流体力学第2章

合集下载

流体力学第二章

流体力学第二章

p z z hp g
hp p g
§2-3 重力场中流体的平衡
几何意义
在重力作用下,静止的 不可压缩流体的静水头 线和计示静水头线均为 水平线

§2-3 重力场中流体的平衡
帕斯卡原理
p p z z h 0 g g
p p0 gh
——静力学基本方程形式之二。
§2-2 流体平衡微分方程式
一、方程式的建立 它是流体在平衡条件下,质量力与表面力所满足的关系式。
l 根据流体平衡的充要条件,静止流体受的所有力在各个坐标轴 方向的投影和都为零,可建立方程。
fi 0
l
方法:微元分析法。在流场中取微小六面体,其边长为 dx、dy、dz,然后进行受力分析,列平衡方程。
1、 流体静压强:静止流体作用在单位面积上的力。
设微小面积上的总压力为
P
平均静压强:
,则
P p A
ΔP
点静压强:
p lim
A0
P A
ΔA
即流体单位面积上所受的垂直于该表面上的力。单位:N/m2 (Pa) 1、 ( 牛) 2、总压力:作用于某一面上的总的静压力。P 单位:N
3、流体静压强单位:
2
n
略去二阶以上无穷小量,得到A1、A2处的压强分别为:
p dx p1 p x 2
则表面力在x方向的合力为:
p dx p 2 p+ x 2
p dx p dx p p1 p2 dy dz p p dy dz dx dy dz x 2 x 2 x
代入Ⅱ式得
dp dU
所以
p U C
令 p=p0时,U=U0 , 则 C=p0-ρU0

工程流体力学 第二章

工程流体力学 第二章
( x , y , z , t ) t
只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k

流体力学第二章 流体静力学

流体力学第二章 流体静力学
第二章 流体静力学
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。

流体力学 第二章 水静力学 (2)

流体力学 第二章 水静力学 (2)
式中
ydA 表示面积dA对Ox的静矩 。
(一)
静水总压力的大小
根据理论力学中的静矩定理:微小面积dA对 某一轴的静矩之和(即
A ydA ),等于 平面面积A对同一轴的静矩Sx (即平面面积A
与其形心纵坐标yc的乘积),即有:
Sx

ydA y
A
c
A
P g sin S x g sin yc A
工程实践中,需要解决作用在结构物表面上的液体静压力 的问题。
本节研究作用在平面上的液体静压力,也就是研究它
的大小、方向和作用点。 由于液体静水压力的方向指向作用面的内法线方向, 因此只须求总作用力的大小和作用点。 研究方法可分为解析法和图解法两种
一、用解析法求任意平面上的静水总压力
问题:作用于这一任意平面上的相对静水总压力的大小及作

A

xD
A
I XY yC A
I Cxy yC A
I XY xydA 称为EF平面对Ox及Oy轴的静矩积
x D xC
式中Icxy为平面EF对通过形心C并与Ox、Oy轴平行的轴的惯性积。因为惯 性积Icxy可正可负,xD可能大于或小于xc。也就是对于任意形状的平面,压 力中心D可能在形心C的这边或那边
面相垂直。
注意:
1.在水利工程中,一般只需计算相对压强,所以只需绘制相对压强分 p h 布图,当液体的表面压强为 p0 时, 即p与h呈线性关系,据此绘 制液体静水压强图。 2. 一般绘制的压强分布图都是指这种平面压强分布图。 相对压强分布 图
pa
A
Pa+ρgh
B
静水压强分布示意图
静水压强分布图实例
由图可见:

流体力学第二章习题解答

流体力学第二章习题解答

第 2 章流体静力学大气压计的读数为100.66kPa(755mmHg),水面以下 7.6m 深处的绝对压力为多少?知: P a a水1000 kg / m3求:水下h 处绝对压力PP P a gh 解:1000175KP a烟囱高H=20m,烟气温度t s=300℃,压力为p s,确立惹起火炉中烟气自动流通的压力差。

烟气的密度可按下式计算: p=(1.25-0.0027t s)kg/m3,空气ρ3。

解:把 t s300 C 代入s s)kg / m3得s(1.25 0.0027t s) kg / m30.0027 300)kg / m30.44kg / m3压力差p=(a -s) gH ,把a 1.29kg / m3,s/ m3, g9.8N / kg ,H20m 分别代入上式可得p=( a -s)gH=(1.29-0.44)9.8 20Pa2已知大气压力为。

求以水柱高度表示时:(1)绝对压力为22时的相对压力;(2)绝对压力为时的真空值各为多少?解:p =p-p m2(1)相对压力:a大气以水柱高度来表示:a/g =19.62*1033)h= p/( 9.807*10(2)真空值:p v=p a68.5=29.6 KN / m 2以水柱高度来表示:h= a/g =29.6*103/ (9.807*103)p以下图的密封容器中盛有水和水银,若A 点的绝对压力为300kPa ,表面的空气压力为 180kPa ,则水高度为多少?压力表B 的读数是多少?解:水的密度1000 kg/m3,水银密度13600 kg/m3A 点的绝对压力为:p Ap 0h 2o ghHgg(0.8)300 10 3 =180103 +1000 9.8 h+13600求得: h=压力表 B 的读数p g p p a (300 101)KPa 199KPa以下图,在盛有油和水的圆柱形容器的盖上加载F=5788N 已知 h 1 =50cm ,h 2=30cm ,,油密度ρ 油=800kg/m 3 水银密度ρ Hg =13600kg/m 3,求 U 型管中水银柱的高度差 H 。

《高等流体力学》第2章 流体动力学积分形式的基本方程

《高等流体力学》第2章 流体动力学积分形式的基本方程
τ0
(φ 为广延量)
取τ= τ0(t)为控制体, A= A0(t)为控制面:
A2 ( A02 )
τ 03
′ A02
v∆t
A1 ( A01 )
′ A01
n
τ 02
v∆t
τ 01
dA0
τ = τ 0 (t )
A = A0 ( t )
n
′ ( t + ∆t ) = A′ A0
∆ = I I ( t + ∆t ) − I ( = t)
I在∆t内的增量为:
∫∫∫τ
01 +τ 02
φ ( r , t + ∆t ) dτ 0 − ∫∫∫
τ 01 +τ 03
φ ( r , t ) dτ 0
∫∫∫τ
φ ( r , t + ∆t ) − φ ( r , t ) dτ 0 + ∫∫∫ φ ( r , t + ∆t ) dτ 0 τ 02 01
D ∂φ Dφ φ dτ 0 = + ∇ φ= v + φ∇ ⋅ v ⇒ ∫∫∫ τ 0 Dt ∂t Dt Dt ∂t
( )
Dφ + φ∇ ⋅ v dτ ∫∫∫τ Dt
Dρ + ρ∇ ⋅ v = 0 (微分形式连续方程) 如果 φ = ρ ,则: Dt (2) D D ( ρφ ) ρφ dτ 0 ∫∫∫ = + ρφ∇ ⋅ v dτ ∫∫∫ τ τ 0 Dt Dt ρ Dφ ρ Dφ Dρ dτ = ∫∫∫ +φ + ρ∇ = ⋅ v dτ ∫∫∫ τ τ Dt Dt Dt
∂x′ ′ = ∇xα iβ α i′α = ∂xβ ∂φ ∂x′ ∂φ ∂φ ∴∇′φ = i′α = iβ α = iβ = ∇φ ′ ′ ∂xα ∂xβ ∂xα ∂xβ

流体力学第二章 流体运动学基础

流体力学第二章 流体运动学基础

整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章

第二章 流体力学的基本方程1-2

第二章 流体力学的基本方程1-2

(v⋅ ∇) b = 0



v⋅ ∇ϕ = 0
21
一维、 三.一维、二维、三维流动 一维 二维、
在设定的坐标系中, 在设定的坐标系中,根据有关物理 量依赖于一个坐标、 量依赖于一个坐标、两个坐标和三个坐 流体运动可分为一维运动、 标,流体运动可分为一维运动、二维运 动和三维运动。 动和三维运动。
14
运 中 流 质 所 有 物 量 (例 v, p, ρ,T等 动 的 体 点 具 的 理 N 如 ) 对 间 变 率: 时 的 化 ∆N ∂N → dN = lim = + (V⋅ ∇)N ∆t→ ∆ 0 ∂t dt t 称 物 量 的 点 数或 体 数 为 理 N 质 导 ( 随 导 ) dN −全 数 随 导 导 或 体 数 dt ∂N −局 导 或 变 数 部 数 时 导 ∂t (V⋅ ∇)N − 位 导 变 数
9
流体速度v、压力 、密度ρ和温度 等的对应表达式为: 和温度T等的对应表达式为 流体速度 、压力p、密度 和温度 等的对应表达式为:
vx = vx(x, y, z, t) = vx[x(t ), y(t ),z(t ),t ] vy = vy(x, y, z, t) = vy[x(t ), y(t ),z(t ),t ] vz = vz(x, y, z, t) = vz[x(t ), y(t ),z(t ),t ] v = v(x, y, z, t) = v[x(t ), y(t ),z(t ),t ] 及 p = p(x, y, z, t) = p[x(t ), y(t ),z(t ),t ] ρ = ρ(x, y, z, t) = ρ[x(t ), y(t ),z(t ),t ] T = T(x, y, z, t) = T [x(t ), y(t ),z(t ),t ] x, y, z, t —欧 变 拉 数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(V )
实质微商,随体(物质、全)导数
2013-5-24 23
不可压缩流体的数学表示
流体力学第二章
质点的密度在运动过程中不变的流体称为不可压缩流体。 对于不可压缩流体,密度的随体导数为0,即
D Dt 0
思考:不可压缩流体可以用表示式 c 来表示吗?
D Dt t (V ) 0
x a, b, c, t u ax 2 t t 2 y a, b, c, t v ay 2 t t 2 z a, b, c, t w az 2 t t
2
流体的密度、压力、温度也可以写成a,b,c,t的函数
x x a, b, c, t y y a, b, c, t z z a, b, c, t
拉格朗日方法的一般表达:
a,b,c,t称为拉格朗日变数—是流体质点的标志。
2013-5-24 6
流体力学第二章
拉格朗日方法表示的速度,则有
V ui v j wk

V t
V V V
V dt t
亦可写为:
u v w V dt t y z x V V V t
dV
V
式中
2013-5-24
t
流体力学第二章
式中,a,b 是 t=0 时刻流体质点的直角坐标值。 求: (1)t=2时刻流场中质点的分布规律; (2)a=1,b=2这个质点的运动规律; (3) 质点的加速度。
2013-5-24
9
解:
x t u a 1 e 1 t v y b 1 e t 1 t
2
2013-5-24
11
流体力学第二章
(2)a=1,b=2流体质点的运动规律
x 2e t 1 t y 3e t 1
t
(3) 加速度场
u t a a 1 e x t a v b 1 e t y t
x a, b, c, t u t y a, b, c, t v t z a, b, c, t w t
其中
同样,质点的加速度可表示为 a
2013-5-24

V t

2 r
t
2
7
流体力学第二章
它在直角坐标系中的分量为
2013-5-24
2
流体力学第二章
了解流体微元的运动分解机理,即微团运动可分解为 平移,整体转动,线变形运动及角变形运动。 掌握有旋运动与无旋运动的特点。无旋运动可引入速 度势。不可压无旋运动是一个纯粹运动学问题,正确 给出边界条件,是求解的关键。
2013-5-24
3
本章学习的内容
描述流体运动的两种方法 运动的几何描述 连续流体线的保持性 流体微团的运动分析 有旋运动的一般性质 无旋运动的一般性质 不可压无旋流动的基本方程 不可压无旋流的动能
V z
对流加速度 convective acceleration
22
随体导数(实质微商)
a V t (V )V
流体力学第二章
类似的,与流体有关的所有的物理量 Φ 如:
, T ...
都可以表示成
D Dt D Dt t t (V )
流体力学第二章
积分得:
x y

a 1 e 1 d t a 1 e t c1
t t
b 1 e 1d t b 1 e t c 2
t t
代入条件:在 t=0 时刻,x=a,y=b,求得积分常数,
3
dv dt

v t
u
v x
v
v y
w
v z
3tz ty x
2
dw dt

w t
u
w x
t 0
lim
t 0
V p ', t t V p ', t V p ', t t V p ', t t V t
t 0
lim
t 0
t V V V V V n· V V· V t s t t
2013-5-24 12
2.1.2 欧拉方法
流体力学第二章
欧拉方法也称空间描述,它着眼于空间点,认为流体的物 理量随空间点及时间而变化,也就是说,它把流体物理量 表示成空间坐标及时间的函数。 欧拉方法研究的是流体的场,相比较于拉格朗日方法,它 更适合于研究流体的运动。 拉格朗日方法着眼于流动过程中流体质点的运动,它比较 适合于研究刚体的运动。 根据欧拉的观点,任何物理量Φ(V,P,ρ)都是坐标和时间 的函数,在直角坐标系中,该物理量可以表示为
2013-5-24
15
注意事项:
不要把空间点和流体质点混淆。
流体力学第二章
流体运动时,同一个空间点在不同的时刻由不同的流体质 点所占据。
所谓空间点上的物理量是指占据该点的各个流体质点的物 理量。
在欧拉方法中,各物理量将是时间和空间点的函数。欧拉 方法研究的是场。 最后指出,欧拉法和拉格朗日法只不过是描述流体运动的 两种不同方法。对于同一问题,既可用拉格朗日法也可用 欧拉法来描述。采用何种方法视具体问题而定。
既要不可压缩,又要均质,才有密度处处为一个常数。
2013-5-24
24
例题:
已知
2 V 3 ti xzj ty k
2
流体力学第二章
求质点的加速度。
解: u 3 t , v xz , w ty
du dt u t u u x v u y
w
u z
流体力学第二章
另一方面,于不同时刻通过某一固定点的不同流点之速 度一般也是不同的,但这种表示为
V t
x, y,z
u t
x, y,z
,
v t
x, y ,z
,
w t
x , y ,z
局地加速度 local acceleration
u
2013-5-24
V x
v
V y
w
流体力学第二章
2013-5-24
4
流体力学第二章
2.1描述流体运动的两种方法
2013-5-24
5
2.1.1拉格朗日方法
流体力学第二章
拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢? 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
x, y, z, t
14
流体力学第二章
x,y,z固定,t改变,表示空间固定点上速度随着时间的变 化规律; t固定, x,y,z改变,表示某一时刻中速度在空间中的分布 规律。 若场内函数不依赖于矢径r(x,y,z),则称为均匀场,否则称 为非均匀场; 若场内函数不依赖于时间t,则称为定常场,否则称为非 定常场。 欧拉法的应用:气象站、海洋观测站等。

V t

V d x x dt

V d y

V d z z dt


2013-5-24
20
随体导数(实质微商、质点加速度)
流体力学第二章
某流体质点的速度对于时间的变化率就是该流体质点 的加速度。按定义
a lim a dV V t
t 0
( x, y, z, t)
x,y,z,t:欧拉变数-空间位置的标志
2013-5-24 13
流体力学第二章
速度场
V V x, y, z, t
压力场
p p x, y, z, t
密度场
x, y, z, t
温度场
T T
2013-5-24
c1 1, c 2 1
2013-5-24 10
流体力学第二章
得各流体质点的一般分布规律
x a 1 e t 1 t y b 1 e t 1
t
所以: (1)在 t =2 时刻流场中质点分布规律
x a 1 e 3 2 y b 1 e 3
a, b, c, t p p a, b, c, t T T a , b , c , t
2013-5-24 8
例题
已知用拉格朗日变数表示的速度场为
u a 1 e 1 t v b 1 e 1
dV dt lim lim V p V p t V p ', t t V p , t t V p ', t V p , t t V p ', t V p , t pp '
lim
流体力学第二章
第二章
流体运动学基础
2013-5-24
1
第二章 流体运动学基础
流体力学第二章
流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。 本章的学习目标: 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
相关文档
最新文档