工程弹塑性力学-第十章塑性力学的基本概念

合集下载

塑性力学的基本概念和应用

塑性力学的基本概念和应用

塑性力学的基本概念和应用塑性力学是力学学科中的一个重要领域,研究物体在超过其弹性限度之后发生的塑性变形和力学行为。

它在工程领域中有着广泛的应用,可以用于设计和分析各种结构和材料。

本文将介绍塑性力学的基本概念和应用。

一、塑性力学的基本概念塑性力学研究材料在受力过程中的变形行为,重点关注材料的塑性变形和它们与应力应变关系之间的联系。

以下是塑性力学中的几个基本概念:1. 弹性和塑性:在外力作用下,材料会产生变形。

当外力移除后,材料能够完全恢复到其初始形状,这种变形称为弹性变形。

而当外力作用超过了材料的弹性限度时,材料会发生不可逆的塑性变形,导致永久性的形变。

2. 屈服点和屈服应力:材料在受力过程中,当应力达到一定数值时会开始产生塑性变形,此时的应力称为屈服应力。

屈服点是应力-应变曲线上的一个特定点,表示材料开始发生塑性变形的阈值。

3. 工程应力应变和真实应力应变:工程应力指材料在不考虑变形前尺寸的情况下受到的力与单位面积的比值,工程应变指材料在变形前尺寸和力的情况下的应变与原始尺寸比值。

真实应力和真实应变则考虑了材料在受力过程中的变形,分别是力和应变与变形的比值。

二、塑性力学的应用塑性力学在工程领域中有着广泛的应用,以下是其中几个典型的应用。

1. 金属成形加工:塑性力学在金属成形加工中扮演着重要的角色。

通过了解材料的塑性特性和应力应变关系,可以优化金属成形加工的工艺参数,提高材料的形变能力,减小残余应力,提高产品质量。

2. 板结构设计:在板结构的设计中,塑性力学可以用于评估结构的稳定性和承载能力。

通过分析材料的屈服点和塑性变形情况,可以确定合适的结构尺寸和加强措施,以满足结构的强度和刚度要求。

3. 地震工程:塑性力学在地震工程中的应用也很重要。

通过研究材料的塑性行为,可以评估结构在地震荷载下的响应和潜在破坏模式。

这有助于设计出抗震性能良好的建筑和结构,并提供灾害防护措施。

4. 仿真和模拟:在产品设计和工艺优化中,塑性力学可以被应用于数值模拟和仿真。

弹塑性力学部分讲义(PDF)

弹塑性力学部分讲义(PDF)

弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。

为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。

在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。

要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。

对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。

这些都是固体力学的基本问题。

如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。

在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。

有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。

这些也是固体力学的基本问题。

此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。

如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。

正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。

工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。

而工程力学的发展则大大推动了许多工程技术的飞速发展。

因此,力学是许多工程部门设计研究人员的基本素质之一。

二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。

力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。

弹塑性力学第十章

弹塑性力学第十章

( V
ijui),jdV V
i,jj
uidV
Snjijuid SVi,jjuidV
代入原虚位移方程
2019/10/27
34
§10-4 虚位移原理和最小势能原 理
代入原虚位移方程
V (i,jj fi)u id V S (X i n j i) ju id S 0
各向同性线性材料的应力应变关系
ijE 1(1)ijk kij
代入Uc表达式
Uc
1 2
VijijdV
1
U c2EV
(1)i2 j
kklldV
2019/10/27
10
§10-1 几个基本概念和术语
应变能、应变余能的计算举例
l
P
o
x
l
P
o
x
U

2P3l 3E2 A2

P 3l 3E 2A2
2019/10/27
14
§10-1 几个基本概念和术语
作业:图示结构各杆等截
面杆,截面面积为A,结点 A
C承受荷载P作用,材料应
力—应变关系分别为(1) l
y
=E ,(2) =E 1/2 。
试计算结构的应变能U 和 B
应变余能Uc。
2019/10/27
27
§10-3 功的互等定理
对于线弹性体本构关系
ij Eijkl kl
Eij kl kijli2j W k likjlEk lij
dVE dV (1) (2)
V ij ij
(1) (2) V ijkl kl ij
4
§10-1 几个基本概念和术语

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

塑性力学

塑性力学
塑性力学
Plasticity
李振环 华中科技大学 力学系
主教材
尚福林、王子昆:塑性力学基础 西安交通大学出版社(2010)
余同希 薛璞编著:工程塑性力学 高等教育出版社(2009年)
陈 笃 编著 :塑性力学基础 高等教育出版社(2005年)
参考书目
王仁、熊祝华、黄文彬著:塑性力学基础 科学出版社(1982年)
线弹性阶段(Oa) 应力与应变成正比

d
e f
ab c
tan 常数 E
b s e p


即: E
——胡克定律
O
d' g
p
e

f' h
比例极限(p)——线弹性阶段最高点 a 所对应的应力值
变形过程的四个阶段: a.弹性阶段(Ob)
非线弹性阶段(ab)

d
3、真应力应变曲线
取:
E

F A0
E

l l0
工程应力和工程应变
在材料进入塑性后,弹性变形为小量,变形主要是塑性变形, 此时,试样的体积近似保持不变。
Aili A0l0
注意:此式近似适用于颈缩 之前,颈缩后不再成立!!Why?
随着试样的伸长(缩短),截面逐渐缩小(增加)。因此,应力 和应变的定义必须要反应这种变化,为此进行如下修正

ln

l l0

在工程上
应用比较多。
拉伸情形: 压缩情形: 颈缩前
A0 Ai A0 Ai
T
E
A0 Ai

E
T
E
A0 Ai

E
T

ln

弹塑性力学基本知识

弹塑性力学基本知识

dε p =
塑性功增量: dW = σ ij dε ij
p p
2 p p deij deij 3
(13) (14)
等效剪应变 (或剪应变强度) : Γ=
2eij eij
(15)
T = 等效剪应力 (或剪应力强度) : 4 3 1 3
1 2
sij sij
(16)
八面体剪应变: γ8 =
eij eij 2 3
P dε ij = dλ1
∂f1 ∂σ ij
(49)
特殊情况, 若σ1 = σ 2 ≥ σ 3 , 则应力状态处于 f1 = σ 2 − σ 3 − σ s = 0 和 f 2 = σ 1 − σ 3 − σ s = 0
的交点处,则:
dε iP = dλ1
z 硬化模型(三类) 等向硬化:
∂f1 ∂σ i
加载
中性变载
(37)
卸载
⎛ P ⎜ dε pq ∂f ∂g dσ ij = ⎜ 1 − i ∂σ ij ⎜ ∂ε pq ∂g dε mn ⎜ ∂ε mn ⎝
⎞ ⎟ ∂g ⎟ dε kl ⎟ ∂ε kl ⎟ ⎠
(条件:
∂g ∂ε ij
dε ij > 0 )
(38)
注意:当材料处于硬化阶段时,采用
∂g ∂ε ij
第一、第二、第三偏应力不变张量:
⎫ ⎪ ⎬ ⎪ ⎭
(7)
J1 = skk = 0 J2 = 1 2
2 sij sij = I 2 + 3σ m
J 3 = det ( sij ) = sij s jk ski
第二偏应力不变张量:
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
(8)
J2 =
1

弹塑性力学课件-10塑性极限分析

弹塑性力学课件-10塑性极限分析

s ij ij

1 2

s
ij
ui x j
s
ji
u j xi

体力为零时:
Fiui*dS
s
ij
* ij
dV
ST
V
13
虚功率原理:在外力作用下处于平衡的变形体,若给物 体一微小的虚变形(位移)。则外力的虚功率必等于应 力的虚功率。
fiui*dV
设机动允许的位移(速度)场 u * i
q ij*
破坏载荷: k Pi 应力场: s * ij
虚功率原理:
k Piui*dS
s
*
ij
i*j
dV
ST
V
s*
s s ij
*
ij
ij
s ij
l Piui*dS s iji*jdV
ST
V
k l
ST
s l
16
三.塑性极限分析定理
2. 上限定理:
机动允许的位移(速度)场:满足破坏机构条件(几何 方程和位移、速度边界条件),外力做功为正的位移 (速度)场。 [ 放松极限条件,选择破坏机构,并使载荷在其位移场上 做功为正]
破坏载荷:机动允许的位移场所对应的载荷。k P
k :机动允许载荷系数
限:Pl+= kP
(3)在多个破坏荷中取最小值: Plmin+
(4)检查:若内力场是静力允许的,即不违背极限条件, 则解:)Plmin+ =Pl 。否则: Plmin+ 为Pl 的一个上限解(近似
21
§10-3 梁的塑性极限分析
一.静定梁的极限分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性力学的两个基本试验: 拉伸试验和静水压试验
JUST 基江本苏实科验技资大料学 Jiangsu University of Science and Technology
简单拉伸下的应力-应变曲线
软钢
合金钢
➢ 具有屈服流动:初始屈服的应力为屈服极限 ➢ 没有屈服流动:具有0.2%的残余应变的应力为屈服极限
JUST 江苏科技大学
Jiangsu University of Science and Technology
等效应变和等效且应变:
Lode 应变参数
表示一点应变状 态特征
JUST 江苏科技大学
Jiangsu University of Science and Technology
应力空间与主应力空间
JUST 江苏科技大学
Jiangsu University of Science and Technology
第十章 塑性力学的基本概念
胡庆贤 江苏科技大学 先进焊接技术省级重点实验室
2019.12
JUST 江苏科技大学
Jiangsu University of Science and Technology
➢ 主应力空间:只考虑主应力大小而不考虑它们在 物理空间中的方向,以 为坐标轴的假象三维空间
➢ L直线:主应力空间中过原点等倾面的法线
直线上的点承受静水压力点的应力 状态,不产生塑性变形

主应力空间中过原点与L 直线垂直
的平面
面上的点对应于不引起体积变化的应力偏张量的状态
JUST 江苏科技大学
Jiangsu University of Science and Technology
JUST 江苏科技大学 小结:
Jiangsu University of Science and Technology
JUST 江苏科技大学
Jiangsu University of Science and Technology
➢ 塑性变形的特点:
(1)应力-应变关系的非线性 (2)应力-应变间不存在单值对应关系,具有路径相关性;
(1 3 ) 2 (2 3 ) 2 (3 1 ) 2 2 s 2
空间应力状态时写为:
2 3
3 1
2k
2
k
1 2
2
k
(11-10)
三式皆为不等式时,材料处于弹性状态;若有一式取等
号,材料即进入塑性状态;由于2k>0,所以三式不能同 时为等号
JUST 江苏科技大学
Jiangsu University of Science and Technology
JUST 江苏科技大学
Jiangsu University of Science and Technology
➢材料在塑性阶段的重要特点:加载和 卸载的过程中应力和应变服从不同的 规律。
➢简单拉深试件塑性阶段的应力-应变关系
➢ 后继屈服应力高于初始屈服应力 ➢Bauschinger效应:正向强化,反向弱化
塑性力学:固体力学的一个分支,它的主要任务是研究 固体发生塑性变形时应力分布和应变分布的规律。
•塑性力学的基本概念 •屈服准则 •塑性本构关系 •简单的弹塑性问题 •结构塑性极限分析
JUST 江苏第科十技章大学塑性J力iangs学u Un的ivers基ity o本f Sci概ence 念and Technology 10.1 基本试验资料
一个应力可对应不同应变,反之也如此。 (3)外力做的功具有不可逆性,在一个加载卸载的循环中外
力做功恒大于零。
JUST 江苏科技大学
Jiangsu University of Science and Technology
静水压试验
真应力和真应变
真应力:轴力除以真实的横截面面积 真应变:长度改变量除以当时长度
JUST 江苏科技大学
Jiangsu University of Science and Technology
➢ 材料强化:经过屈服阶段后,材料又恢复了抵抗变形 的能力,必须增加载荷才能继续变形的现象。
➢ 切边模量:强化阶段的应力-应变曲线的斜率
材料产生塑性变形后,应变可分为:
弹性应变,可恢复 塑性应变,不可恢复
第十一章 屈服准则
JUST 江苏科技大学
Jiangsu University of Science and Technology
Tresca 屈服准则:当最大切应力达到某一极限值时,材料即进入 塑性状态。适用于主应力已知的情况
1 3 2 k 1 23
Mises 屈服准则:形状改变引起塑性变形。适于主应力未知的 塑性材料
将纵轴移至平均应力所对应的O’点 则应力偏量的主值为:
应力球张量只改变应力圆的位置;决定屈 服和塑性变形的是应力圆的大小和形状
JUST 应江力苏状科态技和大应学变状Ji态angБайду номын сангаасu的Un进iversi一ty of步Scie研nce a究nd Technology
Lode 应力参数
应力偏张量的一 个特征值
的应力 ✓ 任何情况下的总应变可分解为弹性和塑性两部分 ✓ 塑性变形是在体积不变的条件下进行的,静水压只产生体积的弹性
变化。
JUST 江苏科技大学
Jiangsu University of Science and Technology
应力-应变的理想化
1)理想刚塑性曲线
2)线性强化刚塑性曲线
3)理想弹塑性曲线
JUST 应江力苏应科变技的大简学化模Ji型angsu University of Science and Technology
基本假设
✓ 材料的塑性行为与时间、温度无关 ✓ 材料具有无限塑性,不断裂 ✓ 变形前材料各向同性,且与拉深和压缩的真应力应变曲线一致 ✓卸载时材料服从弹性规律,重新加载后的屈服应力等于卸载前
4)线性强化塑性曲线 5)幂强化塑性曲线
JUST 应江力苏状科态技和大应学变状Ji态angsu的Un进iversi一ty of步Scie研nce a究nd Technology
三向应力Mohr圆

任意两点为直径作圆
任意斜面上的应力,可由处于以三个圆为 界的阴影区中某一相应的点来表示。
JUST 应江力苏状科态技和大应学变状Ji态angsu的Un进iversi一ty of步Scie研nce a究nd Technology
相关文档
最新文档