数学必修三条件概率课件(一)

合集下载

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
我们看到,当试验次数很多时,出现正面的 频率值在0.5附近摆动.
上述试验表明,随机事件A在每次试验中是否 发生是不能预知的,但是在大量重复试验后,随 着试验次数的增加,事件A发生的频率呈现出一定 的规律性,这个规律性是如何体现出来的?
有些事情的发生是偶然的,有些事情的发生是必然的.
但是偶然与必然之间往往有某种内在联系.
例如,北京地区一年四季的变化有着确定的、必 然的规律,但北京地区一年里哪一天最热,哪一天最 冷,哪一天降雨量最大,那一天降雪量最大等,又是 不确定的、偶然的.
基本概念
1、随机事件: 在条件S下可能发生也可能 不发生的事件,叫做相对于 条件S的随机事件,简称随 机事件.
这些事件会发生吗?是什么事件?
不可能发生,不可能发生,不可能事件
确定事件
考察下列事件: (1)某人射击一次命中目标; (2)任意选择一个电视频道,它正在播放
新闻; (3)抛掷一个骰子出现的点数为奇数.
这些事件一定会发生吗?他们是什么事件?
可能发生也可能不发生,随机事件.
对于随机事件,知道它发生的可能性大小是 非常重要的.
2、必然事件: 在条件S下一定会发生的事 件,叫做相对于条件S的必 然事件,简称必然事件.
3、不可能事件: 在条件S下一定不会发生的事 件,叫做相对于条件S的不可 能事件,简称不可能事件.
4、确定事件: 必然事件与不可能事件统称为 相对于条件S的确定事件,简称 确定事件.

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件..(共15张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件..(共15张PPT)
随机事件:在条件S下,可能发生也可能不发生的 事 件,叫做 相对于条件S的随机事件.
新课探究二
思考: 在这三类事件中,你认为哪一类最值得我 们探索与研究?
随机事件
风采展示
活动探究:投掷10次硬币的试验
抛硬币的规则: (1)硬币统一(1元硬币) (2)规定:“1元”的一面为正面 (3)离桌面高度大约为一尺,自由落下;
频率 fn (A) 随着试验次数的增加稳定于概率 P(A),可以用频率估计概率
小组讨论
小试牛刀
例1、判断以下说法是否正确
(1)有人说,既然抛掷一枚硬币出现正面的概率为 0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是 一次正面朝上,一次反面朝上. 答:错.因为抛硬币是随机事件。 (2)如果某种彩票中奖率是 千分之一,那么买1000 张这种彩票一定能中奖.(假设该彩票有足够多的张数) 答:错.因为不是必然事件。
姓名
试验次数
正面朝上的次数 正面朝上的比例
试验
小组讨论
概念形成
概率的定义:
对于给定的随机事件A,如果随着试验 次数的增加,事件A发生的频率 fn (A) 稳定 在某个常数上,我们把这个常数记作P( A) , 并称为事件A的概率。
讨论:频率和概率有什么区别与联系?
频率与概率的关系
区别: 频率是变化的,而概率是确定的 联系:
小试牛刀
(3)某地气象局预报说,明天本地降水概率为70%, 则明天本地有70%的区域下雨,30%的区域不下雨. 答:错。70%的概率是说降水的概率,而不是说70% 的区域降水。 (4)对于随机事件A,B,P(A)=0.8,P(B)=0.3,
若对A,B各做10次试验,则A发生的频率一定 大于B发生的频率。 答:错。频率是变化的,与试验有关,概率是确定的。

《条件概率》公开课教学PPT课件

《条件概率》公开课教学PPT课件

贝叶斯网络模型简介
贝叶斯网络定义
一种基于概率图模型的 机器学习算法,用于表 示和推理不确定性知识。
网络结构
由有向无环图和条件概 率表组成,节点表示随 机变量,边表示变量间
的依赖关系。
推理算法
通过贝叶斯网络中的条 件概率表,利用推理算 法计算目标变量的后验
概率分布。
应用领域
广泛应用于分类、聚类、 预测等任务,如自然语 言处理、图像处理、医
掌握条件概率的概念和计算方法对于理解和应用概率论和数理统计具有重要意义。
教学目标和要求
教学目标
通过本课程的学习,使学生掌握条件概率的概念、计算方法和 应用,培养学生的逻辑思维能力和分析问题的能力。
教学要求
要求学生能够熟练掌握条件概率的计算方法,理解条件概率在 实际问题中的应用,并能够运用所学知识解决一些实际问题。 同时,要求学生积极参与课堂讨论和思考,提高自己的思维能 力和解决问题的能力。
条件概率与独立性的关系
如果事件A与事件B相互独立,则P(B|A)=P(B),即事件A的发生对事 件B的发生没有影响。
条件概率的应用
条件概率在实际问题中有着广泛的应用,如医学诊断、天气预报、金 融风险评估等领域。
拓展延伸:条件期望、条件方差等概念介绍
• 条件期望的定义与性质:条件期望是指在某一事件发生的条件下,另一 随机变量的期望值。它具有线性性、单调性等基本性质。
条件概率在贝叶斯定理中作用
先验概率与后验概率
01
条件概率在贝叶斯定理中,用于计算先验概率和后验概率,即
根据已知信息更新某事件发生的概率。
因果关系分析
02
条件概率可以帮助分析事件之间的因果关系,进而推断出未知
事件的发生概率。

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共14张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件(共14张PPT)

问题1:观察黑板上表格中 的数据,你们小组的试验结果和 其他组的一致吗?为什么会出现 这种情况?
问题2:如果再做一次试验, 试验结果还会是这样吗?
[活动2]:excel演示画折线图
历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示
抛掷次数(n)
2048 4040
正面朝上次数(m) 1061 2048
随着试验次数的增加, 事件出现的频率无限接近于该事件发生的概率.
——大数定律
表面上是偶然性在起雅作各用布的·贝地努方利,这种偶然 性始终是受内部的隐蔽(着瑞的士规数律学支家)配的!
——恩格斯·《马克思、恩格斯论历史科学》
1.通过自己举例及质疑的过程,提炼出随机事件、 必然事件和不可能事件概念中“在一定条件下”这一 关键词;
频率
fn ( A)=
nA n
[0,1]
确定事件 随机事件
稳 定 于概率Leabharlann ( A)得出结论事件
分析数据
不确定 次 数 增 加
趋于稳定 次 数 足 够 大
稳定于某 一个常数
[问题]:你能举出现实生活中 必然事件、不可能事件、随机 事件的实例吗?
全部是阳面朝上,姚督怎么会这 么巧哇?!
温度、水分、阳光
[活动1]:抛掷硬币试验
分组说明:全班共50位同学,每5人一组,共10组
实验步骤
思考问题
第一步,每人试验10次,记录正 面朝上的次数,并计算出正面朝上的 比例;
第二步,小组长统计本小组试验 结果,并将统计数据填在黑板的表格 里;
抽取球数 m
优等品数 n
50 100 200 500 1000 2000 45 92 194 470 954 1902

选择性必修第三册7.1.1条件概率课件(人教版)(1)

选择性必修第三册7.1.1条件概率课件(人教版)(1)

(2)样本空间不同,在P(B|A)中,事件A成为样本
空间;在P(AB)中,样本空间仍为
因而有
P( B A) P( AB)


典例在5道题中有3道代数题和2道几何题,每次从中随机抽出1道题,
抽出的题不再放回.(1)第1次抽到代数题且第2次抽到几何题的概率;
(2)第1次抽到代数题的条件下,第2次抽到几何题的概率.
= = .
15
15
10
PA 4 8
1
2
15
1.若 P( A | B) , P( A) ,则事件 A 与 B 的关系是( C )
3
3
A.事件 A 与 B 互斥
B.事件 A 与 B 对立
C.事件 A 与 B 相互独立
D.事件 A 与 B 互斥又相互独立
2 1
P
(
A
)

1

P
(
A
)

1

P( A | B) , 事件 A 与 B 相互独立.故选 C.




P(A)=P(A1)+P( A2)= P(A1)+P()P(A2|)= + × =





因此,任意按最后1位数字,不超过2次就按对的概率为 .


(2)设B=“最后1位密码为偶数”,则P(A|B)=P(A1|B)+P( A2|B)=

+

因此,如果记得密码的最后1位是偶数,不超过2次就按对的概率为 .
n() 20 10
(2)“第1次抽到代数题的条件下,第2次抽到几何题”的概率就是
事件 A 产生的条件下,事件 B 产生的概率.又 P ( A)

人教版高中数学必修三第三章第1节 3.1.3 概率的基本性质 课件(共28张PPT)

人教版高中数学必修三第三章第1节 3.1.3 概率的基本性质 课件(共28张PPT)

(类3比)如集果合事间件的D2运与算事,件H你同能时定发义生,新就事意件味吗着?哪个
事件发生?
问题探究——形成概念
一、事件的关系及运算
(4)交(积)事件 若某事件发生当且仅当事件A发生且事件
B发生,则称此事件为事件A与事件B的交事 件(或积事件),记作A∩B(或AB)。 与集合类比,可用Venn图表示如图:
问题探究——形成概念 一、事件的关系及运算
(1)包含关系 一般地,对于事件A与事件B,如果事件
A发生,则事件B一定发生,这时称事件B包 含事件A(或事件A包含于事件B),记作A B(或B A)。
与集合类比,可用Venn图表示如图:
B
A
问题探究——形成概念
不可能事件记为 Φ ,任何事件 都包含不可能事件。
事件D2={出现的点数大于3}
事件D3={出现的点数小于5}
事件E ={出现的点数小于7}
事件F ={出现的点数大于6}
事件G ={出现的点数为偶数}
事件H ={出现的点数为奇数}······
(集1合)间如有果哪事些件关C1系发?生类,比则集一合定间发的生关的系事,件说有说哪这些?
些反事之件,间成有立什么吗关?系?
问题探究——形成概念
一、事件的关系及运算
(3)并(和)事件 若某事件发生当且仅当事件A发生或事件B发
生,则称此事件为事件A与事件B的并事件(或和 事件),记作A∪B(或A+B)。
与集合类比,可用Venn图表示如图:
B
A
A∪B
问题探究——形成概念
在掷一颗骰子的试验中,可以定义许多事件如:
事件C1={出现1点}
事件E ={出现的点数小于7}
事件F ={出现的点数大于6}

高中数学+条件概率课件

高中数学+条件概率课件

条件概率与贝叶斯定理
要点一
总结词
贝叶斯定理是条件概率的一个重要应用,它可以帮助我们 根据已知信息更新对某个事件发生的概率的估计。
要点二
详细描述
贝叶斯定理是条件概率的一个重要应用,它可以帮助我们 根据新的信息或证据更新对某个事件发生的概率的估计。 贝叶斯定理的基本思想是将先验概率(即已知新信息之前 的事件发生的概率)与似然函数(即新信息与事件的关系 )相结合,计算出后验概率(即已知新信息之后的事件发 生的概率)。这个定理在统计学、机器学习等领域有广泛 的应用。
高中数学 条件概率课
ห้องสมุดไป่ตู้

汇报人:
202X-01-04
• 条件概率的定义与性质 • 条件概率的计算方法 • 条件概率的应用 • 条件概率的注意事项 • 练习题与答案
目录
01
条件概率的定义与性质
条件概率的定义
条件概率是指当某一事件B已经发生时,另一事件A发生的概 率。具体定义为:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表 示事件A和事件B同时发生的概率,P(B)表示事件B发生的概 率。
首先列举出事件B发生的所有可能结果,然后确定在这些 结果中事件A发生的概率,最后计算条件概率。
利用树状图计算条件概率
对于涉及多个事件的情况,可以使用 树状图来帮助计算条件概率。
画出一个树状图,标出各个事件的概 率,然后根据树状图的结构,利用公 式或列举法计算条件概率。
03
条件概率的应用
在日常生活中的应用
1. 题目
一个班级有20个学生, 其中10个是男生,10个 是女生。现在要选3个 学生参加活动,已知选 了1个男生和2个女生, 求剩下的2个学生都是 男生的概率。

人教A版高二数学选择性必修第三册《条件概率》公开课课件

人教A版高二数学选择性必修第三册《条件概率》公开课课件
√B、甲乙二人射击的命中率分别是0.8,0.9,在甲命中的前提下乙也命中的
概率
√C、在含有3件次品的10件产品中依次抽取两件,若第一次抽到次品时,则
第二次也抽到次品的概率 D、在含有3件次品的10件产品中依次抽取两件,恰好含有一件次品的概率
√E、有10把钥匙,其中只有一把可以将门打开,随机抽出一把试开,若试
(1)在第一次摸到白球的条件下,第2次摸到白球的概率; (2)两次都摸到白球的概率.
解:设第1次摸到白球为事件A,第2次摸到白球为事件B,则
∴两次都摸到白球的概率为 7 15
通过本节课的学习,你收获了哪些知识和数学思想? 一、基本知识
1、条件概率的定义
P B|A
P AB PA 0
PA
2、条件概率的计算方法 P B | A n AB nA
思考1:两个情景有什么共同点?
一般地,设A,B为两个随机事件,且P(A)>0,我们称 P(B | A) P( AB) P( A)
为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.
P B | A 读作:在A发生的条件下,B发生的概率.
2 图形表示:
A AB B
如何判断是否是条件概率?
例1 下列概率问题属于条件概率的是 A、甲乙二人射击的命中率分别是0.8,0.9,各射击一次都命中的概率
n AB P B|A =
nA
一般来说,P B | A P AB
例2 在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,共 抽两次,抽出的题不再放回. 求:
(1)第1次抽到代数题的概率; (2)第1次抽到代数题且第2次抽到几何题的概率; (3)在第1次抽到代数题的条件下,第2次抽到几何题的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率为0.7, 活到25岁的概率为0.56,求现年为20岁的这种 动物活到25岁的概率。 解 设A表示“活到20岁”(即≥20),B表示 “活到25岁” (即≥25) 则 P( A) 0.7, P( B) 0.56
由于B A故A B B,
所求概率为

解:设“第 1次抽到理科题”为事件 A,“第2次抽到理科题” 为事件B,则“第 1次和第2次都抽到理科题”就是 事件AB。 ( 1)从5道题中不放回地依次抽 取2道的事件数为 n() A52 20
1 1 n( A) A3 A4 12.
n(A) 12 3 于是P(A) . n() 20 5 n(AB) 6 3 (2)因为n(AB) A 6所以P(AB) . n() 20 10
(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?
课堂小结
1. 条件概率的定义. 2. 条件概率的性质.
P ( AB ) P ( B A) P ( A)
3. 条件概率的计算方法.
(1)减缩样本空间法 (2)条件概率定义法
P( AB) P( B A) P( A)
P( A B) P( A) P( B)
那么怎么求A与B的积事件AB的概率呢?
复习引入
5. 抛一枚质地均匀骰子所有可能的结果(基本事 件)为: 1点,2点,3点,4点,5点,6点.
1点, 2点, 3点, 4点, 5点, 6点 ——样本空间
6. 抛一枚质地均匀骰子所有可能的结果(基本事 件)为: 偶数点,奇数点.
n( A) :事件A包含的基本事件个数. n( AB ) :事件AB包含的基本事件个数.
由古典概型概率公式有
n( AB ) P ( AB ) n( )
所以
n( A) P ( A) n( )
n( AB ) n( AB ) n( ) P ( AB ) P B A n( A) n( A) P ( A) n( )
偶数点,奇数点
——样本空间
探究
三张奖券中只有一张能中奖,现分别由三名同学无放 回的抽取,问最后一名同学中奖的概率是否比前两名 同学小.
分析: 用 X1 , X 2 , Y 表示三张奖券,其中 Y 表示中奖奖券.
则由三名同学无放回抽取奖券的样本空间为
X1 X2Y , X2 X1Y , X1YX2 , X2YX1 ,YX1 X2 ,YX2 X1
P( AB) P( B) P( B A) 0.8 P( A) P( A)
B
5
0.56
0.7
A
2、5个乒乓球,其中3个新的,2个旧的,每次取一个,不
放回的取两次,求:
(1)第一次取到新球的概率; (2)第二次取到新球的概率;
(3)在第一次取到新球的条件下第二次取到新球的概率。
3、一只口袋内装有2个白球和2个黑球,那么
高二数学 选修2-3
2.2.1条件概率(一)
教学目标
1、了解条件概率的概念; 2、掌握条件概率的计算公式; 3、会利用条件概率解决实际问题。
复习引入
1.事件A与B至少有一个发生的事件叫做A与B的 和事件,记为 A B (或 A B );
2. 事件 A与 B都发生的事件叫做 A与 B的积事件 , 记为 A B (或 AB ); 3.若 AB 为不可能事件,则说事件A与B互斥. 4. 若事件A与B互斥,则
分析: A 第一名同学没有中奖
B 最后一名同学中奖
“已知第一名同学没有中奖的条件下,最后一名同
学中奖”的概率记为 P B A ,则


1 1 P B A P ( B ) 2 3 为什么概率变大了?
思考?
如果已经知道第一名同学没有中奖,那么最后一名同 学中奖的概率又是多少?
2 3
(3)解法1 由( 1 )(2)可得,在“第 1次抽到理科题的条件下 , 第2次抽到理科题”的概率 为 3 P(AB) 10 1 P(B A) 。 P(A) 3 2 5 解法2因为n( AB) 6, n( A) 12, 所以 n( AB) 6 1 P ( B A) . n( A) 12 2
解:即事件 A 已发生,求事件 B 的概率 也就是求:P(B|A) A B 都发生,但样本空 间缩小到只包含A的样本点 1 5 3 2 n( AB) 2 P( B | A) n( A) 3 4,6
B
A
例2在5道题中有3道理科题和2道文科题,如果不放回
的依次抽取2道题,求: (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.


P B C A P B A P C A
P B C P B P C
典型例题:
例1:抛掷一颗骰子,观察出现的点数
B={出现的点数是奇数}={1,3,5} A={出现的点数不超过3}={1,2,3}
若已知出现的点数不超过3,求出现的点数是奇数 的概率
分析:
第一名同学没有中奖,所有可能出现的基本事件为
X1 X 2Y , X 2 X1Y , X1YX 2 , X 2YX1
最后一名同学中奖,可能出现的基本事件依然为
X1 X 2Y , X 2 X1Y
2 1 所以所求的概率为 4 2
思考?
如果已经知道第一名同学没有中奖,那么最后一名同 学中奖的概率又是多少?
分析:
X1 X 2Y , X 2 X1Y , X1YX2 , X2YX1 Y B 最后一名同学中奖 X1 X2Y , X2 2 X1 1 AB X1 X2Y , X2 X1Y1 B

A 第一名同学没有中奖
B
A
分析:
2 n( B ) n( AB ) P B A 4 n( A) n( A)
条件概率的概念
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) P B A P ( A)
为事件A发生的条件下,事件B发生的条件概率.
P B A 读作A发生的条件下B发生的概率.
概率.
P B A 相当于把A看作样本空间求A∩B发生的
条件概率的性质
(1) 0 P B A 1 (2)如果B和C是两个互斥事件,则
令 B 最后一名同学中奖 X X Y , X X Y 1 2 2 1 则



2 1 P( B) 6 3
思考?
如果已经知道第一名同学没有中奖,那么最后一 名同学中奖的概率又是多少?比刚才求得的概率 更大还是更小?
思考?
如果已经知道第一名同学没有中奖,那么最后一名同 学中奖的概率又是多少?比刚才求得的概率更大还是 更小?
相关文档
最新文档