《机械设计基础》第六版重点复习资料
高一机械基础第六版知识点

高一机械基础第六版知识点高一机械基础是学习机械原理和机械设计的基础课程。
本文将介绍高一机械基础第六版教材中的主要知识点,包括力的分解、合力、力矩、杠杆原理和简单机械。
一、力的分解力的分解是指将一个力分解为若干个力的合力。
根据力的性质,可以使用三角法和平行四边形法进行力的分解。
1. 三角法三角法是将一个力分解为两个不同方向的分力。
假设一个力F作用在一个物体上,可以将其分解为垂直方向的分力Fy和平行方向的分力Fx。
利用三角函数的关系,可以计算出分力的大小和方向。
2. 平行四边形法平行四边形法是将一个力分解为两个相同方向的分力。
假设一个力F作用在一个物体上,可以将其分解为两个平行方向的分力F1和F2。
利用平行四边形法则,可以计算出分力的大小和方向。
二、合力合力是指多个力的作用下产生的力。
在力的合成中,可以使用三角法或平行四边形法求得多个力的合力。
1. 三角法求合力如果多个力的方向不同,可以使用三角法求解合力。
将各个力按照一定比例画在一个力的起点上,再以这些力为边连结起来,从合力的起点到终点的直线就代表了合力的大小和方向。
2. 平行四边形法求合力如果多个力的方向相同,可以使用平行四边形法求解合力。
将各个力按照一定比例画在同一直线上,再以这些力为边连结起来,形成一个平行四边形,对角线就代表了合力的大小和方向。
三、力矩力矩是指力对物体的旋转效应。
力矩的大小等于力的大小与力臂的乘积。
力臂是指力作用点到旋转轴或转动中心的垂直距离。
力矩 = 力 ×力臂四、杠杆原理杠杆原理是指在平衡条件下,杠杆两端受到的力矩相等。
根据杠杆原理,可以计算力的大小和位置。
1. 一级杠杆一级杠杆是指力与杠杆旋转轴之间的距离相等的情况。
根据杠杆原理,可以得出力的大小等于力臂之比的乘积。
2. 二级杠杆二级杠杆是指力与杠杆旋转轴之间的距离不相等的情况。
根据杠杆原理,可以得出力臂之比等于力之比。
五、简单机械简单机械是指由一个或多个不能拆分成更简单部分的零件组成的机械装置。
《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结《机械设计基础》第1章机械设计概论复习重点1. 机械零件常见的失效形式2. 机械设计中,主要的设计准则习题1-1 机械零件常见的失效形式有哪些?1-2 在机械设计中,主要的设计准则有哪些?1-3 在机械设计中,选⽤材料的依据是什么?第2章润滑与密封概述复习重点1. 摩擦的四种状态2. 常⽤润滑剂的性能习题2-1 摩擦可分哪⼏类?各有何特点?2-2 润滑剂的作⽤是什麽?常⽤润滑剂有⼏类?第3章平⾯机构的结构分析复习重点1、机构及运动副的概念2、⾃由度计算平⾯机构:各运动构件均在同⼀平⾯内或相互平⾏平⾯内运动的机构,称为平⾯机构。
3.1 运动副及其分类运动副:构件间的可动联接。
(既保持直接接触,⼜能产⽣⼀定的相对运动)按照接触情况和两构件接触后的相对运动形式的不同,通常把平⾯运动副分为低副和⾼副两类。
3.2 平⾯机构⾃由度的计算⼀个作平⾯运动的⾃由构件具有三个⾃由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个⾃由度。
当⽤P L个低副和P H个⾼副连接组成机构后,每个低副引⼊两个约束,每个⾼副引⼊⼀个约束,共引⼊2P L+P H个约束,因此整个机构相对机架的⾃由度数,即机构的⾃由度为F=3n-2P L-P H (1-1)下⾯举例说明此式的应⽤。
例1-1 试计算下图所⽰颚式破碎机机构的⾃由度。
解由其机构运动简图不难看出,该机构有3个活动构件,n=3;包含4个转动副,P L=4;没有⾼副,P H=0。
因此,由式(1-1)得该机构⾃由度为F=3n-2P L-P H =3×3-2×4-0=13. 2.1 计算平⾯机构⾃由度的注意事项应⽤式(1-1)计算平⾯机构⾃由度时,还必须注意以下⼀些特殊情况。
1. 复合铰链2. 局部⾃由度3. 虚约束例3-2 试计算图3-9所⽰⼤筛机构的⾃由度。
解机构中的滚⼦有⼀个局部⾃由度。
顶杆与机架在E和E′组成两个导路平⾏的移动副,其中之⼀为虚约束。
《机械设计基础》第六版重点、复习资料

《机械设计基础》第六版重点、复习资料《机械设计基础》知识要点绪论;基本概念:机构,机器,构件,零件,机械第 1 章: 1)运动副的概念及分类2)机构自由度的概念3)机构具有确定运动的条件4)机构自由度的计算第 2 章: 1)铰链四杆机构三种基本形式及判断方法。
2)四杆机构极限位置的作图方法3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。
4)按给定行程速比系数设计四杆机构。
第 3 章: 1)凸轮机构的基本系数。
2)等速运动的位移,速度,加速度公式及线图。
3)凸轮机构的压力角概念及作图。
第 4 章: 1)齿轮的分类(按齿向、按轴线位置)。
2)渐开线的性质。
3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。
4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p / π的推导过程。
5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。
第 5 章: 1)基本概念:中心轮、行星轮、转臂、转化轮系。
2)定轴轮系、周转轮系、混合轮系的传动比计算。
第9 章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。
了解:常用材料的牌号和名称。
第10 章 : 1)螺纹参数 d、 d1、 d2、 P、 S、ψ、α、β及相互关系。
2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。
3)螺纹联接的强度计算。
第11 章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。
2)直齿圆柱齿轮接触强度、弯曲强度的计算。
3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。
第 12 章 : 1)蜗杆传动基本参数:m a1、m t2、γ 、β、q、 P a、d1、 d2、 V S及蜗杆传动的正确啮合条件。
2)蜗杆传动受力分析。
第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、 d2、 L d、a、α1、α2、 F1、 F2、 F0 2)带传动的受力分析及应力分析:F1、 F2、 F0、σ1、σ2、σC、σb及影响因素。
《机械设计基础》课程知识 复习 学习材料 试题与参考答案

《机械设计基础》课程知识复习学习材料试题与参考答案一、单选题1.下列联轴器中,能补偿两轴的相对位移并可缓冲、吸振的是(D)。
A.凸缘联轴器B.齿式联轴器C.万向联轴器D.弹性柱销联轴器2. 带传动中传动比较准确的是(D)A.平带B.V带C.圆带D.同步带3.某调整螺旋,采用双线粗牙螺纹,螺距为3mm,为使螺母相对螺杆沿轴向移动12mm,螺杆应转(B)圈。
A.3B.2C.4D.2.54. 若两构件组成低副,则其接触形式为(A)A.面接触B.点或线接触C.点或面接触D.线或面接触5.键联接的主要用途是使轮与轮毂之间(C)A.沿轴向固定并传递轴向力B.沿轴向可作相对滑动并具由导向性C.沿周向固定并传递扭距D.安装拆卸方便6.当轴的转速较低,且只承受较大的径向载荷时,宜选用(C)。
A.深沟球轴承B.推力球轴承C.圆柱滚子轴承D.圆锥滚子轴承7. 联轴器和离合器均具有的主要作用是(B)A.补偿两轴的综合位移B.联接两轴,使其旋转并传递转矩C.防止机器过载D.缓和冲击和振动8.在下列四种型号的滚动轴承中,只能承受径向载荷的是(B)A.6208B.N208C.30208D.512089.家用缝纫机踏板机构属于(A)机构A.曲柄摇杆B.双曲柄C.双摇杆D.曲柄滑块10.为了实现两根相交轴之间的传动,可以采用(C)。
A.蜗杆传动B.斜齿圆柱齿轮传动C.直齿锥齿轮传动D.直齿圆柱齿轮传动11.机构具有确定相对运动的条件是(A)A.机构的自由度数目等于主动件数目B.机构的自由度数目大于主动件数目C.机构的自由度数目小于主动件数目D.机构的自由度数目大于等于主动件数目12.三角带传动和平型带传动相比较,其主要优点是(B)A.在传递相同功率时,尺寸较小B.传动效率高C.带的寿命长D.带的价格便宜13. 蜗杆传动的传动比i等于(D)A.d2/d1B.n2/n1C.d1/d2D.n1/n214.在凸轮机构的从动件选用等速运动规律时,其从动件的运动(A)A.将产生刚性冲击B.将产生柔性冲击C.没有冲击D.既有刚性冲击又有柔性冲击15.按工作原理不同,螺纹连接的防松方法有(A)A.摩擦防松、机械防松和破坏螺纹副防松B.机械防松、润滑防松和破坏螺纹副防松C.摩擦防松、紧固防松和破坏螺纹副防松D.紧固防松、焊接防松和铆接防松16. 机器的零、部件在装拆时,不得损坏任何部分。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-平面机构的自由度和速度分析

第1章平面机构的自由度和速度分析1.1复习笔记【通关提要】本章是本书的基础章节之一,主要介绍了平面机构自由度的计算和平面机构的速度分析。
学习时需要掌握平面机构运动简图的绘制、自由度的计算和速度瞬心的应用等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、运动副及其分类(见表1-1-1)表1-1-1运动副及其分类二、平面机构运动简图机构运动简图指用简单线条和符号来表示构件和运动副,并按比例定出各运动副的位置,来表明机构间相对运动关系的简化图形。
1.机构中运动副表示方法机构运动简图中的运动副的表示方法如图1-1-1所示。
图1-1-1平面运动副的表示方法2.构件的表示方法构件的表示方法如图1-1-2所示。
图1-1-2构件的表示方法3.机构中构件的分类(见表1-1-2)表1-1-2机构中构件的分类三、平面机构的自由度活动构件的自由度总数减去运动副引入的约束总数称为机构自由度,以F表示。
1.平面机构自由度计算公式F=3n-2P L-P H式中,n为机构中活动构件的数目;P L为低副的个数;P H为高副的个数。
机构具有确定运动的条件是:机构的自由度F>0且F等于原动件数目。
2.计算平面机构自由度的注意事项(见表1-1-3)表1-1-3计算平面机构自由度的注意事项四、速度瞬心及其在机构速度分析上的应用(见表1-1-4)表1-1-4速度瞬心及其应用1.2课后习题详解1-1至1-4绘出图示(图1-2-1~图1-2-4)的机构运动简图。
图1-2-1唧筒机构图1-2-2回转柱塞泵图1-2-3缝纫机下针机构图1-2-4偏心轮机构答:机构运动简图分别如图1-2-5~图1-2-8所示。
1-5至1-13指出(图1-2-9~图1-2-17)机构运动简图中的复合铰链、局部自由度和虚约束,计算各机构的自由度。
解:(1)图1-2-9所示机构的自由度为F=3n-2P L-P H=3×7-2×10-0=1(2)图1-2-10中,滚子1处有一个局部自由度,则该机构的自由度为F=3n-2P L-P H=3×6-2×9-0=0(3)图1-2-11中,滚子1处有一个局部自由度,则该机构的自由度为F=3n-2P L-P H=3×8-2×11-1=1(4)图1-2-12所示机构的自由度为F=3n-2P L-P H=3×8-2×11-0=2(5)图1-2-13所示机构的自由度为F=3n-2P L-P H=3×6-2×8-1=1(6)图1-2-14中,滚子1处有一个局部自由度,则该机构的自由度为F=3n-2P L-P H=3×4-2×5-1=1(7)图1-2-15中,滚子1处有一个局部自由度,A处为三个构件汇交的复合铰链,移动副B、B′的其中之一为虚约束。
杨可桢《机械设计基础》(第6版)复习笔记和课后习题(含考研真题)详解(7-9章)【圣才出品】

二、飞轮设计的近似方法
1.机械运转的平均速度和不均匀系数
(1)平均速度 m
一个运动周期内角速度的实际平均值,即
m
=
1 T
T
dt
0
工程计算中常采用算术平均值代替实际平均值,即
m
=
max
+ min 2
式中,max 为最大角速度;min 为最小角速度。
(2)速度不均匀系数 δ
机械运转速度波动的相对值用机械运转速度不均匀系数 δ 表示,即
图 7-2-3
影响零件的强度和寿命,降低机械的精度和工艺性能,使产品质定义
当机械动能做周期性变化时,机械主轴的角速度也作周期性变化,机械的这种有规律的、
周期性的速度变化称为周期性速度波动。
(2)特征
在一个整周期中,驱动力所作的输入功与阻力所作的输出功是相等的;但在周期中的某
段时间内,输入功与输出功不相等,因而出现速度的波动。
Woa =
a (M − M)d =
0
a 0
M
(y −
y)dx
=
M [A1]
②参数表示
a.[A1]为 oa 区间 M '− 与 M ''− 曲线之间的面积,mm2; b.Woa 为 oa 区间的盈亏功,以绝对值表示。
③正负号
a.oa 区间阻力矩大于驱动力矩,出现亏功,机器动能减小,故标注负号;
b.ab 区间驱动力矩大于阻力矩,出现盈功,机器动能增加,故标注正号。
先根据图 7-2-1 作出能量指示图,如图 7-2-2 所示,知在 cf 区间出现最大盈亏功,其
绝对值为
Wmax = A Acf = A (−Acd + Ade − Aef ) = 1(−520 +190 − 390) = 720N m
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-连接【圣才出品】

第10章连接10.1复习笔记【通关提要】本章介绍了零件连接形式:螺纹连接、键连接和销连接,主要阐述了螺纹的类型和几何参数、螺纹连接的基本类型、螺栓连接的受力分析和强度计算、螺旋传动、键连接的类型和强度计算以及销连接。
学习时需要重点掌握螺栓连接的受力分析和强度计算、键连接的强度计算,此处多以计算题的形式出现;熟练掌握螺纹和螺纹连接的类型和应用、提高螺纹连接强度的措施、键连接的类型、应用及布置等内容,多以选择题、填空题、判断题和简答题的形式出现。
复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、螺纹参数(见表10-1-1)表10-1-1螺纹的分类和几何参数二、螺旋副的受力分析、效率和自锁(见表10-1-2)表10-1-2螺旋副的受力分析、效率和自锁三、机械制造常用螺纹(见表10-1-3)表10-1-3机械制造常用螺纹四、螺纹连接的基本类型及螺纹紧固件(见表10-1-4)表10-1-4螺纹连接的基本类型及螺纹紧固件五、螺纹连接的预紧和防松1.拧紧力矩(见表10-1-5)表10-1-5拧紧力矩2.螺纹连接的防松(见表10-1-6)表10-1-6螺纹连接的防松六、螺栓连接的强度计算(见表10-1-7)表10-1-7螺栓连接的强度计算七、螺栓的材料和许用应力1.材料螺栓的常用材料为低碳钢和中碳钢,重要和特殊用途的螺纹连接件可采用力学性能较高的合金钢。
2.许用应力及安全系数许用应力及安全系数可见教材表10-7和表10-8。
八、提高螺栓连接强度的措施(见表10-1-8)表10-1-8提高螺栓连接强度的措施九、螺旋传动螺旋传动主要用来把回转运动变为直线运动,其主要失效是螺纹磨损。
按使用要求的不同可分为传力螺旋、传导螺旋和调整螺旋。
1.耐磨性计算(1)通常是限制螺纹接触处的压强p,其校核公式为p=F a/(πd2hz)≤[p]式中,F a为轴向力;z为参加接触的螺纹圈数;h为螺纹工作高度;[p]为许用压强。
(2)确定螺纹中径d2的设计公式①梯形螺纹d≥2②锯齿形螺纹2d≥其中,φ=H/d2,z=H/P,H为螺母高度;梯形螺纹的工作高度h=0.5P;锯齿形螺纹的工作高度h=0.75P。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-凸轮机构【圣才出品】

第3章凸轮机构3.1复习笔记【通关提要】本章主要介绍了凸轮机构的常用运动规律、凸轮压力角以及图解法设计凸轮轮廓。
学习时需要掌握不同运动规律的特点、凸轮压力角与凸轮作用力和凸轮尺寸的关系以及图解法设计凸轮轮廓等内容。
本章主要以选择题、填空题、简答题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、凸轮机构的应用和类型(见表3-1-1)表3-1-1凸轮机构的应用和类型二、从动件的运动规律1.基本概念(见表3-1-2)表3-1-2从动件运动规律的基本概念图3-1-1凸轮轮廓与从动件位移线图2.推杆的运动规律(见表3-1-3)表3-1-3推杆的运动规律三、凸轮机构的压力角压力角指作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角。
对于高副机构,压力角即接触轮廓法线与从动件速度方向所夹的锐角,如图3-1-2所示。
1.压力角与作用力的关系F′′=F′tanα式中,F′′为有害分力;F′为有用分力。
图3-1-2凸轮机构的压力角对于直动从动件凸轮机构,建议取许用压力角[α]=30°;对于摆动从动件凸轮机构,建议取许用压力角[α]=45°。
2.压力角与凸轮机构尺寸的关系如图3-1-2所示,直动从动件盘形凸轮机构的压力角计算公式为tan α=式中,s 为对应凸轮转角φ的从动件的位移;r 0为基圆半径;e 为从动件导路偏离凸轮回转中心的距离,称为偏距。
注:①导路与瞬心P 在凸轮轴心O 点同侧,取“-”号,此时可使推程压力角α减小;②导路与瞬心P 在凸轮轴心O 点异侧,取“+”号,此时可使推程压力角α增大。
四、图解法和解析法设计凸轮轮廓(见表3-1-4)表3-1-4图解法和解析法设计凸轮轮廓图3-1-3滚子直动从动件盘形凸轮轮廓图3-1-4平底直动从动件盘形凸轮——极坐标3.2课后习题详解3-1图3-2-1所示为一偏置直动从动件盘形凸轮机构。
已知AB段为凸轮的推程轮廓线,试在图上标注推程运动角Φ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械设计基础》知识要点绪论;基本概念:机构,机器,构件,零件,机械第1 章:1)运动副的概念及分类2)机构自由度的概念3)机构具有确定运动的条件4)机构自由度的计算第2 章:1)铰链四杆机构三种基本形式及判断方法。
2)四杆机构极限位置的作图方法3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。
4)按给定行程速比系数设计四杆机构。
第3 章:1)凸轮机构的基本系数。
2)等速运动的位移,速度,加速度公式及线图。
3)凸轮机构的压力角概念及作图。
第4 章:1)齿轮的分类(按齿向、按轴线位置)。
2)渐开线的性质。
3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。
4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p / n的推导过程。
5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。
第5 章:1)基本概念:中心轮、行星轮、转臂、转化轮系。
2)定轴轮系、周转轮系、混合轮系的传动比计算。
第9 章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。
了解:常用材料的牌号和名称。
第10章:1)螺纹参数d、d“ d2、P、S、2、a、B及相互关系。
2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。
3)螺纹联接的强度计算。
第11 章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。
2)直齿圆柱齿轮接触强度、弯曲强度的计算。
3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。
第12章:1)蜗杆传动基本参数:m ai、m t2、丫、B、q、P a、d“ d2、V S及蜗杆传动的正确啮合条件。
2)蜗杆传动受力分析。
第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、a 1、a 2、F1、F2、F0 2)带传动的受力分析及应力分析:F1、F2、F。
、CT 1、CT 2、b C、(T b及影响因素。
3)弹性滑动与打滑的区别。
4)了解:带传动的设计计算。
第14 章: 1)轴的分类(按载荷性质分)。
2)掌握轴的强度计算:按扭转强度计算,按弯扭合成强度计算。
第15章: 1)摩擦的三种状态:干摩擦、边界摩擦、液体摩擦。
第16章: 1)常用滚动轴承的型号。
2)向心角接触轴承的内部轴向力计算,总轴向力的计算。
滚动轴承当量动载荷的计算。
滚动轴承的寿命计算。
第17章:1)联轴器与离合器的区别第一章平面机构的自由度和速度分析1、自由度:构件相对于参考系的独立运动称为自由度。
2、运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。
构件组成运动副后,其运动受到约束,自由度减少。
3、 运动副按接触性质分:低副和高副。
⑴低副:两构件通过面接触组成的运动副称为低副。
① 转动副:组成运动副的两构件只能在平面内相对转动,这种运动副称为转动副,或称铰链。
② 移动副:组成运动副的两构件只能沿某一轴线相对移动,这种运动副称为移动副。
⑵高副:两构件通过点或线接触组成的运动副称为高副。
4、 机构中构件的分类:⑴固定构件(机架)——用来支承活动构件(运动构件)的构件。
⑵原动件(主动件)——运动规律已知的活动构件。
⑶从动件一一机构中随原动件运动而运动的其余活动构件。
5、 平面自由度计算公式一一 F =3n -2P L - P H6、 机构具有确定运动的条件机构自由度F >0,且F 等于原动件数7、 自由度计算注意事项⑴复合铰链一一两个以上构件同时在一处用转动副相连接。
K 个构件汇交而成的复合铰链具有(K-1)个转动副。
⑵局部自由度一一与输出构件运动无关的自由度。
⑶虚约束——重复而对机构不起限制作用的约束。
8、 速度瞬心一一两刚体上绝对速度相同的重合点一 、,K (K -1)瞬心数 --- N =29、 三心定理一一作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上。
作业:1-5,6,7,8,9,10,11,12第二章 平面连杆机构1、 定义:平面连杆机构是由若干构件用低副(转动副、移动副)连接组成的平面机构。
2、 铰链四杆机构全部用转动副相连的平面四杆机构称为平面铰链四杆机构。
机构的固定构件称为 机架;与机架用转动副相连接的构件称为 连架杆;不与机架直接连接的构件称为 连杆;与机架组成整转副的连架杆称为曲柄;与机架组成摆动副的连架杆称为 摇杆铰链四杆机构的三种基本型式:曲柄摇杆机构;双曲柄机构;双摇杆机构3、 铰链四杆机构有整转副的条件①最短杆与最长杆长度之和小于或等于其余两杆长度之和 ②整转副是由最短 杆与其邻边组成的选择哪一个杆为机架判断是否存在曲柄:① 取最短杆为机架时,机架上由两个整转副,故得双曲柄机构;② 取最短杆的邻边为机架时,机架上只有一个整转副,故得曲柄摇杆机构; ③ 取最短杆的对边为机架时,机架上没有整转副故得双摇杆机构 4、 *急回特性行程速度变化系数 K 、极位夹角二,二越大,K 越大,急回运动的性质也越显著。
K -1 K 1F 与该力作用点绝对速度 V c 之间所夹的锐角称为压力角;压力角〉的余角 称为传* -1805、压力角与传动角 作用在从动件上的驱动力 动角。
压力角越小,传动角Y越大,有效分力就越大,机构传力性能越好。
传动角min的下限:min - 40 °。
用来衡量机构的传力性能。
6、 死点位置:机构的传动角为零的位置称为死点位置。
7、 按照给定的行程速度变化系数设计四杆机构曲柄摇杆机构:已知条件:摇杆长度|3、摆角和行程速度变化系数 K 设计步骤 图2-27( P33)⑴由给定的行程速度变化系数K,求出极位夹角 二⑵任选固定铰链中心 D 的位置,由摇杆长度l 3和摆角,作出摇杆两个极限位置 C 1D 和C 2D ⑶连接C 1和C 2,并作C 1M 垂直于C 1C 2⑷作 /C 1C 2N =90° -r ,C 2N 与 C 1M 相交于 P 点,.C 1PC 2 --⑸作△ PC 1C 2的外接圆,在此圆周(弧C 1C 2和弧EF 除外)上任取一点A 作为曲柄的固定铰链中心。
连AC i 和AC 2,因同以圆弧的圆周角相等,故• C 1AC 2 =/Ci PC 2 -⑹因极限位置处曲柄与连杆共线,故 AC 1 = l 2- l 1,AC 2 = l 2 + l 1,从而得到曲柄长度l 1=( AC 2- AC 1)/2,连杆长度l 2=( AC 2 +AC 1)/2。
由图得AD=4作业:2-1,3,6,7,10第三章 凸轮机构1、 凸轮机构主要由凸轮、从动件和机架三个基本构件组成。
2、 凸轮分类按形状:盘形凸轮;移动凸轮;圆柱凸轮按从动件的型式:尖顶从动件;滚子从动件;平底从动件 3、 *从动件运动规律(图3-5)推程:当凸轮以•’等角速顺时针方向回转 '时,从动件尖顶被凸轮轮廓推动,以一定运动规律由离回转中心 最近位置A 到达最远位置B ',这个过程称为推程。
推程运动角:与推程对应的凸轮转角'■远休止角:当凸轮继续回转 s 时,以0点为中心的圆弧BC 与尖顶相作用,从动件在最远位置停留不动, s 称为远休止角。
回程:凸轮继续回转 ‘时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置,这个过程称为回 程,©称为回程运动角。
近休止角:凸轮继续回转 s 时,以0点为中心的圆弧 DA 与尖顶相作用,从动件在最近位置停留不动, \称为近休止角。
4、 刚性冲击:从动件推程作等速运动,运动开始和终止时,速度和加速度产生巨大突变,由此产生的巨大惯性 力导致的强烈冲击称为刚性冲击。
柔性冲击:简谐运动在运动开始和终止时,加速度的变化量和产生的冲击都是有限的,这种有限冲击称为柔 性冲击。
5、 ①等速运动:位移图为斜直线,速度线图为水平直线,因从动件速度突变,适合强大冲击力,刚性冲击,不 宜单独使用。
②简谐运动:点在圆周上运动时,它在这个圆的直径上的投影所构成的运动称为简谐运动。
在高速运动时会产 生危害,适用于中低速凸轮。
③正弦加速度:其位移为摆动在轴线上的投影,加工精度较高。
6、压力角:接触轮廓法线与从动件速度方向所夹的锐角 基圆半径r °减小会引起压力角增大。
e 为从动件导路偏离凸轮回转中心的距离,称为偏距。
7、图解法设计凸轮轮廓作业:3-1,2, 4压力角计算公式:d sd :2_e第四章 齿轮机构0、齿轮的分类1齿轮机构主要优点:使用的圆周速度和功率范围广;效率较高;传动比稳定;寿命长;工作可靠性高;可实 现平行轴、任意角相交轴和任意角交错轴之间的传动。
缺点:要求较高的制造和安装精度,成本较高;不适宜于远距离两轴之间的传动。
2、齿廓实现定角速比传动的条件齿轮传动的基本要求:瞬时角速度之比必须保持不变欲使两齿轮保持定角速度比,不论齿廓在任何位置接触,过接触点所作的齿廓公线都必须与连心线交于一定 点。
「 O 2C2O i C3、 渐开线的特性当一直线在一圆周上作纯滚动时,此直线上任意一点的轨迹称为该圆的渐开线,这个圆称为渐开线的基圆, 该直线称为发生线。
*弧长等于发生线;基圆切线是法线;曲线形状随基圆;基圆内无渐开线I4、 渐开线齿廓满足定角速比要求i 二匕=_!=呈=电n2 ⑷ 2 「1rb15、 齿轮各部分名称及渐开线标准齿轮的基本尺寸齿槽宽e ;齿厚s ;齿距p ;齿宽b ;齿顶高h a ;齿跟高h f ;模数m 压力角〉;顶隙c 常用公式:p = s e =「m ; d = & = mz ; h 二 h a h f ; d a = d 2h a ; d f 二 d 「2h f ;ha二 h;m ; h f =(h ; c *)m八亠一, p 兀m 分度圆上 s = e; 基圆直径:d b = d cos:2 26、 正确啮合条件 g = m 2 = m ; -J = >2 =〉;渐开线齿轮的正确啮合条件是 两轮的模数和压力角必须分别相等。
7、 一对标准齿轮分度圆相切时的中心距称为标准中心距,以a 表示''m *即: a = 口 + r 2 =匚 + r 2 =—(乙 + z 2) 顶隙 c c = cm = h f —h a 28、 重合度:;值愈大,齿轮平均受力愈小,传动愈平稳。
9、 切齿方法⑴成形法:成形法是用渐开线齿形的成形刀具直接切出齿形。
⑵范成法:范成法是利用一对齿轮互相齿合时,其共轭齿廓互为包络线的原理切齿的。
如果把其中一个齿轮(或齿条)做成刀具,就可以切出与它共轭的渐开线齿廓。