高中数学必修四公式大全
人教高中数学必修四 第一章 三角函数公式及推导

sin(-α)=-sinα
sin(π-α)=sinα
cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
大家好
3
1-----诱导公式(之二):
公式五: 利用公式一和公式三可以得到2πα与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
正弦三倍角公式推导(证明)
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan3α
所以:tan3α= ——————
1-3tan2α
大家好
14
三倍角公式推导
正切三倍角公式推导:(证明) tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
公式二:
设α为任意角,π+α的三角函数值 与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα
人教版高中数学必修1至必修5公式

必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac
(完整版)高中数学必修4——三角与向量公式大全

高中数学必修4公式大全三角公式汇总一、特殊角的三角函数值二、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x =αcos 正切:xy=αtan 三、同角三角函数的基本关系式商数关系:αααcos sin tan =, 平方关系:1cos sin 22=+αα αα2cos 1sin -±= αα2sin 1cos -±=四、诱导公式(记忆口诀:“奇变偶不变,符号看象限一般形式为(απ±2k)) ◆()()()zk , tan 2tan z k , cos 2cos zk , sin 2sin ∈=+∈=+∈=+απααπααπαk k k ❖()()()ααααααtan tan cos cossin sin -=-=--=- ♦()()()ααπααπααπtan tan cos cos sin sin -=--=-=- ⌧()()()ααπααπααπtan tan cos cos sin sin =+-=+-=+ ⍓ααπααπsin 2cos cos 2sin =⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-ααπααπsin 2cos cos 2sin -=⎪⎭⎫ ⎝=⎪⎭⎫⎝⎛+五、两角和差的正弦、余弦和正切公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-六、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=七、降幂公式22sin cos sin ααα=22cos 1sin 2αα-= 22cos 1cos 2αα+= 八、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,ab=ϕtan 。
高中数学必修四-二倍角公式及辅助角公式

二倍角公式及辅助角公式知识集结知识元辅助角公式的简单应用知识讲解辅助角公式一、辅助角公式及其应用函数可化为其中,,,此公式称为辅助角公式,通过辅助角公式可以将函数化为标准型的形式,从而解决许多相关问题,比如值域、最值、对称性、单调区间和周期等.二、公式汇编1、两角和与差的正弦、余弦和正切公式(1);(2);(3);(4);(5);(6).2、正弦、余弦和正切的二倍角公式(1);(2);(3).3、辅助角公式.例题精讲辅助角公式的简单应用例1.函数图象的一个对称中心为()A.B.C.(0,0)D.例2.已知函数的图象关于直线对称,若f(x1)f(x2)=-4,则|x1-x2|的最小值为()A.B.C.4D.例3.函数f(x)=sin2x+cos2x的对称中心坐标为()A.(+,0)(k∈Z)B.(+,0)(k∈Z)C.(+kπ,0)(k∈Z)D.(+kπ,0)(k∈Z)利用二倍角公式求非特殊角的三角函数值知识讲解二倍角的正弦、余弦和正切公式二倍角公式及其推导1、正弦二倍角公式推导∵,由角的任意性可将上式中的用替换:,化简得:,此公式称为正弦的二倍角公式,记作.2、余弦二倍角公式的推导∵,由角的任意性可将上式中的用替换:,又∵,,∴,此公式称为余弦的二倍角公式,记作.3、正切二倍角公式的推导∵,由角的任意性可将上式中的用替换:,此公式称为正切的二倍角公式,记作.二倍角公式的注意事项:1、在公式、和中,当时,就可以得到公式、和.在公式和中,角没有限制,在公式中,只有当时,公式才成立.2、二倍角公式不仅可用于的2倍情况,还可以运用于诸如将作为的2倍,将作为的二倍等.例如:.3、在一般情况下,,如.当且仅当时,才成立.同样,一般情况下,,.例题精讲利用二倍角公式求非特殊角的三角函数值例1.若sin66°=m,则cos12°=()A.B.C.D.例2.(sin15°+cos15°)2的值为()A.B.C.D.例3.已知,则=()A.B.1C.2D.利用二倍角公式进行化简知识讲解1.二倍角的三角函数【二倍角的三角函数】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.例题精讲利用二倍角公式进行化简例1.若,α是第二象限的角,则的值为()A.B.2C.4D.-4例2.cos15°∙cos75°=()A.B.C.D.例3.已知tan A=2,则=()A.B.C.3D.5利用二倍角公式进行给值求值运算知识讲解1.二倍角的三角函数【二倍角的三角函数】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.例题精讲利用二倍角公式进行给值求值运算例1.若4cosα+1=0(0<α<π),则sin2α=()A.B.C.D.例2.已知,则tan2θ=()A.B.C.D.例3.在△ABC中,若,则sin2A的值为()A.B.C.D.利用半角公式求值知识讲解一、半角公式及其推导1、正弦半角公式由二倍角公式得.2、余弦半角公式由二倍角公式得.3、正切半角公式由正弦半角公式和余弦半角公式得,∴,∴.综上:.半角公式说明:1、和中的角是任意角,中的角要求.要注意半角是相对的,不能认为才是半角,比如是的半角,是的半角等.2、半角公式的结构特点:上述半角公式中由于含有根式,因此也成为半角公式无理式.其特点是用表示、和.可以将半角公式看作倍角公式的变形.3、正负号的选取:它取决于、和的正负,而不是取决于的正负,取正负号的关键是判断出角终边所在的象限,从而确定、和的符号,当角的范围不明确时,需要在根号前保留正负号.例题精讲利用半角公式求值例1.已知cosα=,α∈(),则cos等于()A.B.-C.D.-例2.如果|cosθ|=,<θ<4π,那么cos的值等于()A.B.-C.D.-例3.已知α是第二象限角,且3sinα+4cosα=0,则tan=()A.2B.C.-2D.-降幂升角公式的简单应用知识讲解降幂升角公式及其推导1、升角公式由得.2、降幂升角公式由得;由得.例题精讲降幂升角公式的简单应用例1.已知tan A=2,则=()A.B.C.3D.5例2.cos475°-sin475°的值为()A.-B.C.-D.例3.已知tanα=3,则=()A.2B.-2C.3D.-3三角函数关系式的综合应用知识讲解利用三角函数关系处理综合性问题。
高中数学必修四 角度制 三角函数关系及诱导公式讲解

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
A90B 90∠-︒=∠︒=∠+∠得由B A7、正切、余切的增减性:一、任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0ry yα=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。
设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线的特征是:正弦线MP “站在x 轴上(起点在x 轴上)”、余弦线OM “躺在x 轴上(起点是原点)”、正切线AT “站在点(1,0)A 处(起点是A )”.有向线段OM 为余弦线有向线段AT 为正切线比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:三角函数线的重要应用是比较三角函数值的大小和解三角不等式。
四、一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 利用单位圆解三角不等式(组)的一般步骤是: (1)用边界值定出角的终边位置; (2)根据不等式(组)定出角的范围; (3)求交集,找单位圆中公共的部分; (4)写出角的表达式.(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)α与2α的终边关系:由“两等分各象限、一二三四确定”.若α是第一象限,则2α是第一、三象限角;若α是第二象限,则2α是第一、三象限角;若α是第三象限角,则2α是第二、四象限;若α是第四象限角,则2α是第二、四象限。
人教版高中数学必修4全册

(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ
或
2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
2
2
则α角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)
必修4 数学最全 知识点梳理(完整版)

高中数学必修4 知识点总结第一章:三角函数§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π.§1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan y xα= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,§1.2.2、同角三角函数的基本关系式 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:αααcos sin tan =. §1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) 2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- 4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五: .sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛- 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质12、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减) 横坐标不变 ()sin y A x ϕ=+纵坐标变为原来的A 倍纵坐标不变 ()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍 纵坐标不变 sin y A x ω=横坐标变为原来的1||ω倍()sin y A x ωϕ=+平移||B 个单位()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:§3.1.2、两角和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=-5、()tan tan 1tan tan tan αβαβαβ+-+=. 6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、二倍角的正弦、余弦、正切公式 1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα=. 2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=. 变形如下:升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩ 3、ααα2tan 1tan 22tan -=.4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2++.§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴= ⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反. 2、 平面向量共线定理:向量()≠与 共线,当且仅当有唯一一个实数λ,使λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x y x ,=+=. §2.3.3、平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x --=-, ⑶()11,y x λλλ=, ⑷1221//y x y x =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x AB --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θcos .3、 2=.4、=.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:⑴2121y y x x b a +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+= ⑷1221//0a b a b x y x y λ⇔=⇔-= 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式 2cos a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=-§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量. (如图)2 用向量方法判定空间中的平行关系设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=. 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 即:两平面平行或重合两平面的法向量共线. 3、用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=. 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=.②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直. ⑶面面垂直若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=. 即:两平面垂直两平面的法向量垂直. 4、利用向量求空间角 ⑴求异面直线所成的角A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BDθ⋅=⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .ina ua uϕθ⋅==①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: ◆如果θ是锐角,则cos cos m n m nθϕ⋅==;◆ 如果θ是钝角,则cos cos m n m nθϕ⋅=-=-.5、利用法向量求空间距离⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l 距离为1(||||h a b a =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.即cos ,d MP n MP =n MP MP n MP⋅=⋅n MP n⋅=⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n⋅=⑷两平行平面,αβ之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅=⑸异面直线间的距离高中数学必修四 知识梳理 10设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP 在向量n 方向上投影的绝对值.即.n MP d n⋅=6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++= 222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。
高中数学必修四公式大全

必修四—第一章 三角函数1. ❖终边落在x 轴上的角的集合: .❖ 终边落在y 轴上的角的集合: .❖ 终边落在坐标轴上的角的集合: .2弧长公式: =l,=S .3.同角三角函数的基本关系:①平方关系: ②乘积关系:◆ 诱导公式(一)()()=+=+=+)2tan(2cos 2sin παπαπαk k k◆ 诱导公式(二) ()()()=+=+=+απαπαπtan cos sin◆ 诱导公式(三) ()()()=-=-=-αααtan cos sin◆ 诱导公式(四) ()()()=-=-=-απαπαπtan cos sin◆ 诱导公式(五)=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-απαπ2cos 2sin◆ 诱导公式(六)=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+απαπ2cos 2sin4.三角函数(x x x tan ,cos ,sin )的性质5.函数)sin(ϕ+=wx A y 的图像振幅变化:x y sin = x A y sin = 左右伸缩变化 x A y ωsin =左右平移变化)sin(ϕω+=x A y 上下平移变化 k x A y ++=)sin(ϕω第二章:平面向量1.平面向量共线定理: 一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数2.向量的一个定理的类似推广①向量共线定理: )0(≠=a a b λ②平面向量基本定理: 2211e e a λλ+=(其中21,e e 为平面内不共线的两向量)3.线段的定比分点点P 分有向线段21P P 所成的比的定义式21PP P P λ=,这时=x ,=y . 4.一般地,设向量()(),0,,,2211≠==a y x b y x a 且 ①那么如果b a // . ②如果b a ⊥,那么 .5.一般地,对于两个非零向量b a , 有 θb a =⋅,其中θ为两向量的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本三角函数 Ⅰα2α ∈αⅠ∈2αⅠ、Ⅲ ∈αⅡ∈2αⅠ、Ⅲ ∈αⅢ∈2αⅡ、Ⅳ ∈αⅣ∈2αⅡ、ⅣⅡ终边落在x 轴上的角的集合:{}z ∈=κκπαα,终边落在y 轴上的角的集合:⎭⎬⎫⎩⎨⎧∈+=z κπκπαα,2 终边落在坐标轴上的角的集合:⎭⎬⎫⎩⎨⎧∈=z κπκαα,2 22121 r r l S rl αα===弧度度弧度弧度弧度度 18018011801 2360.ππππ====︒︒倒数关系:111cot tan ===ααααααSec Cos Csc Sin平方关系:αααααα222222111tan Csc Cot Cos Sin Sec =+=+=+乘积关系:αααCos Sin tan = , 顶点的三角函数等于相邻的点对应的函数乘积Ⅲ 诱导公式 终边相同的角的三角函数值相等基本三角函数符号记忆:“一全,二正弦,三切,四余弦”三个倒立三角形上底边对应()()()zk , tan 2tan z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin轴对称关于与角角x αα-()()()ααααααtan tan -=-=--=-Cos Cos Sin Sin轴对称关于与角角y ααπ-()()()ααπααπααπtan tan -=--=-=-Cos Cos Sin Sin关于原点对称与角角ααπ+()()()ααπααπααπtan tan =+-=+-=+Cos Cos Sin Sin对称关于与角角x y =-ααπ2ααπααπααπcot 2tan 22=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-Sin Cos Cos Sinααπααπααπcot 2tan 22-=⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+Sin Cos Cos Sin上述的诱导公式记忆口诀:“奇变偶不变,符号看象限 三角函数的性质 性 质x Sin y =x Cos y =定义域RR值 域[]1,1-[]1,1-周期性π2π2奇偶性奇函数偶函数单调性减函数增函数,,232,22,,22,22z k k k z k k k ∈⎥⎦⎤⎢⎣⎡++∈⎥⎦⎤⎢⎣⎡+-ππππππππ[][]减函数增函数,,2,2,,2,2z k k k z k k k ∈+∈-ππππππ对称中心()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴z k k x ∈+=,2ππz k k x ∈=,π图 像性质 x y tan =x y cot =定义域 ⎭⎬⎫⎩⎨⎧∈+≠z x x κπκπ,2{}z x x ∈≠κκπ,值 域 RR周期性 ππ奇偶性 奇函数奇函数单调性 增函数,,2,2z k k k ∈⎪⎭⎫ ⎝⎛+-ππππ()增函数,,,z k k k ∈+πππ对称中心 ()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴 无无 图 像xy线段定比分点坐标公式 λλ++=121x x x λλ++=121y y y 线段定比分点向量公式. 线段中点坐标公式线段中点向量公式. 221OP OP OP +=()k x ASin y Sinx y ++==ϕω变化为怎样由振幅变化:Sinx y = ASinx y = 左右伸缩变化:x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数Ⅶ 线段的定比分点21P P 所成的比的定义式21PP P P .↔λλ++=121OP OP OP ↓当1=λ时 ↓当1=λ时221y y y +=Ⅷ 向量的一个定理的类似推广 向量共线定理: ()0≠=a a b λ↓推广平面向量基本定理: ⎪⎪⎭⎫ ⎝⎛+=不共线的向量为该平面内的两个其中212211, , e e e e a λλ ↓推广221x x x +=空间向量基本定理: ⎪⎪⎭⎫ ⎝⎛++=不共面的向量为该空间内的三个其中321332211,,, e e e e e e a λλλ Ⅸ一般地,设向量()()a a y x b y x a 如果且,0,,,2211≠==∥01221=-y x y x b 那么 反过来,如果a y x y x 则,01221=-∥b .Ⅹ 一般地,对于两个非零向量b a , 有 θCos b a b a =•,其中θ为两向量的夹角。
222221212121y x y x y y x x ba b a Cos +++=•=θ特别的, 22a a a a a a a •===•或者Ⅺ()()0, , 0 , , , 212121212211=+⇔⊥+=•≠==y y x x b a y y x x b a a y x b y x a 特别的则且如果Ⅻ 0O , 2121=+⋅⋅⋅++⋅⋅⋅n n OA OA A O A A A n 则的中心为边形若正三角形中的三角问题2- 22, 22, C B A C B A C B A πππ=+=++=++ ()()()()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=+=+22Cos 2Cos 2 C Cos Cos C Sin B A C B A Sin B A C Sin B A Sin正弦定理:SinCSinB SinA cb a R SinCc SinB b SinA a ++++====2 余弦定理:2 2 , 2222222222abCosC b a c acCosB c a b bcCosA c b a -+=-+=-+=变形:abcb a CosC ac b c a CosB bc a c b CosA 22,2 222222222-+=-+=-+=C B A C B A tan tan tan tan tan tan =++三角公式以及恒等变换两角的和与差公式:()())()(S , S ,βαβαβαβαβαβαβαβα-+-=-+=+Sin Cos Cos Sin Sin Sin Cos Cos Sin Sin()()()())()()()(T , tan tan 1tan tan tan T , tan tan 1tan tan tan C , C , βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβα-+-++-=--+=++=--=+Sin Sin Cos Cos Cos Sin Sin Cos Cos Cos 变形:()()()()为三角形的三个内角其中χβαχβαχβαβαβαβαβαβαβα,,tan tan tan tan tan tan tan tan 1tan tan tan tan tan 1tan tan tan =+++-=--+=+二倍角公式:ααααααααααα22222tan 1tan 22tan 2112222-=-=-=-==Sin Cos Sin Cos Cos Cos Sin Sin半角公式:212212ααααCos Cos Cos Sin+±=-±=αααααααSin Cos Cos Sin Cos Cos -=+=+-±=11112tan降幂扩角公式:221 , 22122ααααCos Sin Cos Cos -=+= 积化和差公式:()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=Cos Cos Sin Sin Cos Cos Cos Cos Sin Sin Sin Cos Sin Sin Cos Sin 21212121和差化积公式:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=+222222222222βαβαβαβαβαβαβαβαβαβαβαβαSin Sin Cos Cos Cos Cos Cos Cos Sin Cos Sin Sin Cos Sin Sin Sin ( SSC C CC C C CS S S SC S S 2222-=-=+=-=+)万能公式:2tan12tan12tan 12tan2222αααααα+-=+=Cos Sin2tan 12tan2tan 2ααα-=三倍角公式:θθθθθθCos Cos Cos Sin Sin Sin 34343333-=-= θθθθ23tan 31tan tan 33tan --=“三四立,四立三,中间横个小扁担”补充1.常见三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos 2x x <+≤|sin ||cos |1x x +≥.2. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+22)a b αϕ++(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).3. 三倍角公式 :3sin 33sin 4sin4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.4.三角形面积定理:(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)221(||||)()2OAB S OA OB OA OB ∆=⋅-⋅.人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿人寿11。