抽样与抽样分布
抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
数理统计中的随机抽样和抽样分布——概率论知识要点

数理统计中的随机抽样和抽样分布——概率论知识要点概率论作为数理统计的基础,是研究随机现象及其规律的数学分支。
在数理统计中,随机抽样和抽样分布是非常重要的概念,本文将对这两个概念进行详细介绍和解释。
一、随机抽样随机抽样是指从总体中以随机的方式选择样本的过程。
在进行随机抽样时,每个个体被选中的概率应该是相等的,这样才能保证样本的代表性和可靠性。
随机抽样的方法有很多种,常用的包括简单随机抽样、分层抽样和系统抽样等。
1. 简单随机抽样简单随机抽样是最基本的抽样方法,它的特点是每个个体被选中的概率相等且相互独立。
简单随机抽样可以通过随机数表、随机数发生器等工具来实现。
在实际应用中,简单随机抽样常用于总体规模较小的情况。
2. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中随机选择样本。
这种抽样方法可以保证不同层次的个体在样本中的比例与总体中的比例相同,从而提高样本的代表性。
3. 系统抽样系统抽样是按照一定的规则从总体中选取样本的方法。
例如,可以按照一定的间隔从总体中选择样本,这个间隔称为抽样间隔。
系统抽样的优点是操作简便,但也存在可能引入系统误差的风险。
二、抽样分布抽样分布是指在随机抽样的基础上,通过大量重复抽样得到的统计量的分布情况。
在数理统计中,常用的抽样分布包括正态分布、t分布和F分布等。
1. 正态分布正态分布是一种重要的抽样分布,它具有对称、单峰和钟形曲线的特点。
在大样本情况下,根据中心极限定理,样本均值的分布接近于正态分布。
正态分布在数理统计中的应用非常广泛,例如用于估计总体均值和总体方差等。
2. t分布t分布是用于小样本情况下的抽样分布。
它相比于正态分布来说,具有更宽的尾部和更矮的峰值。
t分布的形状取决于自由度,自由度越大,t分布越接近于正态分布。
t分布在小样本情况下的参数估计和假设检验中经常被使用。
3. F分布F分布是用于比较两个样本方差是否显著不同的抽样分布。
F分布的形状取决于两个样本的自由度,它具有右偏和非对称的特点。
统计学中抽样和抽样分布基础知识

样本均值的抽样分布
定义:样本均值的所有可能值的概率分布 样本均值的数学期望:对于简单随机样本时,样本均值的数学期望与总体均值相等 样本均值样本中具有感兴趣特征的个体个数/样本容量 样本比率的抽样分布:是样本比率的所有可能值的概率分布
样本比率的数学期望:样本比率的数学期望与总体比率相等 样本比率的标准差
有限总体:有限总体修正系数*无限总体样本比率的标准差 无限总体:根号下p(1-p)/n 样本比率的抽样分布的形态 当样本容量足够大,同时np≥5和n(1-p)大于等于5时,样本比率的抽样分布可以 用正态分布近似
统计学中抽样和抽样分布基础知识
抽样基本属于
抽样总体:抽取样本的总体 抽样框:用于抽选样本的个体清单 参数:总体的数字特征
抽样
从有限总体的抽样 建议采用概率抽样 简单随机样本:从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n 的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本 无放回抽样和有放回抽样 无放回抽样:被抽取对象已经选入样本,不希望该对象被多次选入 有放回抽样:对已经出现过的随机数仍选入样本
点估计
样本统计量:为了估计总体参数,计算样本的特征 抽样总体和目标总体
目标总体是我们想要推断的总体 抽样总体是指实际抽取样本的总体 点估计的性质 无偏性:样本统计量是相应总体参数的无偏估计量 有效性:采用标准误差较小的点估计量,给出的估计值与总体参数更接近 一致性:大样本容量给出的点估计与总体均值更接近
其他抽样方法
分层随机抽样:总体中的个体首先被分成层,总体中的每一个体属于且仅属于某一 层,从每一层抽一个简单随机样本 整群抽样:总体中的个体首先被分成单个组,总体中的每一个个体属于且仅属于某 一群,有群为单位抽取一个简单随机样本 系统抽样:对容量很大的总体,第一个个体为随机抽样,总体个体排列时个体的随 机顺序 方便抽样:非概率抽样 判断抽样:对总体非常了解主观确定总体中认为最具代表性的个体组成样本
统计学抽样与抽样分布

一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
5
样本和统计量
统计量(statistic)。在抽样估计中,用来反映样本 总体数量特征的指标称为样本指标,也称为样本统计 量或估计量,是根据样本资料计算的、用以估计或推 断相应总体指标的综合指标。
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再
进行一步抽样,从选中的群中抽取出若干个单位进 行调查
群是初级抽样单位,第二阶段抽取的是最终抽样单位。 将该方法推广,使抽样的段数增多,就称为多阶段抽样
2. 具有整群抽样的优点,保证样本相对集中,节约调
4.1 抽样的基础知识
一、 几个概念 二、抽样误差 三、常用的抽样方法
1
一、几个概念
(一)全及总体与总体指标
全及总体。简称总体(Population),是指所要研究的 对象的全体,它是由所研究范围内具有某种共同性质 的全部单位所组成的集合体。总体单位总数用N表示。 (举例) 总体指标(参数)。在抽样估计中,用来反映总体数 量特征的指标称为总体指标,也叫总体参数。 研究目的一经确定,总体也唯一地确定了,所以总体 指标的数值是客观存在的、确定的,但又是未知的, 需要用样本资料去估计。
随机误差:又称偶然性误差,是指遵循随机原则 抽样,但由于样本各单位的结构不足以代表总体 各单位的结构而引起的样本估计量与总体参数之 间的误差。这就是抽样估计中所谓的抽样误差 。
《统计学》第9章 抽样与抽样分布

二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
抽样及抽样分布

分层抽样 概念:分层抽样又称类型抽样。首先将总体单
位按某一个标志分层;然后在各层按随机抽样的方 法分别抽出各层的样本。
特点:分层抽样在层内是抽样调查,层间是全面调
查,所以分层时应该尽量让每层内的变异程度小,
而层间的变异程度大。分层抽样的抽样误差较简单 随机抽样小,样本具有很好的代表性。
抽样平均误差的计算公式:
z
(
X 1
X
)
2
( 1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
如果: X1 和 X2 是两个非正态总体,当和样本容
量足够大,
z
(
X1
X
2
)
(1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
NEXT
二、样本成数及成数差的抽样 分布
成数的概念 样本成数的分布 两个总体样本成数差的分布
,则样本的成数为p n1
n
。
例如,某工厂生产某种电子元件,某批产品
共10000件,其中不合格品100件原则抽100件,其中
有3件不合格品,则样本的成数为p 3% 。
NEXT
样本成数的分布
用途:推断或估计总体的成数。例如某项改革 方案工人的支持率,产品的正品率等。
假设A、B、C、D、E5位同学的统计学成绩分别为: 80、 86、90、92、96。可计算得总体均值为88.8,总体方 差为29.76。现在随机从中抽容量为2的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)
第三章抽样与抽样分布

1、抽样分布:
全部可能样本统计量的频率分布叫
做抽样分布。
2、样本均值的抽样分布:
全部可能样本的平均数的概率分
布。
3、样本成数(比例)的抽样分布:
全部可能样本的成数的概率分布。
抽样分布
(sampling distribution)
4、抽样分布的特征值
•统计量:即样本指标
x
xi
每个单位被抽中的概率是已知的,或是可以计 算出来的
当用样本对总体目标量进行估计时,要考虑到 每个样本单位被抽中的概率
3-9
抽样框与抽样单位
抽样框:为便于抽样工作的组织,在抽样前在可 能条件下编制的用来进行抽样的记录或表明总体所有 抽样单元的框架。抽样框可以是一份清单(名单抽样 框)、一张地图(区域抽样框),它是设计和实施随 即抽样所必备的基础条件。
合格品(或不合格品) 与全部产品总数之比
2. 总体比率可表示为
N1 或
N
3. 样本比率可表示为
4. p n1 或 n
3-35
1 N0
N
1 p n0 n
样本比率(成数)的抽样分布的形成 抽样
比率 N1 / N
比率 p n1 / n
所有可能的样本的比率( p1, p2 , pn )所形成 的分布,称为样本比率(成数)的抽样分布。
n
ˆ P
ni
n
S
2
n
1 1
(
xi
x)2
3-21
样本均值的抽样分布
全部可能样本的平均数的概率分布
注意: • 1)在重复选取容量为n的样本时,由样
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则样本均值的抽样分布不是正态分布。
8
三、常用统计量的抽样分布
样本统计量
样本均值x
样本比率p
样本方差s2
正态总体或
非正态总体 大样本
非正态总体 (小样本)
大样本
正态分布
t分布
正态分布
Χ2分布
总体分布与样本统计量的抽样分布之间不仅存在密切联系,
总体参数与样本统计量之间也存在密切联系。
9
练习题
10
一、总体指标与样本指标
总体指标/总体参数:在抽样估计中,用来反映总体数量特 征的指标。
总体平均数μ、总体比例P、总体标准差σ、总体方差σ2
样本指标/样本统计量/估计量:根据样本资料计算的、用以 估计和推断相应总体指标的综合指标。
样本平均数 、样本比例p、样本标准差s、样本方差s2
总体参数是唯一的,往往未知的;样本统计量是不唯一的,
x
随着抽取的样本的不同而不尽相同。
1
总体参数和样本统计量
总体
☺
☺ ☺
☺ ☺
☺☺☺
样本
☺☺ ☺
参数
、2
P
平均数 标准差、方差
成数
统计量
X
S、 S2
p
2
二、抽样分布
(一)抽样分布的概念
由样本统计量的全部可能取值和与之相应的概 率(频率)组成的分配数列。
在实际应用中,统计量的抽样分布是通过教学 推导或在计算机上利用程序进行模拟而得到的。
6
样本均值的概率分布
平均成绩 1.0 1.5 2.0 2.5 3.0 3.5 4.0
个数 1 2 3 4x 3 2 1
概率 1/16 2/16 3/16 4/16 3/16 2/16 1/16
p(x) 0.3 0.2 0.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0
7
样本均值的抽样分布的特点
3
二、抽样分布的推导(以样本均值为例)
例:设有四名学生参加知识题竞猜,竞猜成绩分别为1分、2 分、3分、4分。现从中抽取两名学生构成样本(重复抽样), 求样本平均成绩的抽样分布。
分析:
1. 总体是什么?总体均值等于多少? 2. 总体容量?样本容量?样本个数? 3. 计算各个样本的均值?总体均值与样本均值的区别? 4. 样本均值的概率分布?
5
样本编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
样本均值
学生成绩 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4
学生平均成绩 1.0 1.5 2.0 2.5 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 2.5 3.0 3.5 4.0
x 抽样分布的形式与原有总体的分布和样本容量n的大小
有关。
如果原有总体是正态分布,那么,无论样本容量的大 小,样本均值的抽样分布都服从正态分布;
如果原有总体分布是非正态分布,而样本容量n≥30, 则随着样本容量的增大,样本均值的抽样分布将趋于 正态分布;
如果原有总体分布是非正态分布,而样本容量n<30,
4
分析
总体是什么?总体均值等于多少?
总体是4个学生。 总计均值即4名学生的平均成绩=(1+2+3+4)/4=2Байду номын сангаас5
总体容量?样本容量?样本个数?
总体容量=4,样本容量=2 样本个数=42=16
计算各个样本的均值?总体均值与样本均值的区 别?
总体均值是唯一的,样本均值是随机的。
样本均值的概率分布?