《工程弹塑性力学》习题
《工程弹塑性力学》习题

《工程弹塑性力学》习题1、(1)试分析下列应力函数可解什么样的平面应力问题:2232343y q c xy xy c F +⎪⎪⎭⎫ ⎝⎛-=ϕ (2)为使函数φ(r ,z)=C(r 2十z 2)n 能够作为轴对称情况下的应力函数,式中n 应为何值?2、已知下列应力状态:Pa ij 5101138303835⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=σ 试求八面体正应力与剪应力。
3、已知材料的真实应力应变曲线为:B T =σє n 或 m T c εσ=,试证:n e m --=14、试证: ()dV u dS u n dV u u i Vj ij i j s ij i j j i ij V ⎰⎰⎰⎰⎰⎰⎰-=+,,,21σσσ 5、试证图示悬臂梁的应变能公式及泛函ΠP 为:()dx w EJ U l 20''21⎰= 及 ()()()l Fw l Mw Pw dx w EJ l l P +--=∏⎰⎰0'20''21 并说明其附加条件6、试求图示斜坡的最大承载能力。
7、对Mises 屈服条件,证明8、已知理想弹塑性材料的悬臂梁,一端受集中力P 作用,如此杆的截面ij ij ij s J f =σ∂∂=σ∂∂2为矩形,其尺寸为h b 2⨯,弹性模量E ,屈服极限为s σ,试求作用点的挠度值。
9、试证明虚位移与虚应力原理是下列高斯散度定理的特殊情况: dS u T dS u T dV u F dV i S i i S i i V i ij V ij uT ⎰⎰⎰⎰⎰⎰⎰⎰++=εσ10、名词解释1、主平面、主应力、应力主方向2、李兹法3、工程应变4、滑移线5、Drucker 公设6、伽辽金法7、壳体、壳体的厚度、中曲面8、屈服面、屈服函数9、增量理论10、完全解11、简答题1、什么是八面体及其特点?2、阐述弹性力学的平面问题的基本假设?3、矩形、圆形薄板弯曲的三类边界条件的区别?4、在大应变问题中,为什么只有用自由应变才能得出合理的结果?5、Tresca 和Mises 的屈服条件的比较?6、论述薄板小挠度弯曲理论的基本假定?7、各向均匀受压对金属材料体积的影响及写出Bridgman 提出p 与单位体积的关系式。
弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
工程弹塑性力学课后答案

工程弹塑性力学课后答案【篇一:弹塑性力学思考题答案】一点的应力状态?答:通过一点p 的各个面上应力状况的集合⒉一点应变状态?答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 p 的邻域内线段与线段间夹角的改变⒊应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量j2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合??x?xy?xz???????????yxyyz???zx?zy?z???。
其中:?=?,?=?,?=?。
xzzxxyyxyzzy应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即j1,j2,j3是不变量,不随着坐标轴的变换而发生变化。
所以j1,j2,j3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0???x-?m?xy?xz???m0??+???ij??0?0????mymyz?,等式右端第一个张量称为应力球张量,第二个张量称为应???yx?0?m??zy?z??m??0????zx?力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力11平均应力:?m?(?x??y??z)?(?1??2??3),?m为不变量,与坐标无关。
33偏应力第二不变量j2的物理意义:形状变形比能。
单向应力状态:两个主应力为零的应力状态。
纯剪应力状态的应力张量:给出应力分分量,计算第一,第二不变量。
(带公式)⒋应变张量?应变张量的不变量?应变球张量?体积应变?平均应变?应变偏张量?应变张量:几何方程给出的应变通常称为工程应变,这些应变分量的整体,构成一个二阶的对称张版权所有,翻版必究量,称为应变张量,记为:即。
弹塑性力学试卷及弹性力学教材习题及解答

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
工程弹塑性力学题库及答案

(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,
当
:
即
当
:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,
,
2)
沿 OB 线,
,
8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,
得
平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则
得
;
2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,
;
,联列可得 ,代入
(2)纯剪力状态,
。
解:(1)单向拉伸应力状态
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程弹塑性力学》习题
1、(1)试分析下列应力函数可解什么样的平面应力问题:
2232
343y q c xy xy c F +⎪⎪⎭⎫ ⎝⎛-=ϕ (2)为使函数φ(r ,z)=C(r 2十z 2)n 能够作为轴对称情况下的应力函数,式中n 应为何值?
2、已知下列应力状态:
Pa ij 5101138303835⨯⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=σ 试求八面体正应力与剪应力。
3、已知材料的真实应力应变曲线为:B T =σє n 或 m T c εσ=,试证:
n e m --=1
4、试证: ()dV u dS u n dV u u i V
j ij i j s ij i j j i ij V ⎰⎰⎰⎰⎰⎰⎰-=+,,,21σσσ 5、试证图示悬臂梁的应变能公式及泛函ΠP 为:
()dx w EJ U l 20
''21⎰= 及 ()
()()l Fw l Mw Pw dx w EJ l l P +--=∏⎰⎰0'20''21 并说明其附加条件
6、试求图示斜坡的最大承载能力。
7、对Mises 屈服条件,证明
8、已知理想弹塑性材料的悬臂梁,一端受集中力P 作用,如此杆的截面ij ij ij s J f =σ∂∂=σ∂∂2
为矩形,其尺寸为h b 2⨯,弹性模量E ,屈服极限为s σ,试求作用点的挠度值。
9、试证明虚位移与虚应力原理是下列高斯散度定理的特殊情况: dS u T dS u T dV u F dV i S i i S i i V i ij V ij u
T ⎰⎰⎰⎰⎰⎰⎰⎰++=εσ
10、名词解释
1、主平面、主应力、应力主方向
2、李兹法
3、工程应变
4、滑移线
5、Drucker 公设
6、伽辽金法
7、壳体、壳体的厚度、中曲面
8、屈服面、屈服函数
9、增量理论
10、完全解
11、简答题
1、什么是八面体及其特点?
2、阐述弹性力学的平面问题的基本假设?
3、矩形、圆形薄板弯曲的三类边界条件的区别?
4、在大应变问题中,为什么只有用自由应变才能得出合理的结果?
5、Tresca 和Mises 的屈服条件的比较?
6、论述薄板小挠度弯曲理论的基本假定?
7、各向均匀受压对金属材料体积的影响及写出Bridgman 提出p 与单位体积的关系式。
8、阐述弹性本构理论的特点?
9、阐述滑移线的性质?
12、(1)矩形薄板其边界条件见图,不受
横向载荷(q =0),但在两个简支边上受有均
布弯矩M ,在两个自由边上受均布弯矩
μM ,证明:ω=f(x)能满足一切条件,并求
出挠度、弯矩和反力。
(2)假设在线弹性体中其一单元有
应力σx1、σy1,其余应力分量为零。
试
证明,无论由下述那种过程(如图)达到
这种应力状态,单位体积的应变能W 均
等于
13、若φ=axy 3+yf 1(x)+f 2(x)能作为求解平面问题的应力函数,试求f 1和f 2。
14、已知应力应变曲线为n T c E σ=,如材料的屈服极限为s σ,强度极限为b σ,试证明
s N N s b
s n E -E +⎪⎪⎭
⎫ ⎝⎛E E =⎪⎪⎭⎫ ⎝⎛ln ln σσ 式中N E 为颈缩时对数应变。