任务二十五静定平面刚架的内力计算

合集下载

静定平面刚架的内力分析- 内力图

静定平面刚架的内力分析- 内力图
建筑力学
静定平面刚架的内力分析 • 内力图
1.1 刚架结构的特征和基本类型
1. 刚架结构的特征
刚架是用刚结点将若干直杆联结而成的结构。当刚架的轴线和外力都在同一 平面时,此种钢架称为平面刚架。由静力平衡条件可以求出全部约束反力和内力 的平面刚架称为静定平面刚架。
刚架在构造方面具有杆件少、内部空间大、便于使用等特点;在受力方面, 由于刚结点能承受和传递弯矩,从而使结构中弯矩的分布较均匀,峰值较小,节 约材料。因此,刚架结构在工程中是最为常见的一种结构。
2. 静定平面刚架的基本类型 静定平面刚架的基本类型有三种:悬臂刚架、简支刚架和三铰刚架,分别如 图9-4 a 、b 、c 所示。
图9-4
1.2 静定平面刚架的内力计算及内力图绘制
静定平面刚架横截面上的内力一般有轴力 FN 、剪力 FQ 和弯矩 M 等三个内力, 其内力的计算方法与静定梁基本相同。通常将刚架拆成单个杆件,求出各杆的杆 端内力,然后利用杆端内力分别作出各杆件的内力图,再将各杆件的内力图组合 在一起,即得刚架的内力图。
计算杆端内力时,杆端内力的表示方法是在内力符号后面加两个下角标。例 如,对杆 AB 的杆端内力可表示为:MAB 表示杆 AB 在 A 端的弯矩,MBA 表示杆AB 在 B 端的弯矩;FQAB 表示杆 AB 在 A 端的剪力,FQBA 表示杆 AB 在 B 端的剪力。
在作刚架的内力图时,通常将弯矩图画在杆件弯曲时受拉的一侧,而不必标 注正负号;在作剪力图和轴力图时,剪力和轴力可画在杆件的任一侧,但必须标明 正负号。下面举例说明。
图9-6
② 求各杆的杆端弯矩,作 M 图。
杆CE :
M CE
22
4
1 2
8
42
24

静定结构的内力计算 教程

静定结构的内力计算 教程

拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图 (1)无荷载分布段(q=0), FQ图为水平线,M图为斜直线。 (2)均布荷载段(q=常数), FQ图为斜直线,M图为抛物线,且凸向与荷 载指向相同。 (3)集中力作用处,FQ图有突变,且突变量等于力值; M图有尖点,且指 向与荷载相同。 (4)集中力偶作用处, M图有突变,且突变量等于力偶值; FQ图无变化。
工程力学
第十四章
静定结构的内力计算
b、求D点的内力 先求计算参数:
xD 3m
dy 4 f 4 4 tg D 2 ( L 2 x) 2 (12 2 3) 0.667 dx L 12 MD D 3342' Cos D 0.832
4 4 yD 2 (12 3) 3 3m 12
工程力学
第十四章
静定结构的内力计算
3、杆端内力的计算 先求出刚架的支座反力,再利用截面法求出各杆杆端内力 (1)在待求内力的截面截开,取任一部分为隔离体。 (2)画隔离体的受力图。 (3)利用隔离体的平衡条件,求出截面上的剪力、轴力和弯矩。 (4)利用结点的平衡条件校核刚结点杆端内力值。 4、刚架弯矩图的绘制
i i
与右图简支梁的支座反力:
Pb l Pa l
F
0 AY
i i
F
0 BY
i i
FAY F
0 AY
0 FBY FBY
工程力学
第十四章
静定结构的内力计算
分析推力H 式:
FAY l1 P 1 (l1 a1 ) H f
上式中的分子
FAY l1 P 1 (l1 a1 )
MEC=0kN•m CE杆上为均布荷载,弯矩图为抛物线 。 利用叠加法求出中点截面弯矩MCE中=30+60=90kN•m

第3章静定梁、平面刚架受力分析

第3章静定梁、平面刚架受力分析
2



2.1 单跨静定梁
单跨梁的内力是计算静定拱和刚架 力的基础,本节复习材料力学中梁内 力的计算方法,对梁内力图的作法要 进一步熟练和加深。
一、 梁的组成和受力性能
在横向外力作用下产生平面弯曲的直杆,叫直梁,简称梁
梁的主要内力是弯矩,主要变形是弯曲变形。梁是受弯杆件
常用的单跨梁:
悬臂梁
简支梁
m=16kN.m A B C D E F G 1m 1m 2m 2m 1m 1m
R A 17 R B 7 kN
P=8kN q=4 kN/m
kN
取AC部分为隔离体,可计算得: M C 17 1 17 kN
取GB部分为隔离体,可计算得: M G 7 1 7 kN
r
A
17
310 160 40 40 6 0
VA=130KN
VB=310KN
(二)绘内力图:
H A
=0
V
A =130KN
X 0 Y 0 M 0
C
NC 0 Q C 130 KN M C 130 KN . M
第3章 例题: 试绘制图示外伸梁的内力图。
解:
10KN/m A HA=0 4m C 2m D B E 30KN.m 20KN
A
0
V A 1 0 5 ( ) KN V B 1 1 5 ( ) KN
A
(2)求C截面内力: 校核: Y 105 115 100 20 6 0 将x=1.5m代入曲梁轴线方程
y
4f l
2
(l x ) x
44 12
2
(12 1 . 5 ) 1 . 5 1 . 75 m

工程力学31 静定平面刚架的内力计算

工程力学31 静定平面刚架的内力计算
35
F
C
XE E
B
YE
YE
A
XE
33
FP
FP a
D
F
2FPa 2FP 0
A
E0
FP 2FP
FP
C
D
F
FP
B
0 XE E
FP
2FP YE
FP
2FP
34
C
B
FRB FP FP
变形曲线
结构的变形曲线:
1. 必须符合支座的约束条件和杆件的联结条件; 2. 必须正确反映结点线位移和角位移的方向; 3. 必须正确反映杆件的弯曲方向。
静定平面刚架的内力
1
31
❖ 由多根直杆组成 ❖ 杆件之间的结点多为刚结点
2
刚结点
❖变形特点:限制相对的转动和移动 ❖受力特点:可传递弯矩、剪力和轴力
3
32
悬臂刚架 简支刚架
三铰刚架
4
3 ❖内力类型:弯矩、剪力、轴力 ❖计算方法:截面法 ❖内力的符号规定:
弯矩:取消正负规定,弯矩图画在受拉一侧。 剪力:符号规定不变。 轴力:符号规定不变。 轴力图和剪力图习惯上同号画在同侧,标明正负
(2) 作M图
10
(3) 作FQ图
由隔离体平衡条件求杆端剪力
FQAD 1.384kN
FQBE 1.384kN
FQDC
1 6.23 6 3 3.83kN
6.23
FQCD
1 6.23
6.23
6 3
1.86kN
FQCE
1 6.23
6.23
0.985kN
11
1.384 4.5
1.384
(4) 作FN图 由结点平衡条件求杆端轴力

静定结构内力计算全解[详细]

静定结构内力计算全解[详细]
➢ 杆件结构的组成和分析是两个相关的过程,应当 把受力分析与组成分析联系起来,根据结构的组 成特点确定受力分析的合理途径。
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy

静定梁和刚架内力分析

静定梁和刚架内力分析

(0<x<l ) (0≤x<l)
M
(-)
(c)
x
2.作剪力图和弯矩图:
由剪力方程可知,当 0 <x <l,时(即 AB 段上),剪力为 常数,因此剪力图为一条水平的直线;由弯矩方程可知,AB 梁段上沿着轴线方向弯矩呈线性变化,因此,弯矩图为一条斜 直线,只需求出两个端截面上
F A FQ x m m l
在列平衡方程求解内力时,需事先确定截面内力的方向, 而此时截面内力为未知力,因此,一般假定截面内力沿其正向 作用,则计算得到的正负号就是该截面内力的正负号。 另外,在利用截面法求解前,通常先确定支座反力,因支 座反力并无正负规定,在求支反力前可任意假设正方向。
若结果为正,则表示支反力实际方向与假设方向相同;
上所有外力对该截面形心的力矩的代数和。
其中外力对横截面形心之矩正负号选取规律为: (1)力——不论横截面左侧还是右侧,只要向上就取正,
反之取负;
(2)力偶——横截面左侧顺时针或右侧逆时针取正,反之 取负。 利用上述结论,可以不画分离体的受力图、不列平衡方 程,直接得出横截面的剪力和弯矩。这种方法称为直接法。 直接法将在以后求指定截面内力中被广泛使用。
2
求梁指定截面上的内力的方法: 剪力:梁任一横截面上的剪力在数值上等于该截面一侧梁段 上所有外力在平行于截面方向投影的代数和。 其中外力正负号选取规律为: 横截面左侧梁段上向上的外力取正,横截面右侧梁段上
向下的外力取正;反之取负。
简记为左上右下取正,反之取负。
弯矩:梁任一横截面上的弯矩在数值上等于该截面一侧梁段
若外力或外力偶矩使所考虑的梁段产生向下凸的变形(即 上部受压,下部受拉)时,等式右方取正号,反之,取负号。 此规律可简化记为“下凸弯矩正”或“左顺,右逆弯矩 正” ,相反为负。

静定梁、静定平面刚架和三铰拱的计算

静定梁、静定平面刚架和三铰拱的计算

举例: 3、举例:
解: 研究整体: 研究整体 :
ql (↑) 2
∑M ∑M
B
=0
VA =
研究 AC 段:
C
=0
ql 2 HA = (→) 8f
任一截面的弯矩(参阅左下隔离体图) 任一截面的弯矩 (参阅左下隔离体图):
M ( x) = ql ql 2 qx 2 ⋅x− ⋅y− 2 8f 2
令上式等于零,可得合理拱轴 : 令上式等于零, 可得合理拱轴:
例题2 例题2: 图示三跨静定梁,全长承受均布荷载q 试确定铰E 图示三跨静定梁,全长承受均布荷载q,试确定铰E、F的位置,使中 的位置, 间一跨支座的负弯矩与跨中正弯矩数据数值相等。 间一跨支座的负弯矩与跨中正弯矩数据数值相等。
解:
1 研究 AE 杆: V E = q (l − x ) 2 1 1 研究 EF 杆: M B = M C = q (l − x ) x + qx 2 2 2 ∵MB + MC = ql 2 (叠加弯矩值) 8
解: (一)求支座反力 一 求支座反力 研究整体: 研究整体:
∑X =0 ∑M = 0 ∑M = 0
A B
HA = HB VB = 80kn(↑) V A = 80kn(↑)
取半刚架研究: 取半刚架研究:
∑M
C
=0
H B = 20kn(←) H A = 20kn(→)
校核: 校核 ∑ Y = 80 + 80 − 20 × 8 = 0 (二)绘内力图 二 绘内力图 (三)内力图校核 略) 内力图校核(略 三 内力图校核
拟简支梁法” 3、用“拟简支梁法”绘弯矩图
结论: 结论: 弯矩图时, 用叠加法绘 弯矩图时,先绘出控制截面 的弯矩竖标,其间若无外荷载作用, 的弯矩竖标,其间若无外荷载作用,可用直线 相连;若有外荷载作用,则以上述直线为基线, 相连;若有外荷载作用,则以上述直线为基线, 再叠加上荷载在相应简支梁上的弯矩图。 再叠加上荷载在相应简支梁上的弯矩图。

建筑力学第11章静定结构的内力计算

建筑力学第11章静定结构的内力计算
2)联合桁架 由几个简单桁架按几何不变规律 联合组成的桁架(图 11.28(c)所示)。 3)复杂桁架 不按上述两种方式组成的其他形 式的桁架(图 11.28(d)所示)。 46
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)计算支座反力
对悬臂刚架,可不必先求支座反力
三、各杆的杆端内力
对悬臂刚架,可不必先求支座反力 (3)计算杆端内力(A B C D 均为控制点)
三、各杆的杆端内力
取BC杆为脱离体图(b),利用平衡方程
(b)
三、各杆的杆端内力
取BD杆为脱离体,利用平衡方程
(c)
三、各杆的杆端内力
取CBD杆为脱离体,列平衡方程
AB杆B端的弯矩。
3. 内力正负号规定: 弯矩M — 不规定正负方向,弯矩图画在杆件受拉纤维一边,可
不注名正符号。 剪力Q — 规定同材力(可以画在任意一侧,但必须注名正负号 )。 轴力N — 规定同材力。
三、各杆的杆端内力
4、计算步骤
反力
杆端内力
M图
校核
Q图
N图
[例1] 计算图示悬臂刚架的内力,并作内力。 解:1.计算支座反力 (1)画受力图
悬臂刚架
简支刚架
三铰刚架等
二、 静定平面刚架的计算步骤
计算支座反力
求解静定平面刚架的支座反力时,悬臂式刚架可先不求支座 反力;简支式刚架、三铰式刚架,一般应先求支座反力,再进行
内力计算。
三、各杆的杆端内力
1. 计算方法:截面法、隔离体、平衡方程。 2. 内力表示方法:内力符号双脚标,两个字母表示两个杆端,第一 个字母表示杆端力是哪一端的,如MAB为AB杆A端的弯矩,MBA 为
( d)
三、各杆的杆端内力
(4)画内力图(弯矩图,剪力图,轴力图)
弯矩图
剪力图
轴力图
三、各杆的杆端内力
(5)校核
取B结点进行校核内力,弯矩,剪力,轴力均满足平衡条件
M
0
X 0
Y 0
模块三
项目九
结构力学
静定平面杆系的内力与位移计算 静定平面刚架的内力计算
任务二十五
教学重点 刚架的特点、静定平面刚架的计算。
教学难点 刚架的特点、静定平面刚架的计算。
模块三 项目九
结构力学 静定平面杆系的内力与位移计算
静定平面刚架的内力计算
Hale Waihona Puke 任务二十五 教学内容一、刚架的特点(组成及类型) 二、静定平面刚架的计算步骤

变形特点:在刚结点处各杆不能发生相对转动,各杆件可以产生
弯曲、剪切、轴向变形。

受力特点: 轴力N 静定平面刚架的内力有 剪力Q 弯矩M
静定平面刚架是用两个刚片或三个刚片的 规律组成的几何不变体,可统称为简单刚架。
一、刚架的特点(组成及类型)
2. 静定平面刚架的类型
悬臂刚架 简支刚架 三铰刚架等
三、各杆的杆端内力
一、刚架的特点(组成及类型)
1. 刚架:由梁柱相互刚结(或部分铰接)组成,主要由刚结点
维持的几何不变的体系。
优点:刚度大,整体性好,内力较均匀,杆件较,内部空间较 大,所以在工程中得到广泛应用。
各杆轴线和外力作用线在同一平面内的刚架称平面刚架。
刚结点
刚架
一、刚架的特点(组成及类型)
相关文档
最新文档