静定桁架的内力计算
桁架的力法计算公式

桁架的力法计算公式桁架是一种结构工程中常用的结构形式,它由多个杆件和节点组成,能够有效地承受外部作用力并传递力量。
在工程实践中,我们经常需要计算桁架结构中各个杆件的受力情况,这就需要运用桁架的力法计算公式来进行计算。
本文将介绍桁架的力法计算公式及其应用。
桁架的力法计算公式主要包括平衡方程和杆件内力计算公式。
在进行桁架结构的力学分析时,我们首先需要根据平衡条件建立平衡方程,然后利用杆件内力计算公式计算各个杆件的受力情况。
首先,我们来看一下桁架的平衡方程。
对于一个静定的桁架结构,我们可以利用平衡条件建立平衡方程。
平衡方程的基本形式是∑Fx=0,∑Fy=0,∑M=0,即桁架结构在平衡状态下受到的外部力和外部力矩的合力合力矩为零。
通过解平衡方程,我们可以得到桁架结构中各个节点的受力情况。
接下来,我们来看一下桁架结构中杆件的内力计算公式。
在桁架结构中,杆件受到的内力包括拉力和压力。
根据静力学的原理,我们可以利用杆件的几何形状和受力情况建立杆件内力计算公式。
对于一般的杆件,其内力计算公式为N=±P/A,其中N为杆件的内力,P为杆件受到的外部力,A为杆件的横截面积。
当杆件处于受拉状态时,内力为正;当杆件处于受压状态时,内力为负。
通过杆件内力计算公式,我们可以计算桁架结构中各个杆件的受力情况。
在实际工程中,桁架的力法计算公式是非常重要的。
通过运用桁架的力法计算公式,我们可以有效地分析桁架结构中各个杆件的受力情况,为工程设计和施工提供重要的参考依据。
在进行桁架结构的力学分析时,我们需要注意以下几点:首先,要准确地建立桁架结构的平衡方程。
在建立平衡方程时,需要考虑到桁架结构受到的外部力和外部力矩,确保平衡方程的准确性。
其次,要正确地应用杆件内力计算公式。
在计算桁架结构中各个杆件的受力情况时,需要根据杆件的几何形状和受力情况正确地应用杆件内力计算公式,确保计算结果的准确性。
最后,要综合考虑桁架结构的整体受力情况。
静定桁架的内力计算

第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。
桁架中各杆件的连接处称为节点。
由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。
房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。
图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。
本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。
在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。
满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。
分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。
一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。
由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。
例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。
图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F以及约束反力、、作用,列平衡方程并求解:,=0,2×-=0,=,+-2=0,=2-=(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。
工程力学32 静定平面桁架结构的内力计算

定
12kN
12kN
结 构
3m 3
6kN D
F
J
6kN
L
的 内 力
FxA
AC E G
IK
B
4m 6
FyA
FyB
计 算 1.求支座反力
FxA 0 FyA 36kN FyB 36kN
2020/10/4
重庆工程职业技术学院
11
静定桁架
结 构
12kN 12kN
12kN H 12kN
12kN
力 学
3m 3
静 定
3、注意:
结
(1)一般结点上的未知力不能多余两个。
构 的
(2)可利用比例关系求解各轴力的铅直、水平分量。
内
力
计
算
2020/10/4
重庆工程职业技术学院
10
静定桁架
结 三、静定平面桁架的内力计算
构 (一)结点法
力
以一个结点为隔离体,用汇交力系的平衡方程求解
学
各杆的内力的方法。
静
12kN
12kN H 12kN
结 构 力 学
静 定 结 构 的 内 力 计 算
结 一、概述 构 力 学
静定桁架
静
定
结
构
的
主桁架
内
力
计
算
2020/10/4
重庆工程职业技术学院
2
结 一、概述 构
力 学
静定桁架
静 理想桁架的三点假设:
定
结
(1)所有的结点都是无摩擦的理想铰结点;
构
(2)各杆的轴线都是直线,并通过铰的中心;
的
(3)荷载和支座反力都作用在结点上。
静定平面桁架的内力计算——结点法课件最新实用版

⑷各杆的自重不计,或平均分配到杆两端的结点上。
静定平面桁架的内力计算——结点法
F =F =-30kN 5kN F7=0kN
静定平面桁架的8内力计算6——结点法
F9=F5=12.5kN
F =F =22.5kN 静定平面桁架的内力计算——结点法
静5kN定平F7面=0桁kN架的1内0力计算(4 结点法)
F =F =20kN F =F =22.5kN 桁架是指多个直杆在两端用适当的方式联结而成的结构。
C
D
6
8
F
1 3 5 7 9 11 12 4m
A
2 B4
10
13 H
E
G
F
3m
F
3m
F
3m
3m
5 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
解:(1)以整体为研究对象,求桁架的支座反力。
(2)以A结点为研究对象,求1、2杆的内力。
6 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
(3)以B结点为研究对象,求3、4杆的内力。
(4)以C、D结点为研究对象,求5、6、7杆的内力。
列出节点C的平衡方程,解得F5=12.5kN,F6=-30kN 列出节点D的平衡方程,解得 F7=0
7 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
⑵各杆轴线都求是直出线,左并都半位于部桁架分平面各内。杆件的内力后,可根据对称性得到右半部分各杆件的内力,即:
5静kN定平F7面=0桁kN架的内力计算⑷(结各点杆法)的自重不计,或平均分配到杆两端的结点上。
为了求得桁架各杆的内力,截取桁架的一个结点作为研究对象,用汇交力系的平衡方程 求解杆件内力,这种方法叫做结点法。
习题课3.静定平面桁架的内力计算

习题课3静定平面桁架的内力计算一、找出桁架的零杆(1)F P000000(2)8根零杆5根零杆F P000(3)12根零杆F PF P 00000000000F P 12根零杆(4)A 000000000006根零杆(5)a aaaS 1S 2F P 2F P F P F N 2F N 1AB C DⅡⅡⅠⅠ00000由于荷载反对称,该桁架除下部水平链杆AB 外,其余杆件受力反对称,故。
0=NCD F 1S F=∑I-I 右:20S F =∑II-II 右:12220222N P P F F F +⋅−⋅=10N F =22220222N P P F F F −+⋅+⋅=22N P F F =F PF P(7)(6)F P0附属部分6根零杆7根零杆F P0000000二、用简捷方法求桁架指定杆轴力150+II-II 左:(1)ABC DE FGHa /2a /2ⅡⅡⅠⅠ12解:CM=∑11 1.51.5()N P N P F a F a F F ⋅⋅==−压220/200.5Dy P y PMF a F a F F =+==−∑I-I 下:250.5 1.118()1N P P F F F =−⋅=−压简单桁架1.5F PF P F P F Pa a /2aa /2 1.5F P125(2)F NF yB =2F P dd dd F PAC DB dⅡⅡⅠⅠ1F yC =F PF yA =F PF xA =2F P 323F P2F P331)020()2)0()3)0()C N P P N P x N P y yC P M F d F d F d F F F F F F F F =+−======↑∑∑∑拉拉I-I 右:联合桁架解:F NF yB =2F P dd ddF PAC DB dⅡⅡⅠⅠ1F yC =F PF yA =F PF xA =2F P 323F P2F P1210()()032()D N P P yN P P P M F F d F dF F F F F ==−⋅=−==−=−∑∑压压II-II 左:整体平衡:10(322)()2ByA P P P P P MF F d F d F d F d F d==+⋅−−=↑∑(3)F P0A -F P-F P-F PF DEC 12F PF PPF 2F N F Pa /2aⅠⅠ00B 0EN MF ==∑1)I-I 右:02=N F 2)结点C :1102()yy PN P FF F F F ===∑拉3)结点F :aa /2aa /2联合桁架解:(4)F P 4m4mF P F P F P 4F P6.67F P6.67F P AB FC F N 2134ⅡⅠEⅡD GH 4m4m3m3mⅠ解:1220()0()33DN P xN P MF F FF F ====−∑∑拉压1) I-I 右:2) 结点E :2222550()346xx PN x P FF F F F F ====∑拉简单桁架F PF N 2E 23PF F P 4m4mF P F P F P 4F P6.67F P6.67F P AB FC F N 2134ⅡⅠEⅡD G H4m4m3m3mⅠ553434343x Py P PN F F F F F F ==⋅==4) 结点D :F PFN 3F N 5D2F P2F P /3410(48)2()6F N P P P M F F F F −==+=−∑压3) II-II 右:xF=∑(5)F PCA B dⅠ1 1.5F P 1.5F P02F P F Pd 0复杂桁架1)结点C:结构与荷载均对称,两斜杆轴力为零。
静定结构的内力—静定平面桁架(建筑力学)

截断的五根杆件中,除杆ED外,其余 四杆均汇交于结点C,由力矩方程 ΣMC=0即可求得FNED。
静定平面桁架的内力计算
(2)欲求图复杂桁架中杆CB的轴力 可用Ⅰ-Ⅰ截面将桁架截开,在
被截断的四根杆件中,除杆CB外,
其余三杆互相平行,选取y轴与此三
静定平面桁架的工程实例和计算简图
1 静定平面桁架的工程实例
桁架是由直杆组成,全部由铰结点连接而成的结构。
屋架
桥梁
静定平面桁架的工程实例和计算简图
纵梁
横梁 主桁架
工业厂房
静定平面桁架的工程实例和计算简图
2 静定平面桁架的计算简图
(1)桁架各部分名称
斜杆 Diagonal chard
弦杆
上弦杆 Top chard
静定平面桁架的内力计算
MD 0 Fx 0
FNc 4 FAy 3 20 3 0 FNc 52.5kN FNbx FNa FNc 0
FNbx FNa FNc 15kN
由比例关系可得
FNb
lb lbxy
FNbx
3.61m 3m
15kN
18.05kN
静定平面桁架的内力计算
主内力:按理想桁架算出的内力,各杆只有轴力。 次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲,由此引起的内力。
实际桁架不完全符合上述假定, 但次内力的影响是次要的。
静定平面桁架的工程实例和计算简图
3 静定平面桁架的分类
(1)按几何组成规律分类 简单桁架 由基础或一个铰接三角形开始,依
次增加二元体而组成的桁架 联合桁架 由几个简单桁架按照几何不变体系
《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。
二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。
采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。
计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。
结点法一般适用于求简单桁架中所有杆件轴力。
2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。
T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。
X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。
K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。
若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。
Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。
若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。
对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。
静定桁架的内力计算

a
B RB =2kN
NCD
D
N2
N3
F
B
2kN RB
将桁架从Ⅰ- Ⅰ部位截开,取右侧。
ΣY=0;
2 N 2 2 RB 2 0;
N2=0
ΣmD=0; N3·a-RB·a=0 ;
N3 =2kN
【例5-3】求图示桁架指定杆件的轴力,α=60°。
C
Ⅰ
NCF
E2
F 2kN
N2
F
2kN
N2 N3
【例5-2】求图示桁架指定杆件的轴力。
2kN C
D
2 A1
XA YA
E3 F 2kN
aaa
解:1杆为零杆; N1=0
a
B RB =2kN
取整体,ΣmA=0; RB·3a-2×a-2×2a=0 RB=2kN
【例5-2】求图示桁架指定杆件的轴力。
2kN C Ⅰ D
2 A1
XA YA
E 3Ⅰ F 2kN
(2) 不共线二杆结点有外力(包括支座反力) ,且外力与其中
一杆共线,则另一杆为零杆;
y P
N1= 0 N2 x
ΣY=0; N1= 0
(3) 三杆结点无外力(包括支座反力) ,且其中两杆共线,则 第三杆为零杆。
y
N3 = 0
N1
N2
x
解题时,零杆可以去掉。
ΣY=0; N3= 0
【例5-1】试判断图示桁架中的零杆。
第五章 静定平面桁架的内力计算
1.零杆的判断 桁架的外力都是作用在结点上,因此,桁架中的杆皆为二力 杆,内力只有轴力。轴力为零的杆称为零杆,零杆可由结点平衡 条件直接判断。
(1) 不共线二杆结点无外力(包括支座反力) ,此二杆为零杆;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。
桁架中各杆件的连接处称为节点。
由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。
房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。
图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。
本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。
在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。
满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。
分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。
一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。
由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。
例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。
图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F以及约束反力、、作用,列平衡方程并求解:,=0,2×-=0,=,+-2=0,=2-=(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。
设想将杆件截断,取出各节点为研究对象,作A、D、C节点受力图(图3-12b),其中=,=,=。
平面汇交力系的平衡方程只能求解两个未知力,故首先从只含两个未知力的节点A 开始,逐次列出各节点的平衡方程,求出各杆内力。
节点A:,+sin300=0, =-2=-2F(压),+cos300=0, =-0.866=1.73F(拉)节点D:,-+=0, ===1.73F(拉),-2F=0, =2F(拉)节点C:,- sin600+sin600=0,==-2F(压)至此已经求出各杆内力,节点C的另一个平衡方程可用来校核计算结果:,-cos600-cos600-=0将各杆内力计算结果列于表3-2:表3-2 例3-8计算结果杆号 1 2 3 4 5内力-2F 1.73F 2F -2F 1.73F 例3-9 试求图3-13a所示的平面桁架中各杆件的内力,已知,G=20kN。
(a)(b)图3-13 例3-9图解(1)画出各节点受力图,如图3-13b所示,其中=F i(i=1,2,…,6)。
各点未知力个数、平衡方程数如表3-3。
由于A点的平衡方程数与未知力个数相等,所以首先讨论A点。
表3-3 未知力个数、平衡方程数节点 A B C D E未知力个数 2 3 4 4 2独立方程数 2 2 2 2 1(2)逐个取节点,列平衡方程并求解节点A:, F1sin300-G=0, (拉),-F1cos300-F2=0, F2=-F1cos300=-34.6kN(压)节点B:,, =-34.6kN(压), F3-G=0, F3=G=20kN(拉)节点C:,-F5cos300-F3cos300=0, F5=-F3=-20kN (压),cos600-F5cos600=0,F4=cos600-F5cos600=40+20cos600-(-20)cos600 kN =60kN(拉)将各杆内力计算结果列于表3-4:表3-4 各杆内力计算结果杆号 1 2 3 4 5 6内力/kN 40 -34.6 20 60 -20 -34.6二、截面法节点法适用于求桁架全部杆件内力的场合。
如果只要求计算桁架内某几个杆件所受的内力,则可用截面法。
这种方法是适当地选择一截面,在需要求解其内力的杆件处假想地把桁架截开为两部分,然后考虑其中任一部分的平衡,应用平面任意力系平衡方程求出这些被截断杆件的内力。
例3-10如图3-14a所示的平面桁架,各杆件的长度都等于1.0m,在节点E上作用荷载F1=21kN,在节点G上作用荷载F2=15kN,试计算杆1、2和3的内力。
图3-14 例3-10图解:(1)求支座反力以整体桁架为研究对象,受力图如图3-14a所示,列平衡方程:,=0,×3.0-F1×1.0-F2×2.0=0,+-F1-F2=0解得:==17kN,=kN(2)求杆1、2和3的内力作截面mn假想将此三杆截断,并取桁架的左半部分为研究对象,设所截三杆都受拉力,这部分桁架的受力图如图3-14b所示。
列平衡方程:, -×1.0×sin600-×1.0=0, F1×0.5+×1.0×sin600-×1.5=0,+×sin600-F1=0解得:=-21.9kN(压)= kN=20.8kN(拉)= kN=2.3kN(拉)如果选取桁架的右半部分为研究对象,可得到相同的计算结果。
例3-11 平面桁架结构尺寸如图3-15a所示,试计算杆1、2和3的内力。
图3-15 例3-11图解:(1)求支座反力以整体桁架为研究对象,受力图如图3-15b所示,列平衡方程:,, F B×8a-F1×a-F1×2a-F1×3a-F1×4a-F2×5a-F2×6a-F2×7a=0,+F B-4 F1-3 F2=0解得:,=-F B+4 F1+3 F2=(2)求杆1、2和3的内力作截面I-I假想将杆1、2、3截断,并取桁架的左半部分为研究对象,设所截三杆都受拉力,这部分桁架的受力图如图3-15c所示。
列平衡方程:,,,解得:(压),(拉),(拉)由上面的二个例子可见,采用截面法求内力时,如果矩心取得恰当,力矩平衡方程中往往仅含一个未知力,求解方便。
另外,由于平面任意力系只有三个独立平衡方程,因此作假想截面时,一般每次最多只能截断三根杆件,如果截断的杆件多于3根时,它们的内力一般不能全部求出。
习题3—1 图3-16所示的6种情形中哪些是静定问题?哪些是静不定问题?图3-16 题3—1 图3—2 试求图3-17所示静定梁在支座A和C处的全部约束反力。
其中尺寸d、载荷集度q、力偶M已知。
图3-17 题3—2图3-3 静定多跨梁的荷载及尺寸如图3-18所示,长度单位为m,求支座反力和中间铰处的压力。
图3-18 题3—3图3-4 静定刚架所受荷载及尺寸如图3-19所示,长度单位为m,求支座反力和中间铰处压力。
图3-19 题3—4图3-5 如图3-20所示,杆AB重G、长度为,A端置于水平面上,B端置于斜面上并系一绳子,绳子绕过滑轮C吊起重物F Q。
各处摩擦均不计,求AB杆平衡时的G值及A、B 两处的约束力。
(α、β均为已知)图3-20 题3—5图3-6 如图3-21所示,在曲柄压力机中,已知曲柄OA=R=0.23m,设计要求:当α=200,β=3.20时达到最大冲力F=315kN。
求在最大冲压力F作用时,导轨对滑块的侧压力和曲柄上所加的转矩M,并求此时轴承O的约束反力。
图3-21题3—6图3-7 在图3-22所示架构中,A、C、D、E处为铰链连接,BD杆上的销钉B置于AC杆的光滑槽内,力F=200N,力偶矩M=100N·m,不计各杆件重量,求A、B、C处的约束反力。
图3-22 题3—7图3-8 如图3-23所示,折梯由两个相同的部分AC和BC构成,这两部分各重0.1kN,在C点用铰链连接,并用绳子在D、E点互相联结,梯子放在光滑的水平地板上,今在销钉C上悬挂G=0.5kN的重物,已知AC=BC=4m,DC=EC=3m,∠CAB=60°,求绳子的拉力和AC作用于销钉C的力。
图3-23题3—8图3-9 三脚架如图3-24所示,F P=4.0kN,试求支座A、B的约束反力。
图3-24题3—9图3-10如图3-25所示,起重机停在水平组合梁板上,载有重G=10kN的重物,起重机自身重50kN,其重心位于垂线DC上,如不计梁板自重。
求A、B两处的约束反力。
图3-25 题3—10图3-11 平面桁架的结构尺寸如图3-26所示,荷载F已知,求各杆的内力。
图3-26 题3—11图3-12 平面桁架的荷载及结构尺寸如图3-27所示,求各杆的内力。
a) b)图3-27 题3—12图3-13 如需求图3-28所示桁架中3、5、7各杆的内力,利用截面法,作截面I—I截断此三杆,问能否求出三杆内力?图3-28 题3—13图3-14 求图3-29所示桁架中1、2、3各杆的内力,F为已知,各杆长度相等。
图3-29 题3—14图3-15 桁架尺寸如图3-30所示,主动力F为已知,求桁架中1、2、3各杆的内力。
图3-30 题3—15图3-16 桁架尺寸如图3-31所示,主动力F为已知,求桁架中1、2、3、4各杆的内力。
图3-31 题3—16图。