人教版六年级数学总复习知识点整理
新人教版数学六年级上册总复习知识点整理归纳整理

第一单元分数乘法〔一〕分数乘法意义:1、分数乘整数的意义:〔及整数乘法的意义一样〕就是求几个一样加数的和的简便运算。
◆“分数乘整数〞指的是第二个因数必需是整数,不能是分数。
例如:×7表示: 求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义:就是求一个数的几分之几是多少。
◆“一个数乘分数〞指的是第二个因数必需是分数,不能是整数。
第一个因数是什么都可以。
例如:×表示: 求的是多少?A×表示: 求A的是多少?〔二〕分数乘法计算法那么:1、分数乘整数的运算法那么是:分子及整数相乘,分母不变。
2、分数乘分数的运算法那么是:用分子相乘的积做分子,分母相乘的积做分母。
◆为了计算简便,能约分的先约分再计算。
3、分数的根本性质:分子、分母同时乘或者除以一个一样的数〔0除外〕,分数的大小不变。
〔三〕积及因数的关系:1、一个数〔0除外〕乘大于1的数,积大于这个数。
a×,当b >1时,c>a.2、一个数〔0除外〕乘小于1的数,积小于这个数。
a×,当b <1时,c<a (b≠0).3、一个数〔0除外〕乘等于1的数,积等于这个数。
a×,当b =1时, .◆在进展因数及积的大小比较时,要留意因数为0时的特别状况。
〔四〕分数混合运算1、分数合运算依次:(及整数一样),先乘、除后加、减,有括号的先算括号里面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a××a乘法结合律:(a×b)××(b×c)乘法安排律:a×(b±c)×b±a×c〔五〕分数乘法应用题——用分数乘法解决问题◆单位“1〞的量,求它的几分之几是多少,用单位“1〞的量及分数相乘。
1、求一个数的几分之几是多少?〔用乘法〕例如:求25的是多少?列式:25×=15甲数的等于乙数,甲数是25,求乙数是多少?列式:25×=152、求比一个数多〔少〕几分之几的数是多少?例如:甲数比乙数多〔少〕,乙数是25,求甲数是多少?甲数=乙数+乙数×即25+25×=25×〔1+〕=40〔或10〕◆巧找单位“1〞的量:“的〞前“比〞后,“的〞字相当于“×〞,“是〞字相当于“=〞3、求甲比乙多〔少〕几分之几?多:〔甲-乙〕÷乙相差数÷单位少:〔乙-甲〕÷乙第二单元位置和方向1、确定位置的条件:当观测点〔中心〕确定以后,确定物体位置是条件是〔方向〕和〔间隔〕。
(完整版)人教版六年级数学总复习资料

(完整版)人教版六年级数学总复习资料
本文档是人教版六年级数学总复资料的完整版,旨在帮助学生全面复数学知识。
目录
1. 数的认识
2. 数的读写与数的大小比较
3. 数的运算
4. 简便计算法
5. 乘法
6. 除法
7. 解方程和表示思想方法
8. 长度单位
9. 面积与体积
10. 角与直线的认识
11. 同、异角的认识
12. 三角形与四边形
13. 分数的认识与运算
14. 概率
15. 数据的整理和分析
内容概述
本文档涵盖六年级数学各个模块的核心知识点。
每个模块都包含了相关概念、方法和例题,以帮助学生加深对数学知识的理解。
本文档的复资料是从人教版六年级数学教材中提炼出来的,结构简明清晰,适合学生进行系统性的复。
使用建议
学生可以按照目录中的顺序逐个模块进行复,先理解每个模块的基本概念和方法,然后通过例题进行练,加深对知识点的掌握。
建议学生在复过程中积极思考,加深对数学思维的培养。
可以利用课余时间进行复,逐步提高对数学知识的掌握和运用能力。
注意事项
本文档中的知识点都是经过精心整理和筛选的,但仍需注意一些重要的细节。
在研究过程中,遇到不理解的地方可以查阅相关教材进行进一步研究和理解。
建议学生在复过程中多做笔记,方便回顾和巩固知识。
结语
本文档是人教版六年级数学总复习资料的完整版,提供了全面的知识点和例题,旨在帮助学生系统复习数学知识,夯实基础,迎接考试。
希望同学们能够认真阅读、理解和运用本文档中的内容,取得优异的成绩!祝大家学习进步!。
人教版小学六年级数学知识点归纳总结

人教版小学六年级数学知识点归纳总结上册1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版六年级数学知识点整理

人教版六年级数学知识点整理第一单元 位置↓ ↓ 竖排叫列 横排叫行2、平移时用“左”、“右”、“上”、“下”来表述。
3、图形左、右平移:只变第一个数,左减右加;上下平移:只变第二个数,上加下减。
第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:98×5表示求5个98的和是多少;或者98的5倍是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如:98×43表示求98的43是多少? 3、分数除法是求一个数是另一个数的几分之几是多少? 例如:98÷43表示求98是43的几分之几? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a ×c + b ×c 二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或 “占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几分之几。
人教版六年级上册数学总复习知识点和典型例题

小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。
也可以说成:小明在小华的 方向上,距离 。
相对位置:小明在小华的东偏北30°方向上,距离15米。
小华在小明的 方向上,距离 。
第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(如:75×4表示4个75是多少或75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(如:6×53表示6的53是多少; 65×52表示65的52是多少。
) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。
5、乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
[典型练习题](1)38 +38 +38 +38 =( )×( )=( ) (2)12个 56 是( );24的 23 是( )。
(3)边长 12 分米的正方形的周长是( )分米。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。
3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比 的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
六年级数学总复习知识点整理(完整版)

六年级数学总复习知识点整理(完整版)很快就小升初了,数学应该怎样复习呢?小学数学下面整理了六年级数学总复习知识点整理,供你参考。
六年级数学总复习知识点整理第一章数和数的运算一概念1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3 叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12 其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
(完整版)新人教版六年级数学总复习知识点归纳

小学六年级数学总复习知识点归纳一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、利润与折扣问题利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)三、常用单位换算1、长度单位换算1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米2、体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分3、时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒4、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
人教版六年级数学知识点整理(详细)

人教版六年级数学知识点整理(详细)人教版六年级数学知识点整理(详细)嗨,亲爱的小伙伴们!今天咱们来一起梳理梳理人教版六年级数学的重要知识点哟。
先来说说分数乘法。
这个可有意思啦,记住分子乘分子,分母乘分母就行。
但要注意能约分的先约分,这样计算起来更简单呢。
比如2/3 乘以 3/4,约分后就是 1/2 啦。
接着是位置与方向。
这就像是给咱们一个地图,要能准确找到目标在哪里。
得搞清楚方向,什么东偏北、西偏南的,角度也要看准哟。
还有分数除法,它和乘法正好相反。
除以一个分数,就等于乘以它的倒数。
比如说 3 除以 1/2 ,就等于 3 乘以 2,等于 6 。
百分数也很重要呢!它常常出现在我们的生活中,像打折、利率啥的。
要会把百分数和小数、分数互相转换。
比的知识也不能少。
什么前项、后项,比值,都要弄得明明白白。
圆这部分可得好好学,圆的周长和面积公式要牢记。
知道半径或者直径,就能算出周长和面积啦。
扇形统计图能让我们一眼看出各种数据的占比情况,可直观啦。
数学可有趣啦,小伙伴们加油学哟!人教版六年级数学知识点整理(详细)哈喽呀,小伙伴们!咱们继续聊聊六年级数学的知识点。
数学广角里的鸡兔同笼问题是不是很有趣?咱们可以用假设法或者方程来解决。
百分数的应用也不少,比如求增加或减少百分之几,要先算出增加或减少的量,再除以原来的量。
还有统计方面,不仅要会看统计图,还要能根据数据进行分析和预测。
数学中的解决问题策略也很关键哦。
像用画图、列举、假设等方法,能帮助咱们更快地找到答案。
在图形的放大和缩小中,要注意对应边的比例关系不变。
比例的知识也很重要哟,判断两个比能否组成比例,就看它们的比值是否相等。
六年级的数学虽然有点难,但只要咱们认真学,都能掌握哒!加油哟!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10个一是十,10个十是百……10个一百 亿是一千亿……每相邻两个计数单位之间 的进率都是十。这种计数方法叫做十进 制计数法。
因数 倍数 能被 2、3、5整除的数的特征
数的整除
•(1)如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数, b就叫做a的因数。 •(2)一个数的因数的个数是有限的,其中最小的因数是 1,最大的 因数是它本身。 •(3)一个数的倍数的个数是无限的,其中最小的倍数是 它本身。 •(4)个位上是0、2、4、6、8的数,都能被2整除。 •(5)个位上是0或5的数,都能被5整除。 •(6)一个数的各位上的数的和能被3整除,这个数就能 被3整 除。
• 百分数的写法:百分数通常不写成分数形式, 而在原来的分子后面加上百分号“%”来表示。
数的改写
• 一个较大的多位数,为了读写方便,常 常把它改写成用“万”或“亿”作单位的 数。有时还可以根据需要,省略这个数某 一位后面的数,写成近似数。
准确数
• 在实际生活中,为了计数的简便,可以 把一个较大的数改写成以万或亿为单位的 数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
• 2、如果两个数是互质数,那么这两个数的积就是 它们的最小公倍数。
• 3、几个数的公因数的个数是有限的,而几个数的 公倍数的个数是无限的。
短除法 求24和36的最大公因数和最小公倍数
2 24 36
2 12 18
36 9
2
3
商互质
24和36的最大公因数是:2×2×3=12 除数相乘
24和36的最小公倍数是: 2×2×3×2×3=72 所有的除数和商相乘
带分数:假分数可以写成整数与真分数合成的数, 通常叫做带分数。
约分和通分
• 把一个分数化成同它相等但是分子、分 母都比较小的分数 ,叫做约分。
• 分子分母是互质数的分数,叫做最简分 数。
• 把异分母分数分别化成和原来分数相等 的同分母分数,叫做通分。
百分数
• 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。
• 8000406000读作:八十亿零四十万六千. • 684528563读作:六亿八千四百五十二万八千五百六十三 • 写数时,从高位起,一级一级地往下写,哪一位上一个单位也没
有,就在那一位上写0(0起占位的作用)
小数的读法和写法
• 读小数时,小数的整数部分按整数的读法 来读,小数点读作“点”,小数部分顺次读出 每一个数位上的数字.
(2)、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。
(3)整 数
正整数 (1、2、3、4、… … 自然数
零 (0既不是正数,也不是负数)
负整数(-1、-2、-3、-4……)
十进制计数法
一(个)、十、百、千、万、十万、百 万、千万、亿……都是计数单位。其中 “一”是自然数的基本计数单位。
• 6. 分数化成百分数:通常先把分数化成小 数(除不尽时,通常保留三位小数),再把 小数化成百分数。
• 7. 百分数化成分数:先把百分数改写成分 数,能约分的要约成最简分数。
◆性质和规律
• 商不变的规律 • 小数的性质 • 小数点位置的移动引起小数大小的变化 • 分数的基本性质 • 分数与除法的关系
分数大小的比较
• 分母相同的分数,分子大的分数比较大; 分子相同的数,分母小的分数大。分数的 分母和分子都不相同的,先通分,再比较 两个数的大小。
数的互化
• 1. 小数化成分数:原来有几位小数,就在1的后面写几个 零作分母,把原来的小数去掉小数点作分子,能约分的要 约分。
• 2. 分数化成小数:用分子除以分母。能除尽的就化成有限 小数,有的不能除尽,不能化成有限小数的,一般保留三 位小数。
29、31、37、41、43、47、53、59、61、67、71、73、79、 83、89、97。 • 一个数,如果除了1和它本身还有别的因数,这样的数 叫做合数。最小的合数是:4. • 1不是质数也不是合数,自然数除了1外,不是质数就是 合数。如果把自然数按其因数的个数的不同分类,可分为 质数、合数和1。
• 百分数通常用"%"来表示。百分号是表示 百分数的符号。
整数的读法和写法
• 读数时,从高位起,一级一级地往下读。每级末尾的 “0”都不读,其他数位有一个0或连续几个0都只读一 个0.读亿级或万级的数按个级数的读法来读,再在后 面加上亿或万。每一级末尾的0都不读出来,其它数 位连续有几个0都只读一个零。
偶数 奇数 质数 合数
• 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 • 0也是偶数。自然数按能否被2 整除的特征可分为奇数
和偶数。 • 一个数,如果只有1和它本身两个因数,这样的数叫做
质数(或素数)。最小的质数是:2. • 100以内的质数有:2、3、5、7、11、13、17、19、23、
互质数
• 公因数只有1的两个数,叫做互质数,成互质关 系的两个数,有下列几种情况:
• ①1和任何自然数互质。 • ②相邻的两个自然数互质。 • ③两个不同的质数互质。 • ④当合数不是质数的倍数时,这个合数和这个质
数互质。 • ⑤两个合数的公因数只有1时,这两个合数互质,
如果几个数中任意两个都互质,就说这几个数两两 互质。 (6)如果两个数是互质数,它们的最大公因数就是1 。
整数大小的比较
• 比较两个多位数的大小,首先看它们位 数的多少,位数多的数较大.
• 如果两个数的位数相同,那么首先看最 高位,最高位上的数较大的,这个数就大;如 果最高位相同,就看下一位,哪一位上的数 大那个数就大。
小数大小的比较
• 先看它们的整数部分,整数部分大的那 个数就大;整数部分相同的,十分位上的 数大的那个数就大;十分位上的数也相同 的,百分位上的数大的那个数就大……
人民币
•
1、常用单位
元 、角 、分
•
2、单位换算
1元=10角
1角=10分
第三部分 数的运算
■四则运算 ■运算定律 ■运算法则 ■ 运算顺序 ■ 常用的数量关系 ■解决问题的策略
第三部分 数的运算
(一)整数四则运算 1、整数加法: 把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部 分数,和是总数。 加数+加数=和 一个加数=和-另一个加数 2、整数减法: 已知两个加数的和与其中的一个加数,求另一个加数的 运算叫做减法。 在减法里,已知的和叫做被减数,已知的加数叫做减数, 未知的加数叫做差。被减数是总数,减数和差分别是部分数。 加法和减法互为逆运算。
人教版六年级数学总复习
知识点整理
2019.05.20
数与代数
数的认识 量的计量 数的运算 式与方程 正比例和反比例
第一部分 数的认识
●整 数
■自然数、负数和整数
(1)、自然数 :我们在数物体的时候,用来表示物体个数的1,2, 3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。 1是自然数的基本单位,任何一个自然数都是由若干个1组成。 0是最小的自然数,没有最大的自然数。
• 写小数时,整数部分按照整数的写法来写, 小数点写在个位右下角,小数部分顺次写出 每一个数位上的数字.
分数的读法和写法
• 读分数时,先读分母再读“分之”然后读分子,
分子和分母按照整数的读法来读。
• 写分数时 ,先写分数线,再写分母,最后写分 子,按照整数的写法来写。
百分数的读法和写法
• 读百分数时,先读百分之,再读百分号前面的 数,读数时按照整数的读法来读。
小数点位置移动引起小数大小的变化
• ★小数点向右移动一位,原来的数就扩大10倍; 小数点向右移动两位,原来的数就扩大100倍;小 数点向右移动三位,原来的数就扩大1000倍……
• ★小数点向左移动一位,原来的数就缩小10倍; 小数点向左移动两位,原来的数就缩小100倍;小 数点向左移动三位,原来的数就缩小1000倍……
性质和规律
●商不变的规律 商不变的规律:在除法里,被除数和除
数同时扩大或者同时缩小相同的倍数(0除 外),商不变 。
小数的基本性质
• 小数的末尾添上0或者去掉0,小数的大小不 变.
■运用小数的性质,可以在小数末尾添上0. 3.5=3.50 ■也可以把小数化简(去掉小数末尾的0) 3.500=3.5
分 数---- 把单位“1”平均分成若干份,表示这样的一份或者几 份的数,叫做分数.
分数单位---- 把单位“1”平均分成若干份,表示其中的一份的数.
分数各部分的名称:
4
7
分子 (表示所取的份数) 分数线 分母 (表示平均分的份数)
分数的分类
真分数:分子比分母小的分数叫做真分数。真 分数小于1。
假分数:分子比分母大或者分子和分母相等的 分数,叫做假分数。假分数大于或等于1。
小数
把整数“1”平均分成10份,100份……这样的一份或几 份分别是十分之几,百分之几……可以用小数表示.
小数点右边第一位是十分位,计数单位是十分之一;第二位 是百分位,计数单位是百分之一……
小数部分的最大计数单位是十分之一,没有最小的计数单 位.
小数部分有几个数位,就叫做几位小数.
小数的分类
(1).按小数位数是有限还是无限分
• 3. 一个最简分数,如果分母中除了2和5以外,不含有其他 的质因数,这个分数就能化成有限小数;如果分母中含有 2和5 以外的质因数,这个分数就不能化成有限小数。
• 4. 小数化成百分数:只要把小数点向右移动两位,同时在 后面添上百分号。
数的互化
• 5. 百分数化成小数:把百分数化成小数, 只要把百分号去掉,同时把小数点向左移 动两位。