这个等量关系,再列方程解。
答案:解:设天安门广场大约占地x公顷。
2x-8=72 检验:左=2×40-8=722x=80 右=72x=40 左=右答:天安门广场大约占地40公顷。
举一反三:少年宫书法组有75人,书法组的人数是声乐组人数的3倍还多15人。
声乐组有多少人二、花园小区有一块三角形的花圃,底是25米,面积是275平方米,求花圃的高。
解析:可以设_________为未知数,等量关系式是:_________________________。
花圃的高,底×高÷2=三角形的面积答案:解:设花圃的高是x米。
25x÷2=275 检验:25x=550 左=25×22÷2=275x=22 右=275答:花圃的高是22米。
左=右三、扎龙自然保护区里有天鹅和丹顶鹤共1360只。
天鹅的只数是丹顶鹤的4倍。
天鹅比丹顶鹤多多少只?解析:根据题意画出线段图:先画丹顶鹤的,再根据丹顶鹤的画出天鹅的4段。
等量关系式:丹顶鹤的只数+天鹅的只数=总只数答案:解:设丹顶鹤有x只,天鹅有4x只。
x+4x=1360 检验:5x=1360 左=272+4×272=1360x=272 右=1360272×(4-1)=816(只) 左=右答:天鹅比丹顶鹤多816只。
五年级下册数学列方程解应用题(四)沪教版 (5)

如何找等量关系
找找等量关系,并口答出方程。
(3)找关键句 例1:学校买了20个足球和15个篮球,共用950元。每个足 球25元,每个篮球多少元?
足球的价钱+篮球的价钱=950元 解:设每个篮球要x元。 25×20+15x=950
两个量未知
找找等量关系,并口答出方程。
例:学校买来科技书和文艺书共1000本,其中科技书比文 艺书多80本。求科技书和文艺书各有多少本?
如何找等量关系
找找等量关系,并口答出方程。
(2)从事情变化的结果找等量关系
例:共有1428个网球,每5个装一筒,装完后还剩3个, 一共有多少个网球筒?
(1) 一共的 - 装完的 = 剩下的 (2) 装完的 + 剩下的 = 一共的 (3) 一共的 - 剩下的 = 装完的
1428-5X=3 5X+3=1428 1428-3=5X
(2)甲、乙两艘轮船从相距654千米的两港相 对开出,8小时两船还相距2?
挑战一下
一群少先队员乘船过河,如果每船坐15 人,还剩9人,如果每船坐18人,则剩余 1只船,求有少先队员几人?有多少只船?
课堂总结:
纠正错误
(4)甲数的3倍等于乙数的一半,已知甲数是24, 求乙数。
方程:(
)
生1:24×3= x÷2 方程解
生2:24×3×2= x 算术解
如何找等量关系
找找等量关系,并口答出方程。
(1)套用公式 例:一个长方形的周长是30米,它的长是10米,求它 的宽是多少米?
C= 2 (a+b) 2×(x+10) =30
科技书+文艺书=1000 解:设文艺书有x本, 则科技书有(x+80)本。
x+(x+80)=1000
五年级奥数:列方程解应用题(二套)

五年级奥数:列方程解应用题(二套)目录:五年级奥数:列方程解应用题一五年级小数乘法计算与应用题二五年级奥数:列方程解应用题一列方程解应用题是小学数学的一项重要内容,是一种不同于算术解法的新的解题方法.传统的算术方法,要求用应用题里给出的已知条件,通过四则运算,逐步求出未知量.而列方程解应用题是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值.它的优点在于可以使未知数直接参加运算.列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程.而找出等量关系,又在于熟练运用数量之间的各种已知条件.掌握了这两点,就能正确地列出方程.列方程解应用题的一般步骤是:1.弄清题材意,找出未知数,并用x表示;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案.例题与方法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷.这两块地各有多少公顷?例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人.三个班各有多少人?例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍.求原来的被除数和除数.练习与思考:1.列方程解应用题,有时要求的未知数有两个或两个以上,我们必须视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数.2.篮球、足球、排球各1个,平均每个36元.篮球比排球贵10元,足球比排球贵8元.每个排球多少元?3.一次数学竞赛有10道题,评分规定对一道题得10分,错一题倒扣2分.小明回答了全部10道题,结果只得了76分,他答对了几道题?4.将自然数1—100排列如下表:在这个表里,用长方形框出的二行六个数(图中长方形框仅为示意),如果框起来的六个数的和为432,问:这六个数中最小的数是几?5.拉萨路小学图书馆一个书架上有上、下两层,一共有245本书.上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下图书的本数一样多.上、下两层原来各有图书多少本?6.甲、乙、丙三个数的和是166,已知甲数除以乙数,乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?7.玲玲今年11岁,爷爷今年74岁.再过几年,爷爷的年龄是玲玲年龄的4倍?8.甲、乙两个养鸡专业户,一共养鸡3000只.乙养鸡专业户卖掉800只鸡后,甲养鸡专业户养鸡的只数正好是乙养鸡专业户剩下的3倍.甲、乙两个养鸡专业户原来各养鸡多少只?列方程解应用题(二)这一讲我们继续学习列方程解应用题.列方程解应用题,关键是掌握分析问题的方法,对应用题中数量关系分析得越深刻,所列的方程就越优化,解答起来就越方便.例题与方法:例1.六(1)班同学合买一件礼物送给母校留作纪念.如果每人出6元,则多48元;如果每人出4.5元,则少27元.求六(1)班学生人数.例2.五老村小学体育器材室里的足球个数是排球的2倍.体育活动课上,每班借7个足球,5个排球,排球借完时,还有足球72个.体育器材室里原有足球、排球各多少个?例3.甲、乙、丙、丁四人共做零件325个.如果甲多做10个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么,四个人做的零件数恰好相等.问:丁做了多少个?例4.如右图,长方的长为12厘米,宽为5厘米.阴影部分甲的面积比乙的面积大15平方厘米.求ED的长.练习与思考:1.妈妈买回一箱库尔勒香梨,按计划天数,如果每天吃4个,则多出24个香梨;如果每天吃6个,则又少4个香梨.问:计划吃多少天?妈妈买回香梨多2.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米.这架飞机最多飞出多少千米,就需要往回飞?3.某商店库存的花布比白布的2倍多20米每天卖出30米白布和40米花布,几天以后,白布全部卖完,而花布还剩下140米.原来库存这两种布共多少米?4.一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半.这条大鲨鱼全长是多少米?5.甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,途中丙与乙相遇2分后又遇到甲.如果每分甲行50米,乙行60米,丙行70米,问:乙比甲早多少分到西镇?6.供销社张叔叔买回一批酒精,放在甲、乙两个桶里,两个桶都未装满.如果把甲酒精倒入乙桶,乙桶装满后,甲桶还剩下10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升.已知甲桶容量是乙桶的2.5倍,张叔叔一共买回多少7.一个两位数十位止的数字比个位上的数字扩大4倍,个位上的数字减去2,那么,所得的两位数比原来大58.求原来的两位数.8.如右图,正方形ABCD的边长是8厘米,三角形ADF的面积比三角形CEF的面积小6平方厘米.求CE的长.五年级小数乘法计算与应用题二*知识点*小数乘法计算原则:①先按整数乘法算出积②看因数一共有几位小数,再在积上点上小数点.③在乘法中,因数的小数点移动的位数会等量作用在积上.一、积的变化规律:1、根据29×36=1044,很快写出下列各题的积.(1)29×0.36= (2)2.9×36= (3)0.29×360= (4)290X0.036=2、根据1.2×3.5=4.2写出四道不同的算式.( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 3、计算(1)60000.0530000.0020012个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅= (2)1301500002240000.0个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅ =二、分段计算:1、做一批零件,师傅每小时可以做12个,单独完成需要2.5小时,这批零件共有多少个?如果由徒弟单独做,每小时完成3个,用4.5小时能完成任务吗?2、五(1)班45人合影,每4张照片收费28.5元,另外再加印是每张1.6元,全班每人要1张,一共需要多少钱?3、某市打固定电话每次前3分钟收费0.16元,超过3分钟每分钟收费0.08元(不足1分钟按1分钟计算).张老师一次通话时间是7分52秒,她这一次通话的费用是多少?4、李叔叔要去18千米外的城里办事,他所乘坐的出租车4千米以内收费10元,超过4千米后,每千米加收1.5元,请你计算李叔叔往返所花的租车费.三、行程问题:1、小恒和小丽在同一所学校上学.小恒早上骑自行车以每小时4.5千米的速度去学校,经过0.25小时到达;小丽乘坐公共汽车以每小时60千米的速度去学校,经过0.03小时到达,小恒和小丽谁的家离学校近些?2、AB两城市相距400千米,小李、小王两人分别从A、B两城市同时相向驾车出发,小李开的车每小时行52.4千米,小王开的车每小时行46.8千米,3.5小时后两车相距多少千米?3、两辆车同时从甲乙两地相对开出,4.5小时后相遇.慢车每小时行60千米,快车的速度是慢车的1.4倍.甲乙两地相距多少千米?4、市政府修一条公路,原计划每天修0.55千米,但实际每天比原计划多修0.08千米,15天后还剩4.6千米,这条路长多少千米?5、两辆客车从东西湖同时出发,甲车每小时行65.9千米,乙车每小时行58.7千米,出发5.5小时后,两车相距多远?*家庭作业*1、根据203×24=4872在括号里填上适当的数.()×()=48.72 ()×()=487.2()×()=4.872 ()×()=0.48722、五(2)班26人合影,每3张照片收费12.5元,另外再加印是每张1.5元,全班每人要1张,一共需要多少钱?3、金银湖区打固定电话每次前5分钟收费0.85元,超过5分钟每分钟收费0.12元(不足1分钟按1分钟计算).彭老师一次通话时间是6分12秒,他这一次通话的费用是多少?4、凌云小学修校外的公路,原计划每天修0.48米,但实际每天比原计划少修0.03米,80天后还剩20.7米,这条路长多少米?5、小战和小胜比赛游泳,两人同时开始,小战每秒游2.6米,小胜每秒游2.4米,出发13秒后,两人相距多远?6、甲乙两城市相距320千米,小樱、小轩两人分别从甲乙两城市同时相向驾车出发,小樱开的车每小时行24.4千米,小轩开的车每小时行26.8千米,4.5小时后两车相距多少千米?判断题(1)小数乘法的意义与整数乘法的意义完全相同.(2)1.25×0.4的积是三位小数.(3)一个数乘小数,所得的积比这个数小.(4)两个小数相乘,积比1小.(5)两个小数的乘积一定比这两个数的和大.(6)0.5×6和6×0.5的结果相同,但意义不同.(7)积大于第一个因数,第二个因数一定大于1.(8)一个自然数与1.01相乘,结果比这个数要大.(9)一个因数扩大10倍,另一个因数扩大100倍,积就扩大110倍.(10)A×00.1=A÷100.(11)积的小数位数是4位,那么两个因数小数位数加起来一定也是4位.(12)50乘0.7的积与50个0.7的和相等.(13)3.56×1.01>3.56×0.999.(14)把一个数乘0.1,也就是把这个数缩小到它的101. (15)两个数的积不是小数,所以这两个数一定都不是小数.(16)一个小数的16.5倍一定大于这个小数.(1)取近似数是5.35的三位小数有10个.(2)保留一位小数,是精确到个位.(3)凡是小数都比1小.(4)在表示近似数时,10.0可以写成10.(5)6.995用四舍五入法精确到百分位是7.00.(6)一个数乘9.9,所得的积一定比这个数大.(7)用四舍五入法取近似数,当得数精确到十位时,表示保留一位小数.(8)2.8和2.80的大小相等,精确度也一样.(9)近似数是两位的小数一定比近似数是一位的小数大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学下列方解应用题找等量关系练习题
一、译式法
将题目中的关键性语句翻译成等量关系。
(一)从关键语句中寻找等量关系。
1、关键句是“求和”句型的.
例:先锋水果店运来苹果和梨共720千克,其中苹果是270。
运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。
苹果+梨 = 720
270 + x = 720
2、关键句是“相差关系”句型。
关键词:比一个数多几,比一个数少几,
例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元?
理解:苹果与橘子相比较,多用了0.6元。
(推荐)直译法列式:从“比”字后面开始列:橘子+0.6 = 苹果
x + 0.6 = 7.4
比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元
7.4 - x = 0.6
3、关键句是“倍数关系”句型。
饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?
理解:公鸡是1倍数,要求,母鸡是2倍数,为2400只。
(推荐)列乘法式:(从“是”字后面开始列)公鸡× 2 = 母鸡
2X = 2400
列除法式:母鸡÷公鸡= 2倍
2400 ÷ x = 2
4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。
一般把“和
差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设
未知量。
(1倍数设为x,几倍数设为几x。
)
如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个
未知量之间的关系。
(把较小数设为x,则较大数为x+a。
)
例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵?
解:设梨树为x棵,则桃树为2x棵。
桃树+梨树= 240
2x +x = 240
例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。
又知鸭比鹅多27只,鹅和鸭各多少只?
解:设鹅为x只,则鸭为4x只。
鹅+27只= 鸭鸭-鹅= 27只
x + 27= 4x 4x-x = 27
例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?
1 / 5
解:设下午运了x包,则上午运了x+14包。
上午+下午= 全天共运的
(x+14)+ x = 986
(二)没有关键句,找关键字上,寻找等量关系式。
“一共”、“还剩”
例:网球场一共有1428个网球,每筒装5个,还剩3个。
装了多少筒?
理解:网球分成了两个部分,一部分数装了的,另一部分是还剩下没装的。
共有的-装了的= 还剩的
解:设装了X筒。
装了的 + 剩下的 = 共有的
1428 - 5x = 3
5x + 3 = 1428
5X=1428-3
5X=1425
X=1425÷5
X=285
例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。
在火车站上车的有多少人?
解:设在火车站上车的有 X人。
原有人数-下车人数+上车人数= 现有人数 38 -12 + X = 54
(三)从常见的数量关系中找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题。
工作效率×工作时间=
速度×时间=
单价×件数=总价
例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68千米,另一辆汽车每小时行多少千米?
理解:这是典型的相遇问题(行程问题)。
速度和×相遇时间=相遇路程
(68+x)× 3 = 498
(四)从公式中找等量关系。
例:一幅画长是宽的2倍,做画框共用了 1.8的木条,求这幅画的面积是多少?
理解:“做画框共用了的木条”这句话是告诉我们画框的周长。
解:设宽为x米,则长为2x米。
(根据长宽倍数关系设未知量)
长方形的周长公式:(长+宽)×2=周长
(2X+X)×2=1.8
(五)从隐蔽条件中找等量关系。
例:鸡和兔数量相同,两种动物的腿共有48条,求鸡和兔各有多少只?
理解:题中隐藏了两个重要的条件:鸡有2条腿,兔有4条腿。
解:设鸡为x只,则鸡腿为2X只,兔腿为4x只。
鸡的腿数+兔的腿数= 48
2X + 4X = 48
例:两个相邻的奇数之和是176,这两个数各是多少?
理解:题中隐藏的条件:大奇数比小奇数多2。
解:设小奇数为x,则大奇数为x+2.
小奇数+大奇数= 176
X +(x+2)= 176
二、列表法。
将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。
例:某工地有一批钢材,原计划每天用6吨,可以用70天,现在每天节约0.4吨,这样一来可以用多少天?
每天用量天数
原计划 6 70
实际 6-0.4 x
实际总量= 原计划总量
(6-0.4)x= 6×70
以上所举只是一些比较简单的应用题。
如果遇到较复杂的应用题,还要采取灵
活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向
思考推导解”等等。
这些都要求学生在解决具体问题时,采取不同的方法,以求顺利
解答
找到等量关系解决问题(强化训练)
1.某数的2倍比这个数大1,求这个数。
2.某数的3倍比这个数的一半大2,求这个数。
3.六(1)班有16名女生,女生比男生的 1.5倍少2人,男生有多少人?
4.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?
5李明有1136张中国邮票,中国邮票比外国邮票的8倍还多16张,外国邮票有多少张?
6.把下图面积为20平方厘米的长方形分成两块,使其中的大面积是小面积的3倍。
大
面积和小面积各是多少?
7.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。
3 / 5
8.李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和
为15元,求文具盒的单价。
9.长方形的周长为60米,已知长是宽的 1.5倍,求它的面积。
10.长方形的周长为20米,已知长比宽的2倍少2米,求它的面积。
11.三角形面积是20,底边长为8,求高。
12梯形的下底比上底多2米,高5米,面积为40平方米。
求梯形上底。
13、小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?
14、某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵?
15、饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?16、甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨?
17、幼儿园小朋友分糖,每人6颗则多80颗,每人8颗则少20颗,问有几个小朋友?多少颗糖果?
18.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。
问男生有多少人?
19.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?
20.在生物竞赛中,某校共有22人获得一、二等奖,若一等奖的奖金50元,二等奖的奖金是30元, 22人一共获得奖金860元,问有多少人获得二等奖?
21.一批图书分给班上学生,若每人分3本则多出20本,若每人分4本则还差25本。
求班上有多少人?
22、第一个正方形的边长比第二个正方形的边长的3倍多1厘米,而它们的周长相差12厘米,求这两个正方形的面积分别为多少?
23、甲仓存粮130吨,乙仓存粮80吨,从甲仓运多少吨到乙仓,才能使乙仓存粮比甲仓的4倍多10吨?
24、有一群鸭在池塘里嬉戏,河里有78只鸭,岸上有26只鸭,从河里上岸多少只,岸上的鸭就是河里的鸭的4倍少1只?
25.要生产一批篮球,若每天生产25个,则到了规定时间还有50个未完成。
若每天生产28个,则到了规定时间超产40个。
问一共要生产多少个篮球?
26、一条1000米的公路,平均每天修x米,修了8天,还剩下440米。
关系式:
方程;
答:
27、小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮
票多少张?
28某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵?
29、饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和
母鸡各有多少只?
30甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨?
31幼儿园小朋友分糖,每人6颗则多80颗,每人8颗则少20颗,问有几个小朋友?
多少颗糖果?
5 / 5。