中考数学第25题专题
中考数学几何模型专题25函数与正方形存在性问题(学生版)知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题25函数与正方形存在性问题【例1】(2022•崂山区一模)如图,正方形ABCD,AB=4cm,点P在线段BC的延长线上.点P从点C出发,沿BC方向运动,速度为2cm/s;点Q从点A同时出发,沿AB方向运动,速度为1cm/s.连接PQ,PQ分别与BD,CD相交于点E,F.设运动时间为t(s)(0<t<4).解答下列问题:(1)线段CF长为多少时,点F为线段PQ中点?(2)当t为何值时,点E在对角线BD中点上?(3)当PQ中点在∠DCP平分线上时,求t的值;(4)设四边形BCFE的面积为S(cm2),求S与t的函数关系式.【例2】(2022春•孟村县期末)如图,在平面直角坐标系中.直线l:y=﹣2x+10(k≠0)经过点C(3,4),与x轴,y轴分别交于点A,B,点D的坐标为(8,4),连接OD,交直线l于点M,连接OC,CD,AD.(1)填空:点A的坐标为,点M的坐标为;(2)求证:四边形OADC是菱形;(3)直线AP:y=﹣x+5与y轴交于点P.①连接MP,则MP的长为;②已知点E在直线AP上,在平面直角坐标系中是否存在一点F,使以O,A,E,F为顶点的四边形是正方形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【例3】(2022•市中区二模)如图,直线AC与双曲线y=(k≠0)交于A(m,6),B(3,n)两点,与x轴交于点C,直线AD与x轴交于点D(﹣11,0),(1)请直接写出m,n的值;(2)若点E在x轴上,若点F在y轴上,求AF+EF+BE的最小值;(3)P是直线AD上一点,Q是双曲线上一点,是否存在点P,Q,使得四边形ACQP是正方形?若存在,求出点P,Q的坐标;若不存在,请说明理由.【例4】(2022春•渝中区校级月考)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A、B(点A在点B的左侧),其中OA=1,tan∠ABC=.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作PQ∥AC交BC于Q,PH∥x轴交BC于H,求△PQH周长最大值及此时点P的坐标;(3)如图2,将抛物线y水平向右平移1个单位得到新抛物线y′,点G为新抛物线y′对称轴上一点,将线段AC沿着直线BC平移,平移后的线段记为A1C1,点K是平面内任意一点,在线段平移的过程中,是否存在以A1、C1、G、K为顶点且A1G为边的正方形?若存在,请直接写出点K的坐标;若不存在,请说明理由.一.解答题1.(2022春•雨花区校级期末)在平面直角坐标系xOy中,点P的坐标为(x1,y1)点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“坐标矩形”.图为点P,Q的“坐标矩形”的示意图.已知点A的坐标为(1,0).(1)若点B的坐标为(3,﹣1),求点A,B的“坐标矩形”的面积;(2)点C在y轴上,若点A,C的“坐标矩形”为正方形,求直线AC的表达式;(3)在直线y=2x+7的图象上,是否存在点D,使得点A、D的“坐标矩形”为正方形,若存在,求出点D的坐标;若不存在,请说明理由.2.(2022春•凤山县期末)如图矩形OABC的顶点A,C分别在x轴、y轴的正半轴上,OA=a,OC=b,且a,b满足+|b﹣7|=0,一次函数y=﹣x+5的图象与边OC,AB分别交于D,E两点.(1)求点B的坐标;(2)直线OB与一次函数y=﹣x+5交于点M,求点M的坐标;(3)点G在线段DE上运动,过点G作GF⊥BC,GH⊥AB垂足分别为点F,H.是否存在这样的点G,使以F,G,H,B为顶点的四边形是正方形?若存在,请求出点G的坐标;若不存在,请说明理由.3.(2022春•临西县期末)如图,在平面直角坐标系中,直线y=﹣x+3分别与x轴,y轴交于点A,B,点P(1,m)在直线y=﹣x+3上.(1)求点A,B的坐标.。
数学中考题型(第25题)动点几何题型讲解

(2)在整个运动过程中,所形成的△PEF的面积存在最大值,
当△PEF的面积最大时,求线段BP的长;
(3)是否存在某一时刻t,使△PEF是直角三角形?若存在,
请求出此时刻t的值,若不存在,请说明理由。
A
A
线段运动与四边形问题(特殊平行四边形的判定)
E
F
H
线段运动与函数的综合(二次函数求面积最大值) B
DP C B
C
线段运动与存在性问题(分类思想)
X 广东2015 25.如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与
LOGO
Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=
∠ADC=90°∠CAD=30°,AB=BC=4cm.
(1)填空:AD=_________ (cm),DC=_____________(cm);
作
,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.
(1)填空:点B的坐标为____________ ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;
若不存在,请说明理由;
(3)①求证:
;②设
,矩形BDEF的面积为y,求关于y的函数关系式
(可利用①的结论),并求出的最小值。
请插入图片
3 作用:考查学生在学习数学中对 动态问题的认识和理解。
4 意义:培养学生在“分类讨论、数形结合、 方程与函数等”数学思想的形成。
5 题型出现的形式: 点动、线动、面动过程中求角、线段、 面积、函数极值问题, 或判定三角形、四边形的形状, 或存在性等问题。
PART ONE
02
以铜为镜,可以正衣冠
中考数学第25题专项训练课标试题

卜人入州八九几市潮王学校2021年中考数学第25题专项训练1.〔二零二零—二零二壹三中5月月考〕25.旺旺苗圃去年销售的某种树苗每棵的售价y〔元〕与月份x之间满足一次函数关系y=-x+62而去年的月销售量P〔棵〕与月份x之间成一次函数关系,其中两个月的销售情况如下表:〔1〕求该种树苗在去年哪个月销售金额最大?最大是多少?〔2〕由于受干旱影响,今年1月份该种树苗的销售量比去年12月份下降了25%.假设将今年1月份售出的树苗全部进展移栽,那么移栽当年的存活率为〔1-n%〕,且平均每棵树苗每年可吸碳1.6千克,随着该树苗对环境的适应及生长,第二年全部存活,且每棵树苗的吸碳才能增加0.5n%.这样,这批树苗第二年的吸碳总量为5980千克,求n的值.〔保存一位小数〕〔参考数据:≈14,≈32,≈36,≈49〕2.〔二零二零—二零二壹西师附中期末二零二零—二零二壹一中九年级上期中数学试卷〕25、我有一种可食用的野生菌,上时,某经销公司按场价格30元/千克收买了这种野生菌1000千克存放入冷库中,据预测,该野生菌的场价格y〔元〕与存放天数x〔天〕之间的局部对应值如下表所示:但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.〔1〕请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y与x的变化规律,并直接写出y与x之间的函数关系式;假设存放x天后,将这批野生茵一次性出售,设这批野生菌的销售总额为P元,试求出P与x之间的函数关系式;〔2〕该公司将这批野生菌存放多少天后出售可获得最大利润w 元并求出最大利润.〔利润=销售总额-收买本钱-各种费用〕〔3〕该公司以最大利润将这批野生菌一次性出售的当天,再次按场价格收买这种野生1180千克,存放入冷库中一段时间是后一次性出售,其它条件不变,假设要使两次的总盈利不低于万元,请你确定此时场的最低价格应为多少元?〔结果准确到个位,参考数据:〕3.〔2021--2021西师附中12月月考〕 25.重百电器商场某畅销品牌电视机今年上半年〔1-6月份〕每台的售价y 〔元〕与月份x 之间满足函数关系y=-50x+3500,上半年的月销售量p 〔台〕与月份x 之间成一次函数关系,其中两个月的销售情况如表: 〔1〕求该品牌电视机在今年上半年哪个月的销售金额最大?最大是多少?〔2〕受国际经济形势的影响,从7月份开场全国经济出现通货膨胀,商品价格普遍上涨.今年7月份该品牌电视机的售价比6月份上涨了m%,但7月的销售量比6月份下降了2m%.商场为了促进销量,8月份决定对该品牌电视机实行九折优惠促销.受此的刺激,该品牌电视机销售量比7月份增加了220台,且总销售额比6月份增加了1%,求m 的值.4.〔2021三中三月月考〕25.我“上品〞房地产开发公司于2021年5月份完工一商品房小区,6月初开场销售,其中6月的销售单价为20.7/m 万元,7月的销售单价为20.72/m 万元,且每月销售价格1y (单位:2/m 万元)与月份(611,x x x ≤≤为整数)之间满足一次函数关系:每月的销售面积为2y (单位:2m ),其中x x x y ,116(2600020002≤≤+-=为整数).(1)求1y 与月份x 的函数关系式;(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2021年11月时,因会受到即将实行的“国八条〞和房产税的影响,该公司销售部预计12月份的销售面积会在11月销售面积根底上减少%20a ,于是决定将12月份的销售价格在11月的根底上增加%a ,该方案顺利完成.为了尽快收回资金,2021年1月公司进展降价促销,该月销售额为)6001500(a +万元.这样12月、1月的销售额一共为4.4618万元,请根据以上条件求出a 的值是多少?5.〔202125〕某电视机消费厂家去年销往农村的某品牌电视机每台的售价y 〔元〕与月份x 之间满足函数关系502600y x =-+,去年的月销售量p 〔万台〕与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份1月 5月 销售量〔1〕求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?〔2〕由于受国际HY 的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%.国家施行“家电下乡〞,即对农村家庭购置新的家电产品,国家按该产品售价的13%给予财政补贴.受此的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了万台.假设今年3至5月份国家对这种电视机的销售一共给予了财政补贴936万元,求m 的值〔保存一位小数〕.5.831 5.9166.083 6.164〕6.〔2021,25,10分〕今年我国多个遭受严重干旱,受旱灾的影响,4月份,我某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =-x 2+bx +c . 〔1〕请观察题中的表格,用所学过的一次函数、反比例函数或者二次函数的有关知识直接写出4月份y 与x 的函数关系式,并求出5月份y 与x 的函数关系式;〔2〕假设4月份此种蔬菜的进价m 〔元/千克〕与周数x 所满足的函数关系为m =x +1.2,5月份此种蔬菜的进价m 〔元/千克〕与周数x 所满足的函数关系为m =-x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?〔3〕假设5月份的第2周一共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的根底上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a%.假设在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.〔参考数据:372=1369,382=1444,392=1521,402=1600,412=1681〕7.〔一中初2021级3月月考25〕垫江县具有2000多年的牡丹种植历史.每年3月下旬至4月上旬,主要分布在该县太平镇、澄溪镇明月山一带的牡丹迎春怒放,美不胜收.由于牡丹之根———丹皮是重要中药材,目前已种植有60多个品种2万余亩牡丹的垫江,因此成为我国丹皮出口基地,获得“丹皮之乡〞的美誉。
九年级数学 专题25题一次函数应用典型例题

25题一次函数应用专题 一、近五年某某中考一次函数应用题 例1(09某某)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一X 标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)裁法一 裁法二 裁法三 A 型板材块数1 2 0 B 型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x X 、按裁法二裁yX 、按裁法三裁z X ,且所裁出的A 、B 两种型号的板材刚好够用.(1)上表中,m =,n =;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的X 数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少X ?解:(1)0 ,3.(2)由题意,得x+2y=240,∴y=120–12 x .2x+3z=180,∴z=60–23x .(3)由题意,得Q =x+y+z=x+120–12 x+60–23x .整理,得 .Q=180–16x由题意,得⎩⎪⎨⎪⎧120–12x ≥060–23≥0 解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小.此时按三种裁法分别裁90X 、75X 、0X .例2(07某某)一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:手机型号 A型 B 型 C 型(1)用含x ,y (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.25.解:(1)60-x-y ; …………………………………………………………………(2分)(2)由题意,得 900x+1200y+1100(60-x-y )= 61000,整理得 y=2x-50. ………………………………………………………(5分)(3)①由题意,得 P= 1200x+1600y+1300(60-x-y )- 61000-1500,整理得 P=500x+500. …………………………………………………(7分)②购进C 型手机部数为:60-x-y =110-3x .根据题意列不等式组,得⎩⎪⎨⎪⎧x ≥82x-50≥8110–3x ≥8解得 29≤x ≤34.∴ xX 围为29≤x ≤34,且x 为整数.(注:不指出x 为整数不扣分) …(10分)∵P 是x 的一次函数,k=500>0,∴P 随x 的增大而增大.∴当x 取最大值34时,P 有最大值,最大值为17500元. ………(11分)此时购进A 型手机34部,B 型手机18部,C 型手机8部. ………(12分)例3(06某某)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?解:(1)2;10; ……………………………………………………………………(2分)(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x . …………………………………………………………………(4分)②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),时)∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩ ∴y =5x +20. …………………………………………………………(7分)③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队. ………………(9分)(说明:通过观察图象并用方程来解决问题,正确的也给分)(3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=…………………………………………………(11分) 解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米. ……………………(12分)例4(05某某)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (厘米)与燃烧时间x(小时)之间的关系如图10所示. 请根据图象提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是______________________,从点燃到燃烧尽所用的时间分别是_______________________.;(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?二、一次函数应用——方案设计例5(某某市2009年)某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: x 的取值X 围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.1.解:(1)依题意列不等式组得94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤ ······································· 3分 由不等式①得32x ≤ ························································································· 4分由不等式②得30x ≥ ························································································· 5分 x ∴的取值X 围为3032x ≤≤ ············································································ 6分(2)7090(50)y x x =+- ·············································································· 8分 化简得204500y x =-+200y -<∴,随x 的增大而减小. ··································································· 9分 而3032x ≤≤∴当32x =,5018x -=时,203245003860y =-⨯+=最小值(元) ··················· 11分 答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元. ····························································································· 12分 迁移点拨:本题是一道表格信息题,既考查不等式,又考查一次函数解析式及一次函数最值问题,通常一次函数的最值问题首先油不等式找到x 的取值X 围,进而利用一次函数的增减性在前面X 围的前提下求出最值。
2022中考数学专题25 命题与证明(专项训练)(解析版)

专题25 命题与证明一、单选题1.(2021·河南九年级)能说明命题“关于x 的方程240x x n -+=一定有实根”是假命题的反例为( )A .2n =-B .1n =-C .0n =D . 6.8n =【答案】D【分析】计算一元二次方程根的判别式即可【详解】依题意“关于x 的方程240x x n -+=一定有实根”是假命题则:2(4)40n ∆=--< 解得:4n >故选D.【点睛】本题考查了一元二次方程根的判别式,命题与假命题的概念,熟悉概念是解题的关键.2.(2021·沙坪坝区·重庆八中)下列命题,真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一个角为直角的四边形为矩形C .对角线互相垂直的四边形是菱形D .一组邻边相等的矩形是正方形【答案】D【分析】由题意根据平行四边形的判定定理、矩形、菱形、正方形的判定定理判断即可.【详解】解:A 、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,本选项说法是假命题;B 、有一个角为直角的平行四边形为矩形,本选项说法是假命题;C 、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;D 、一组邻边相等的矩形是正方形,本选项说法是真命题;故选:D .【点睛】本题考查的是命题的真假判断,注意掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2021·山西九年级)《几何原本》是欧几里得的一部不朽之作,本书以公理和原始概念为基础,推演出更多的结论,这种做法为人们提供了一种研究问题的方法.这种方法所体现的数学思想是()A.数形结合思想B.分类讨论思想C.转化思想D.公理化思想【答案】D【分析】结合题意,根据公理化思想的性质分析,即可得到答案.【详解】根据题意,这种方法所体现的数学思想是:公理化思想故选:D.【点睛】本题考查了公理化思想的知识;解题的关键是熟练掌握公理化思想的性质,从而完成求解.4.(2021·湖南九年级)下列各命题是真命题的是()A.矩形的对称轴是两条对角线所在的直线B.平行四边形一定是中心对称图形C.有一个内角为60 的平行四边形是菱形D.三角形的外角等于它的两个内角之和【答案】B【分析】根据矩形的性质、轴对称图形和中心对称图形的概念、三角形的外角性质判断即可.【详解】解:A、矩形的对称轴是任意一边的垂直平分线,两条对角线所在的直线不一定是矩形的对称轴,本选项是假命题;B、平行四边形一定是中心对称图形,本选项是真命题;C、有一个内角为60°的平行四边形不一定是菱形,本选项是假命题;D、三角形的外角等于与它不相邻的两个内角之和,本选项是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(2021·广西九年级)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有( )A .1个B .2个C .3个D .4个【答案】B【详解】①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,筝形的对角线垂直但不相等,不是正方形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④等边三角形是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故该命题错误;故选B .6.(2021·浙江)下列选项中,可以用来证明命题“若a >b ,则1a <1b ”是假命题的反例是( )A .a =2,b =1B .a =2,b =﹣1C .a =﹣2,b =1D .a =﹣2,b =﹣1 【答案】B【分析】把各选项提供的数据代入计算,进行比较即可求解.【详解】解:A.当 a =2,b =1时,111,12a b ==,则11a b <,无法说明原命题为假命题,不合题意; B. 当a =2,b =﹣1时,111,12a b ==-,则11a b>,说明原命题为假命题,符合题意; C.当 a =﹣2,b =1时,a <b ,条件错误,无法说明原命题为假命题,不合题意.D.当 a =﹣2,b =﹣1时,a <b ,条件错误,无法说明原命题为假命题,不合题意. 故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是真命题,一般需要推理、论证,而判断一个命题是假命题,只需要举出一个反例即可.7.(2021·辽宁九年级)下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .同位角相等,两直线平行C .对顶角相等D .若0a >,0b >,则0a b +>【答案】B【分析】 分别写出原命题的逆命题,然后判断真假即可.【详解】解:A 、若a b =,则||||a b =的逆命题是若||||a b =,则a b =,逆命题是假命题,不符合题意;B 、同位角相等,两直线平行的逆命题是两直线平行,同位角相等,逆命题是真命题,符合题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.8.(2021·辽宁九年级)下列说法错误..的是( ) A .“对顶角相等”的逆命题是真命题B .通过平移或旋转得到的图形与原图形全等C .“经过有交通信号灯的路口,遇到红灯”是随机事件D .函数1y x=-的图象经过点()1,1- 【答案】A【分析】根据平移、旋转的性质、对顶角的性质、反比例函数图象上点的坐标特征、随机事件的概念判断即可.【详解】解:“对顶角相等”的逆命题是相等的角是对顶角,是假命题,A 错误,符合题意; 通过平移或旋转得到的图形与原图形全等,B 正确,不符合题意;“经过有交通信号灯的路口,遇到红灯”是随机事件,C 正确,不符合题意;因为1x =时,11y x =-=-,所以函数1y x=-的图象经过点(1,1)-,D 正确,不符合题意; 故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2021·湖南九年级)下列说法正确的是( )A .有两条边和一个角对应相等的两个三角形全等B .平分弦的直径垂直于这条弦C .正方形既是轴对称图形又是中心对称图形D .一组对边平行,另一组对边相等的四边形是平行四边形【答案】C【分析】根据全等三角形的判定、垂径定理、正方形的性质、平行四边形的判定定理判断即可.【详解】解:A 、有两条边和其夹角对应相等的两个三角形全等,原命题是假命题;B 、平分弦(非直径)的直径垂直于这条弦,原命题是假命题;C 、正方形既是轴对称图形又是中心对称图形,是真命题;D 、一组对边平行且相等的四边形是平行四边形,原命题是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(2021·重庆九年级)下列命题中,是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .菱形的对角线相等D .有一组邻边相等的平行四边形是菱形【答案】D【分析】由平行四边形的判定得出A 错误;由矩形的判定得出B 不正确;由菱形的定义得出C 正确;由菱形的判定得出D 正确;即可得出答案.【详解】解:A. 对角线互相平分的四边形是平行四边形,∴A 不正确;B. 对角线互相垂直的平行四边形是菱形,∴B 不正确;C. 菱形的对角线互相垂直平分∴C 不正确;D. 有一组邻边相等的平行四边形是菱形∴不正确;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题,正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.二、填空题11.(2021·山西九年级)若举反例说明命题“若a b <,则ac bc <”是假命题时,令a 的值为5,b -的值为2-,则可给c 取一个具体的值为_______.【答案】1c =-(答案不唯一)【分析】“若a b <时,则ac bc <”是假命题,则a b <时,ac ≥bc ,即可.【详解】解:ac -bc ≥0,c (a -b )≥0-3c ≥0c ≤0即可.故答案为:1c =-(答案不唯一).【点睛】本题考查了命题,掌握真假命题是解题的关键.12.(2021·江苏无锡市·)请写出“两直线平行,同位角相等”的逆命题:_____________________________.【答案】如果同位角相等,那么两直线平行【分析】命题是由题设和结论两部分组成的,把原命题的题设作结论,原命题的结论作题设,这样就将原命题变成了它的逆命题.【详解】解:原命题是:两直线平行,同位角相等.改成如果…那么…的形式为:如果两直线平行,那么同位角相等.∴逆命题为:如果同位角相等,那么两直线平行,故答案为:如果同位角相等,那么两直线平行.【点睛】本题是一道命题与定理的概念试题,考查了命题的组成,原命题与逆命题的关系.13.(2021·安徽合肥·)直角三角形斜边上的中线等于斜边的一半逆命题________________【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【分析】把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【详解】解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【点睛】本题考查了互逆命题的知识及命题的真假判定,两个命题中,如果第一个命题的条件是第二个命题结论,而第一个命题的结论是第二个命题条件,那么这两个命题叫做互逆命题,其中一个命题成为另一个命题的逆命题.14.(2021·安徽九年级)命题“对顶角相等”的逆命题是__________.【答案】相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.(2021·江苏九年级)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题16.(2021·贵州九年级)同学们,你们知道吗?三角形的内角和不一定是180°.德国数学家黎曼创立的黎曼几何中描述:在球面上选三个点连线构成一个三角形,这个三角形的内角和大于180°.黎曼几何开创了几何学的新领域,近代黎曼几何在广义相对论里有着重要的应用.同样,在俄国数学家罗巴切夫斯基发表的新几何(简称罗氏几何)中,描述了在双曲面里画出的三角形,它的内角和永远小于180°.罗氏几何在天体理论中有着广泛的应用.而我们所学习的欧氏几何中描述“在平面内,三角形的内角和等于180°”是源于古希腊数学家欧几里得编写的《原本》.欧几里得创造的公理化体系影响了世界2000多年,是整个人类文明史上的里程碑.请你证明:在平面内,三角形的内角和等于180°.要求画出图形....,写出已知....、求证和证明...... 【答案】见解析【分析】过点A 作//EF BC ,由两直线平行,内错角相等得到1B ∠=∠,2C ∠=∠,再根据平角的定义解题.【详解】已知:如图,ABC .求证:180A B C ∠+∠+∠=︒.证明:过点A 作//EF BC ,∴1B ∠=∠,2C ∠=∠,∵12180BAC ∠+∠+∠=︒,∴180B BAC C ∠+∠+∠=︒.【点睛】本题考查三角形内角和定理的证明,涉及平行线性质、平角定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(2021·潍坊市寒亭区教学研究室九年级)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票的数量分别为5张,4张,3张,2张.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小.(1)如果按“甲、乙、丙、丁”的先后顺序购票,那么他们4人是否都能购买到满足条件的票?如果能,请写出每人购买的座位号;如果不能,请说明理由.(2)若乙第一个购票,要使其他3人也能购买到满足条件的票,甲、丙、丁应该按怎样的顺序购票?写出所有符合要求的购票顺序.【答案】(1)甲:1,2,3,4,5;乙:6,8,10,12;丙:7,9,11;丁:13,15;(2)甲丙丁、甲丁丙、丙甲丁、丁甲丙,共4种情况【分析】(1)由所选的座位号之和最小和购票的先后顺序即可推理.(2)根据题意可确定乙的购票结果.再结合所选的座位号之和最小并利用分类讨论的思想确定甲、丙、丁的购票顺序即可得出结果.【详解】(1)由所选的座位号之和最小可知,甲先选:5,3,1,2,4;则乙选:6,8,10,12;丙选11,9,7;丁选15,13.(2)根据题意可确定乙选的座位号为3,1,2,4.①若甲在乙选完之后选,则甲选的座位号为13,11,9,7,5.Ⅰ若丙在甲选完之后选,则丙选的座位号为6,8,10.此时丁可选的座位号为12,14.即在乙选完之后的顺序为:甲、丙、丁.Ⅱ若丁在甲选完之后选,则丁选的座位号为6,8.此时丙可选的座位号为10,12,14.即在乙选完之后的顺序为:甲、丁、丙.②若丙在乙选完之后选,则丙选的座位号为9,7,5.Ⅰ若甲在丙选完之后选,则甲可选的座位号为6,8,10,12,14.此时丁可选的座位号为13,11.即在乙选完之后的顺序为:丙、甲、丁.Ⅱ若丁在丙选完之后选,则丁选的座位号为6,8.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.③若丁在乙选完之后选,则丁选的座位号为7,5.Ⅰ若甲在丁选完之后选,则甲可选的座位号为6,8,10,12,14.此时丙可选的座位号为13,11,9.即在乙选完之后的顺序为:丁、甲、丙.Ⅱ若丙在丁选完之后选,则丙选的座位号为6,8,12.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.综上可知,甲、丙、丁的购票顺序可以为:甲、丙、丁或甲、丁、丙或丙、甲、丁或丁、甲、丙.【点睛】本题考查推理与论证,理解题意并利用分类讨论的思想是解答本题的关键.18.(2021·河南九年级)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证,并完成这个定理的证明过程;已知:__________________求证:_________________证明:(2)如图(2),在O 中,弦AB CD ⊥于M ,连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点,EM BD ⊥于,G FM AD ⊥于H ,当M 是AB 中点时,直接写出四边形EMFC 是怎样的特殊四边形:__________.【答案】(1)见解析;(2)菱形【分析】(1)先写出已知、求证,先证明BMF MAF ∠=∠,再证明DE ME =,DE CE =即可证明 (2)先证明CE CF =,再证明AC BC =,由布拉美古塔定理证明ME EC CF FM ===即可证明 【详解】(1)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 证明:,AC BD EF AB ⊥⊥9090BMF AMF MAF AMF ∴∠+∠=︒∠+∠=︒,,BMF MAF ∴∠=∠,EDM MAF EMD BMF ∠=∠∠=∠,, EDM EMD ∴∠=∠, DE ME ∴=,同理可证ME CE =,DE CE ∴=, ∴点E 是DC 的中点故答案为:已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 (2)四边形EMFC 是菱形理由:由布拉美古塔定理可知,,E F 分别是,AC BC 的中点, 11,22CE AC CF CB ∴== AB CD ⊥ 11,22ME AC MF CB ∴== AB CD M ⊥,是AB 中点AC BC ∴=ME EC CF FM ∴===∴四边形EMFC 是菱形 故答案为:四边形EMFC 是菱形 【点睛】本题考查菱形的判定、根据题意写已知求证、灵活进行角的和差关系的转换是解题的关键 19.(2020·江苏鼓楼区·)点E 、F 分别是菱形ABCD 边BC 、CD 上的点. (1)如图,若CE =CF ,求证AE =AF ;(2)判断命题“若AE =AF ,则CE =CF ”的真假.若真,请证明;若假,请在备用图上画出反例.【答案】(1)见解析;(2)假命题,见解析 【分析】(1)连接AC ,利用菱形的性质和全等三角形的判定和性质解答即可; (2)举出反例解答即可. 【详解】解:(1)连接AC ,∵四边形ABCD 是菱形, ∴∠ACE =∠ACF , 在△ACE 与△ACF 中CE CF ACE ACF AC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ACF (SAS ), ∴AE =AF ,(2)当AE =AF =AF'时,CE ≠CF',如备用图,∴命题“若AE =AF ,则CE =CF ”是假命题. 【点睛】此题考查命题与定理,关键是根据菱形的性质和全等三角形的判定和性质解答.20.(2020·丰台·北京十八中)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则甲同学错的是第题;(2)丁同学的得分是;(3)如果有一个同学得了1分,他的答案可能是(写出一种即可).【答案】(1)5;(2)3;(3)A【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2) 分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论.(3)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为5;(2)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以,此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为3;(3)由(1)知,五道题的正确选项分别是:CCABA, 如果有一个同学得了1分,那么,只选对1道, 即:他的答案可能是CACCC或CBCCC或CABAB或BBBBB等,故答案为:CACCC或BBBBB(答案不唯一).【点睛】本题主要考查是推理与论证问题和分类讨论的思想,确定出甲选错的题号是解本题的关键. 21.(2020·浙江台州·九年级期末)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点. ①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.【答案】(1)见解析;(2)①DEtan ∠DBC. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可; ②连接AC ,由自相似菱形的定义即可得出结论; ③由自相似菱形的性质即可得出结论; (2)①由(1)③得△ABE ∽△DEA ,得出AB BE AEDE AE AD==,求出AE =,DE =②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM,求出BN =7,再由三角函数定义即可得出答案. 【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下: 如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点, ∴AB =CD ,BE =CE ,∠ABE =∠DCE =90°, 在△ABE 和△DCE 中 AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠, ∴△ABE ≌△DCE (SAS ), ∴△ABE ∽△DCE , ∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C >90°,且∠ABC +∠C =180°,△ABE 与△EDC 不能相似, 同理△AED 与△EDC 也不能相似, ∵四边形ABCD 是菱形, ∴AD ∥BC , ∴∠AEB =∠DAE ,当∠AED =∠B 时,△ABE ∽△DEA ,∴若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点, 则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED , 故答案为:真命题;(2)①∵菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点, ∴BE =2,AB =AD =4, 由(1)③得:△ABE ∽△DEA , ∴AB BE AEDE AE AD== ∴AE 2=BE •AD =2×4=8,∴AE DE =AB AE BE ⋅,故答案为:AE DE②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形, ∴DN =EM ,DM =EN ,∠M =∠N =90°, 设AM =x ,则EN =DM =x +4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即2﹣(x +4)22﹣x 2, 解得:x =1, ∴AM =1,EN =DM =5,∴DN =EM = 在Rt △BDN 中, ∵BN =BE +EN =2+5=7,∴tan ∠DBC =DN BN =【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键.22.(2020·渠县崇德实验学校九年级)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:)则丁同学的得分是;(2)如果有一个同学得了1分,他的答案可能是(写出一种即可)【答案】(1)3;(2)CACCC【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对,针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,。
【中考冲刺】初三数学培优专题 25 平面几何的最值问题(含答案)(难)

平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME DAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值. (中学生数学智能通讯赛试题)1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)DD 1第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4. 75C .5D .4. 85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图 8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1) 当∠BAD =75°时,求⌒BC 的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1) 求证:△APE∽△ADQ;(2) 设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3) 当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)(无锡市中考试题)B Q11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)B CAB级1.已知凸四边形ABCD中,AB+AC+CD= 16,且S四边彤ABCD=32,那么当AC= ,BD= 时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)DBAB CAA第2题图第3题图第4题图第5题图3.如图⊙O的半径为2,⊙O内的一点P到圆心的距离为1,过点P的弦与劣弧⌒AB组成一个弓形,则此弓形面积的最小值为.4.如图,△ABC的面积为1,点D,G,E和F分别在边AB,AC,BC上,BD<DA,DG∥BC,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QADBCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB相交于点E .(1) 求证:AB ·AF =CB ·CD ; (2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)MNExCB第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt △ABC 中,∠C =90°,BC =2,AC =x ,点F 在边AB 上,点G ,H 在边BC 上,四边形EFGH 是一个边长为y 的正方形,且AE =AC . (1) 求y 关于x 的函数解析式;(2) 当x 为何值时,y 取得最大值?求出y 的最大值.(上海市竞赛试题)平面几何的最值问题例1125提示:当CM ⊥AB 时,CM 值最小,CM =125AC BC AB ⋅= 例2 如图,B ′M +MN 的最小值为点B ′到AB 的距离B ′F ,BE =45AB BCAC⋅=cm ,BB ′=85cm ,AE =()2222204585AB BE --=.在△ABB ′中,由12BB ′•AE =12AB •B ′F ,得B ′F =16cm .故BM +MN 的最小值为16cm . 例3 由△APD ∽△BPQ ,得AP AD BP BQ =,即BQ =()b a x AD BP AP x-⋅=,∴AP +BQ =x +ab b x -.∵x +ab x ≥2ab x ab x ⋅=仅当x =abx即x ab ,上式等号成立.故当AP ab ,AP +BQ 最小,其最小值为ab-b .例4 ⑴22125l π=+,22l =49,l 1<l 2,故要选择路线l 较短. ⑵()2221l h r π=+,()2222l h r =+,()2221244l l r r h π⎡⎤-=--⎣⎦.当r =244h π-时,2212l l =,当r >244h π-时,2212l l >,当r <244hπ-时,2212l l <. 例5 设DN =x ,PN =y ,则S =xy ,由△APQ ∽△ABF ,得()41242y x -=--即x =10-2y ,代入S =xy 得S =xy =y (10-2y ),即S =-2252522y ⎛⎫-+ ⎪⎝⎭,因3≤y ≤4,而y =52不在自变量y 的取值范围内,所以y =52不是极值点,当y =3时,S (3)=12,当y =4时,S (4)=8,故S max =12.此时,钢板的最大利用率21214212-⨯⨯=80%. 例6 设PD =x (x >1),则PC 21x -,由R t △PCD ∽△P AB ,得AB =21CD PA PC x ⋅=-y =AB •S △P AB ,则y =12AB ×P A ×AB =()()2121x x +-,求y 的最小值,有下列不同思路:①配方:y =21212242121x x x x --++=+--1221x x -=-x =3时,y 有最小值4.②运用基本不等式:y =122221x x -++≥- 321221x x -⋅-+2=4,∴当12x -=21x -,即当x =3时,y 有最小值4. ③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4. A 级1. 17 提示:当两张纸条的对角重合时,菱形周长最大.2. 83.74 4. D 5. D 6. B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x. ∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF+×2=AM +AM +MF =2 AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2 x +1)+52=-12(x -1)2+52. 故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52. 9. (1)BC 长为23rπ. (2)提示:连结BD . (3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD为等腰梯形,从而BC =AD -2 AM =2r -2 AM . 由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r-2x r . 同理,EF =2 r -2x r . l =4 x +2(2 r -2x r )=-xr(x -r )2+6 r (0<x 2 r ). . 当x =r时,l 取得最大值6 r .10. (1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ . (2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34. 故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.11. (1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上. (2)由已知得△ABC 底边上的高h =225-3=4. ①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O .由△AMN ∽△ABC ,得AO =23x ,y =S △PMN =S △AMN =12·x ·23x =13x 2即y =13x 2. 当=3时,y 的值最大,最大值是3. ②当3<x <6时,如图2,设△PMN 与BC 相交于点E ,F ,AP 与BC 相交于D . 由①中知AO =23x ,∴AP =43x ,∴PD =AP -AD =43x -4,∵△PEF ∽△ABC . ,∴PEFABC S S ∆∆=(PD AD )2=(4434x -)2,即PEF ABC S S ∆∆=2-3)9x (. ∵S △ABC =12,∴S △PEF =43(x -3)2. ∴y =S △AMN -S △PEF =13x 2-43(x -3)2=-x 2+8x -12=-(x -4)2+4. 故当x =4时,y 的最大值为4. 综上,当x =4时,y 的值最大,最大值为4. B 级1. 8 2 32 提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值.2. 0<r ≤1 提示:设BC =a ,CA =b ,AB =c ,b +c =3(r +1),又12bc sin60°=S △ABC =12(a +b +c )r ,即12bc ·32=12[33r +1)]r ,. bc =4r (r +2). b ,c 为方程x 2-3r +1)x +4r (r +2)=0的两个根,由△≥0,得(r +1)≤22. 因r >0,r +1>0,故r +1≤2,即0<r ≤1. 3.249π3提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小. 4.13 提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADGABCS S ∆∆=x 2,BDE ABC S S ∆∆=(1-x )2=CFG ABC S S ∆∆,S 梯形DEFG=1―x 2―2(1-x )2=-3(x -23)2+13.5. 312+a 提示:当OA =OB 时,OC 的长最大.6. C7. (1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x -,y =-14(x -2)2+1(0<x <4). 当x =2时, y 最大值=1cm. (2)由14=-14(x -2)2+1,得x =(2+3)cm 或(2-3)cm. 8. 当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求. 作O′D ⊥A B 于D . ,O′D 2= O′B 2-BD 2=2()2a b +-2()2a b -=ab ,O′D =ab 故点C 坐标为(ab ,0).9. (1)如图,延长CB 到L ,使BL =DN ,则Rt △ABL ≌Rt △ADN ,得AL =AN ,∠1=∠2,又∵N =2―CN ―CM =DN +BM =BL +BM =ML ,且AM =AM ,∠NAL =∠DAB =90°. ∴△AMN ≌△AML ,故∠MAN =∠MAL=902=45°. (2)设CM =x ,CN =y ,MN =z ,则2222222,2,x y z x y z x y z x y z ++==--⎧⎧⇔⎨⎨+=+=⎩⎩,于是,(2―y ―z )2+y 2=z 2. 整理得2y 2+(2z -4)y +(4-4z )=0. ∵y >0,故△=4(z -2)2-32(1-z )≥0,即(z +2+22)(z +2-22)≥0. 又∵z >0,故z ≥22-2,当且仅当x =y =2-2时等号成立. 由于S △AMN =S △AML =12·ML ·AB =12 MN ×1=2z ,因此,△AMN 的面积的最小值为2-1.10. (1)提示:证明△ADF ∽△BAC . (2)①AB =15,BC =9,∠ACB =90°,∴AC 22AB BC -=2215912-=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>.②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +P A ,故只要求PB +P A 最小.显然当P 、A 、B 三点共线时PB +P A 最小,此时DP =DE ,PB +P A =AB .由(1),角∠ADF =∠F AE ,∠DF A =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴ AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252. ∴当x =252时,△PBC 的周长最小,此时y =1292. 11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2). (2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k-<.于是△ABO 的面积()()114224022k S OA OB k k k-==-<,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小. 12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,()2222DE x x y xy y =--=-22xy y y x y x -+-=,2x -2y -xy =22x xy y -,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222x y x x =++(y =x 舍去) . (2)由(1)22122222y x x ==+++≤ .当且仅当2x x =,即2x =,上式等号成立.故当2x =,y 去最大21.。
上海中考数学第25题分析(下)

上海中考数学第25题分析(下)——与圆有关的压轴题前言:我们古代数学家刘徽、祖冲之为了研究圆(周长和面积),费尽毕生精力,不管是割圆术还是牟合方盖,不管极限思想还是圆周率的精确,都是古人智慧的结晶,也许正因为古人的智慧铺垫,才有了如今我们学习圆的轻松和方便,今天我们一起来探究下圆的压轴!一、圆的知识梳理及拓展延伸——重要!!!1、圆的定义(轨迹法):平面上的动点到定点的距离等于定长,这样的轨迹称之为圆(定点为圆心,定长为半径)。
2、圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4、在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5、切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
6、切线的性质:①经过切点垂直于这条半径的直线是圆的切线。
②经过切点垂直于切线的直线必经过圆心。
③圆的切线垂直于经过切点的半径。
7、直径所对的圆心角为直角。
8、两圆相交,则连心线平分公共弦——注意事连心线,不是圆心之间的线段! 9、①圆的周长及面积公式:r C π2=,2r S π=; ②扇形的周长及面积公式:r n C π2360=,2360r n S π=; 10、圆的割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
11、圆和圆的位置关系:相交、相离(外离+内含)、相切(外切+内切)。
12、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:①共圆的四个点所连成同侧共底的两个三角形的顶角相等;②圆内接四边形的对角互补;③圆内接四边形的外角等于内对角。
题外话:圆的性质是所有章节最多的一个,还有弦切角+圆心角+圆周角的关系、圆幂定理及逆定理、托勒密定理及其逆定理等等,但可恨的是上海中考这个拿学业水平考当选拨的考试,它根本就不考那么多!二、25题与圆有关的压轴题题型归纳圆的综合在一模试卷中出现的不多,二模中是重点题型。
中考数学复习考点题型专题讲解25 坐标与新定义问题大题提升训练

中考数学复习考点题型专题讲解中考数学复习考点题型专题讲解(重难点培优30题)专题25 坐标与新定义问题大题提升训练坐标与新定义问题大题提升训练(小题))解答题((共30小题一.解答题1.(2023秋•埇桥区期中)已知当m、n都是实数,且满足2m=6+n,则称点ܣ(݉−1,݊2)为“智慧点”.(1)判断点P(4,10)是否为“智慧点”,并说明理由.(2)若点M(a,1﹣2a)是“智慧点”.请判断点M在第几象限?并说明理由.【分析】(1)根据P点坐标,代入(݉−1,݊2)中,求出m和n的值,然后代入2m,6+n 检验等号是否成立即可;(2)直接利用“智慧点”的定义得出a的值进而得出答案.【解答】解(1)点P不是“智慧点”,由题意得݉−1=4,݊2=10,∴m=5,n=20,∴2m=2×5=10,6+n=6+20=26,∴2m≠6+n,∴点P(4,10)不是“智慧点”;(2)点M在第四象限,理由∵点M(a,1﹣2a)是“智慧点”,∴݉−1=ܽ,݊2=1−2ܽ,∴m=a+1,n=2﹣4a,∵2n=6+n,∴2(a+1)=6+2﹣4a,解得a=1,∴点M(1,﹣1),∴点M在第四象限.2.(2023春•镇巴县期末)已知a,b都是实数,设点P(a,b),若满足3a=2b+5,则称点P为“新奇点”.(1)判断点A(3,2)是否为“新奇点”,并说明理由;(2)若点M(m﹣1,3m+2)是“新奇点”,请判断点M在第几象限,并说明理由.【分析】(1)直接利用“新奇点”的定义得出a,b的值,进而得出答案;(2)直接利用“新奇点”的定义得出m的值,进而得出答案.【解答】解(1)当A(3,2)时,3×3=9,2×2+5=4+5=9,所以3×3=2×2+5,所以A(3,2)是“新奇点”;(2)点M在第三象限,理由如下∵点M(m﹣1,3m+2)是“新奇点”,∴3(m﹣1)=2(3m+2)+5,解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.3.(2023秋•漳州期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)求点A(﹣5,2)的“长距”;(2)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.【分析】(1)即可“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(﹣5,2)的“长距”为|﹣5|=5;(2)由题意可知,|k+3|=4或4k﹣3=±(k+3),解得k=1或k=﹣7(不合题意,舍去)或k=2或k=0(不合题意,舍去),∴k=1或k=2.4.(2023秋•渠县校级期中)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay)(其中a为常数),则称点Q是点P的“a级关联点”、例如,点P(1,4)的“3级关联点”为点Q(3×1+4,1+3×4),即点Q(7,13).在平面直角坐标系中,已知点A(﹣2,6)的“2级关联点”是点B,求点B的坐标;在平面直角坐标系中,已知点M(m,2m﹣1)的“3级关联点”是点N,且点N位于x 轴上,求点N的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m,2m﹣1)的“3级关联点”是点N位于x轴上,即可求出N的坐标.【解答】解(1)∵点A(﹣2,6)的“2级关联点”是点B,故点B的坐标为(2×(﹣2)+6,﹣2+2×6)∴B的坐标(2,10);(2)∵点M(m,2m﹣1)的“3级关联点”为N(3m+2m﹣1,m+3(2m﹣1)),当N位于x轴上时,m+3(2m﹣1)=0,解得m=37,∴3m+2m﹣1=87,∴点N的坐标为(଼,0).5.(2023秋•天长市月考)在平面直角坐标系中,对于点P、Q两点给出如下定义若点P 到x,y轴的距离的较大值等于点Q到x,y轴的距离的较大值,则称P、Q两点为“等距点”.如点P(﹣2,5)和点Q(﹣5,﹣1)就是等距点.(1)已知点B的坐标是(﹣4,2),点C的坐标是(m﹣1,m),若点B与点C是“等距点”,求点C的坐标;(2)若点D(3,4+k)与点E(2k﹣5,6)是“等距点”,求k的值.【分析】(1)根据“等距点”的定义解答即可;(2)根据“等距点”的定义分情况讨论即可.【解答】解(1)由题意,可分两种情况①|m﹣1|=|﹣4|,解得m=﹣3或5(不合题意,舍去);②|m|=|﹣4|,解得m=﹣4(不合题意,舍去)或m=4,综上所述,点C的坐标为(﹣4,﹣3)或(3,4);(2)由题意,可分两种情况①当|2k﹣5|≥6时,|4+k|=|2k﹣5|,∴4+k=2k﹣5或4+k=﹣(2k﹣5),解得k=9或k=13(不合题意,舍去);②当|2k﹣5|<6时,|4+k|=6,∴4+k=6或4+k=﹣6,解得k=2或k=﹣10(不合题意,舍去);综上所述,k=2或k=9.6.(2023秋•蚌山区月考)在平面直角坐标系中,对于点A(x,y),若点B的坐标为(ax+y,x+ay),则称点B是点A的“a级开心点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级开心点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则点P的“3级开心点”的坐标为(2,14) ;(2)若点P的“2级开心点”是点Q(4,8),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级开心点”P'位于坐标轴上,求点P'的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义,结合点的坐标即可得出结论.(3)根据关联点的定义和点P (m ﹣1,2m )的“﹣3级开心点”P ′位于坐标轴上,即可求出P ′的坐标.【解答】解 (1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P 的坐标为(﹣1,5),则它的“3级开心点”的坐标为(2,14). 故答案为 (2,14);(2)设点P 的坐标为(x ,y )的“2级开心点”是点Q (4,8), ∴൜2ݔ+ݕ=4ݔ+2ݕ=8 解得൜ݔ=0ݕ=4,∴点P 的坐标为(0,4);(3)∵点P (m ﹣1,2m )的“﹣3级开心点”为P ′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)×2m ),①P ′位于x 轴上, ∴m ﹣1+(﹣3)×2m =0, 解得 m =−15,∴﹣3(m ﹣1)+2m =165, ∴P ′(ଵହ,0).②P ′位于y 轴上, ∴﹣3(m ﹣1)+2m =0, 解得 m =3∴m ﹣1+(﹣3)×2m =﹣16, ∴P ′(0,﹣16).综上所述,点P ′的坐标为(ଵହ,0)或(0,﹣16).7.(2023春•芜湖期中)在平面直角坐标系中,对于点A (x ,y ),若点B 的坐标为(x +ay ,ax+y),则称点B是点A的a级亲密点.例如点A(﹣2,6)的ଵଶ级亲密点为B(−2+12×6,12×(−2)+6),即点B的坐标为(1,5).(1)已知点C(﹣1,5)的3级亲密点是点D,则点D的坐标为(14,2) .(2)已知点M(m﹣1,2m)的﹣3级亲密点M1位于y轴上,求点M1的坐标.(3)若点E在x轴上,点E不与原点重合,点E的a级亲密点为点F,且EF的长度为OE长度的√3倍,求a的值.【分析】(1)根据题意,应用新定义进行计算即可得出答案;(2)根据新定义进行计算可得点M(m﹣1,2m)的﹣3级亲密点是点M1[m﹣1+(﹣3)×2m,﹣1×(m﹣1)+2m],根据y轴上点的坐标特征进行求解即可得出答案;(3)设E(x,0),则点E的a级亲密点为点F(x,ax),根据平面直角坐标系中距离的计算方法可得,OE=|x|,EF=|ax|,则|ax|=√3|x|,计算即可得出答案.【解答】解(1)根据题意可得,点C(﹣1,5)的3级亲密点是点D(﹣1+3×5,﹣1×3+5),即点D的坐标为(14,2);故答案为(14,2);(2)根据题意可得,点M(m﹣1,2m)的﹣3级亲密点是点M1[m﹣1+(﹣3)×2m,﹣3×(m﹣1)+2m],即点M1的坐标为(﹣5m﹣1,﹣m+3),∵M1位于y轴上,∴﹣5m﹣1=0,∴m=−15,∴M1(0,ଵହ);(3)设E(x,0),则点E的a级亲密点为点F(x,ax),根据题意可得,OE=|x|,EF=|ax|,则|ax |=√3|x |, 即|a |=√3, 解得 a =±√3.8.(2023秋•舒城县校级月考)点P 坐标为(x ,2x ﹣4),点P 到x 轴、y 轴的距离分别为d 1,d 2.(1)当点P 在坐标轴上时,求d 1+d 2的值; (2)当d 1+d 2=3时,求点P 的坐标; (3)点P 不可能在哪个象限内?【分析】(1)分点P 在x 轴和y 轴两种情况讨论即可;(2)将d 1+d 2用含x 的式子表示出来,根据x 的范围化简即可; (3)根据x 和2x ﹣4的范围即可得出答案.【解答】解 (1)若点P 在x 轴上,则x =0,2x ﹣4=﹣4, ∴点P 的坐标为(0,﹣4),此时d 1+d 2=4, 若点P 在y 轴上,则2x ﹣4=0,得x =2, ∴点P 的坐标为(2,0),此时d 1+d 2=2. (2)若x ≤0,则d 1+d 2=﹣x ﹣2x +4=3, 解得x =13(舍), 若0<x <2,则d 1+d 2=x ﹣2x +4=3,解得x =1, ∴P (1,﹣2),若x ≥2,则d 1+d 2=x +2x ﹣4=3, 解得x =73, ∴P (ଷ,ଶଷ);(3)∵当x <0时,2x ﹣4<0,∴点P不可能在第二象限.9.(2023春•新余期末)已知当m,n都是实数,且满足2m=8+n时,就称点P(m﹣1,ାଶଶ)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点M(a,2a﹣1)是“爱心点”,请判断点M在第几象限?并说明理由.【分析】(1)直接利用“爱心点”的定义得出m,n的值,进而得出答案;(2)直接利用“爱心点”的定义得出a的值进而得出答案.【解答】解(1)当A(5,3)时,m﹣1=5,ାଶଶ=3,解得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,ାଶଶ=8,解得m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)点M在第三象限,理由如下∵点M(a,2a﹣1)是“爱心点”,∴m﹣1=a,ାଶଶ=2a﹣1,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1 2a﹣1=﹣3,∴M(﹣1,﹣3)故点M在第三象限.10.(2023春•商南县校级期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y 轴距离中的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)点A(2,3)的“长距”等于3,点B(﹣7,5)的“长距”等于7.(2)若C(﹣1,2k+3),D(6,k﹣2)两点为“等距点”,求k的值.【分析】(1)根据“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(2,3)的“长距”为|3|=3;点B(﹣7,5)的“长距”为|﹣7|=7;故答案为3,7.(2)由题意可知,|2k+3|=6或2k+3=±(k﹣2),解得k=32或k=﹣4.5(不合题意,舍去)或k=﹣5或k=−13(不合题意,舍去),∴k=32或k=﹣5.11.(2023春•思明区校级期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y 轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)点A(﹣5,2)的“长距”为5;(2)点B(﹣2,﹣2m+1)的“长距”为3,求m的值;(3)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.【分析】(1)根据“长距”的定义解答即可;(2)根据“长距”的定义解答即可;(3)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(﹣5,2)的“长距”为|﹣5|=5;故答案为5.(2)由题意可知|﹣2m+1|=3,解得m =﹣1或2.(3)由题意可知,|k +3|=4或4k ﹣3=±(k +3),解得k =1或k =﹣7(不合题意,舍去)或k =2或k =0(不合题意,舍去), ∴k =1或k =2.12.(2023•南京模拟)在平面直角坐标系xOy 中,对于点P (x ,y ),若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”例如,点P (1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q (7,13).(1)已知点A (2,﹣6)的“ଵଶ级关联点”是点B ,求点B 的坐标; (2)已知点P 的5级关联点为(9,﹣3),求点P 坐标;(3)已知点M (m ﹣1,2m )的“﹣4级关联点”N 位于坐标轴上,求点N 的坐标. 【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)设点P 的坐标为(a ,b ),根据关联点的定义,结合点的坐标列方程组即可得出结论;(3)根据关联点的定义和点M (m ﹣1,2m )的“﹣4级关联点”N 位于坐标轴上,即可求出N 的坐标.【解答】解(1)∵点A (2,﹣6)的“ଵଶ级关联点”是点B ,故点B 的坐标为(ଵଶ×2−6,2−12×6) ∴B 的坐标(﹣5,﹣1);(2)设点P 的坐标为(a ,b ), ∵点P 的5级关联点为(9,﹣3), ∴ቄ5ܽ+ܾ=9ܽ+5ܾ=−3, 解得ቄܽ=2ܾ=−1,∵P (2,﹣1);(3)∵点M (m ﹣1,2m )的“﹣4级关联点”为M ′(﹣4(m ﹣1)+2m ,m ﹣1+(﹣4)×2m ),当N位于y轴上时,﹣4(m﹣1)+2m=0,解得m=2,∴m﹣1+(﹣4)×2m)=﹣15,∴N(0,﹣15);当N位于x轴上时,m﹣1+(﹣4)×2m=0,解得m=−17,∴﹣4(m﹣1)+2m=307,∴N(ଷ,0);综上所述,点N的坐标为(0,﹣15)或(ଷ,0).13.(2023春•上杭县期中)在平面直角坐标系xOy中,对于P,Q两点给出如下定义若点P到x轴、y轴的距离之差的绝对值等于点Q到x轴、y轴的距离之差的绝对值,则称P,Q两点互为“等差点”.例如,点P(1,2)与点Q(﹣2,3)到x轴、y轴的距离之差的绝对值都等于1,它们互为“等差点”.(1)已知点A的坐标为(3,﹣6),在点B(﹣4,1).C(﹣3,7).D(2,﹣5)中,与点A互为等差点的是B与D.(2)若点M(﹣2,4)与点N(1,n+1)互为“等差点”,求点N的坐标.【分析】(1)利用“等差点”的定义,找出到x轴、y轴的距离之差(2)利用“等差点”的定义列方程解答即可.【解答】解(1)∵点A(3,﹣6)到x轴、y轴的距离之差的绝对值等于3,点B(﹣4,1)到x轴、y轴的距离之差的绝对值等于3,点C(﹣3,7)到x轴、y轴的距离之差的绝对值等于4,点D(2,﹣5)到x轴、y轴的距离之差的绝对值等于3,∴与点A互为等差点的是B与D;故答案为B与D;(2)∵点M(﹣2,4)与点N(1,n+1)互为“等差点”,∴n +1﹣1=|4|﹣|﹣2|或4解得n =2或n =﹣4,∴点N 的坐标为(1,3)感14.(2023秋•海淀区校级期中b ),P 2(c ,b ),P 3(c 的“完美间距″.例如 如图是1.(1)点Q 1(4,1),Q 2(2)已知点O (0,0①若点O ,A ,B 的“完美间②点O ,A ,B 的“完美间距③已知点C (0,4),D (m ,0),P (m ,n )的“【分析】(1)分别计算出(2)①分别计算出OA 以“最佳间距”为OA 即可求解y 的值;②由①可得,“最佳间距”﹣|﹣2|=﹣n ﹣1﹣1, )或(1,﹣3).本号资料全部来源于微 信公众号级期中)给出如下定义 在平面直角坐标系xOy 中,,d ),这三个点中任意两点间的距离的最小值称为点如图,点P 1(﹣1,2),P 2(1,2),P 3(1,3)(5,1),Q 3(5,5)的“完美间距”是 1 ),A (4,0),B (4,y ).完美间距”是2,则y 的值为 ±2 ; 美间距”的最大值为 4 ;(﹣4,0),点P (m ,n )为线段CD 上一动点,“完美间距”取最大值时,求此时点P 的坐标.算出Q 1Q 2,Q 2Q 3,Q 1Q 3的长度,比较得出最小值即可,AB 的长度,由于斜边大于直角边,故OB >或者AB 的长度,由于“最佳间距”为1,而”为OA 或AB 的长度,当OA ≤AB 时,“最佳间距公众号 数学第 六,已知点P 1(a ,称为点P 1,P 2,P 3)的“完美间距”; ,当O (0,0),E .值即可; OA ,OB >AB ,所OA =4,故OB =2,佳间距”为OA =4,当OA >AB 时,“最佳间距③同①,当点O (0,0先求出直线CD 的解析式≥PE 和OE <PE 时,求出各的最大值,进一步求解出【解答】解 (1)如图,∵Q 1(4,1),Q 2(5,∴Q 1Q 2=1,Q 2Q 3=4,在Rt △Q 1Q 2Q 3中,Q 1Q ∵1<4<√17, “最佳距离”为1; 故答案为 1; (2)①如图∵O (0,0),A (4,0∴OA =4,AB =|y |,间距”为AB <4,比较两个“最大间距”,即可解决),E (m ,0),P (m ,n )的“最佳间距”为OE 析式,用m 表示出线段OE 和线段PE 的长度,分两类求出各自条件下的“最佳间距”,比较m 的范围,解出P 点坐标.,在给出图形中标出点Q 1,Q 2,Q 3,1),Q 3(5,5),3=√17,),B (4,y ),解决;或者PE 的长度,分两类讨论,当OE 确定“最佳间距”在直角△ABO 中,OB >又∵点O ,A ,B 的“最佳间且4>2, ∴|y |=2, ∴y =±2, 故答案为 ±2;②由①可得,OB >OA ∴“最佳间距”的值为∵OA =4,AB =|y |,当AB ≥OA 时,“最佳间距当AB <OA 时,“最佳间距∴点O ,A ,B 的“最佳间距故答案为 4;③设直线CD 为y =kx +4,﹣4k +4=0, ∴k =1,∴直线CD 的解析式为 ∵E (m ,0),P (m ,n ,∴PE ∥y 轴,∴OE =﹣m ,PE =n =m Ⅰ、当﹣m ≥m +4时,即OA ,OB >AB , 最佳间距”是2, ,OB >AB ,OA 或者是AB 的长, 间距”为4, 间距”为|y |<4, 佳间距”的最大值为4, ,代入点D 得,如图,y =x +4,),且P 是线段CD 上的一个动点, +4,即OE ≥PE 时,m ≤﹣2,“最佳间距”为m +4,此时此时m +4≤2,Ⅱ、当﹣m <m +4时,即∴点O (0,0),E (m ∴m =﹣2, ∴n =m +4=2, ∴P (﹣2,2).15.(2023春•泗水县期末)对于y )的横坐标与纵坐标的绝对例如,点P (﹣1,2)的折(1)已知点A (﹣3,4(2)若点M 在x 轴的上方标.【分析】(1)根据题意可以(2)根据题意可知y >【解答】解 (1)[A ]=|所以点A ,点B 的折线距离(2)∵点M 在x 轴的上方∴x =±1时,y =1或x ∴点M 的坐标为(﹣116.(2023春•思明区校级期中即OE <PE 时,﹣2<m <0,“最佳间距“为﹣m ,,0),P (m ,n )的“最佳间距”取到最大值时,对于平面直角坐标系中的点P (x ,y )给出如下定义的绝对值之和叫做点P (x ,y )的折线距离,记作[P ]的折线距离为[P ]=|﹣1|+|2|=3.),B (√2,﹣2√2),求点A ,点B 的折线距离.的上方,点M 的横坐标为整数,且满足[M ]=2,直接写意可以求得折线距离[A ],[B ];0,然后根据[M ]=2,即可求得点M 的坐标. −3|+|4|=7,[B ]=|√2|+|﹣2√2|=3√2; 线距离分别为7、3√2;的上方,其横坐标均为整数,且[M ]=2, =0时,y =2,,1),(1,1),(0,2).级期中)在平面直角坐标系中,对于点P (x ,y ),若点,此时﹣m <2, ,m =﹣2, 下定义 把点P (x ,,即[P ]=|x |+|y |,.直接写出点M 的坐若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”,例如,点P (1,4)的3级关联点”为Q (3×1+4,1+3×4)即Q (7,13),若点B 的“2级关联点”是B (3,3).(1)求点B 的坐标;(2)已知点M (m ﹣1,2m )的“﹣3级关联点”N 位于y 轴上,求N 的坐标. 【分析】(1)由点B 的“2级关联点”是B '(3,3)得出൜2ݔ+ݕ=3ݔ+2ݕ=3,解之求得x 、y 的值即可得;(2)由点M (m ﹣1,2m )的“﹣3级关联点”N 的坐标为(﹣m +3,﹣5m ﹣1),且点M ′在y 轴上知﹣m +3=0,据此求得m 的值,再进一步求解可得. 【解答】解 ∵点B 的“2级关联点”是B '(3,3), ∴൜2ݔ+ݕ=3ݔ+2ݕ=3, 解得 ൜ݔ=1ݕ=1,则点B 的坐标为(1,1);(2)∵点M (m ﹣1,2m )的“﹣3级关联点”N 的坐标为(﹣m +3,﹣5m ﹣1),且点N 在y 轴上, ∴﹣m +3=0, 解得m =3, 则﹣5m ﹣1=﹣16, ∴点N 坐标为(0,﹣16).17.(2023春•罗山县期末)阅读理解,解答下列问题在平面直角坐标系中,对于点A (x ,y )若点B 的坐标为(kx +y ,x ﹣ky ),则称点B 为A 的“k 级牵挂点”,如点A (2,5)的“2级牵挂点”为B (2×2+5,2﹣2×5),即B (9,5).(1)已知点P (﹣5,1)的“﹣3级牵挂点”为P 1,求点P 1的坐标,并写出点P 1到x 轴的距离;(2)已知点Q 的“4级牵挂点”为Q 1(5,﹣3),求Q 点的坐标及所在象限. 【分析】(1)根据“k 级牵挂点”的定义判定结论;(2)设Q (x ,y ),根据点Q 的“4级牵挂点”为Q 1(5,﹣3)可得关于x 、y 的二元一次方程组,解方程组求出x 、y 的值即可.【解答】解 (1)∵点P (﹣5,1)的“﹣3级牵挂点”为P 1, ∴﹣5×(﹣3)+1=16,﹣5﹣(﹣3)×1=﹣2, 即P 1(16,﹣2), 点P 1到x 轴的距离为2;(2)∵点Q 的“4级牵挂点”为Q 1(5,﹣3), 设Q (x ,y ). 则有൜4ݔ+ݕ=5ݔ−4ݕ=−3,解得൜ݔ=1ݕ=1,∴Q (1,1),点Q 在第一象限.18.(2023秋•东城区校级期中)对有序数对(m ,n )定义“f 运算” f (m ,n )=(ଵଶm +a ,ଵଶn +b ),其中a ,b 为常数,f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A (x ,y )规定“F 变换”;点A (x ,y )在F 的变换下的对应点即为坐标是f (x ,y )的点A '.(1)当a =0,b =0时,f (﹣2,4)= (﹣1,2) .(2)若点P (2,﹣2)在F 变换下的对应点是它本身,求ab 的值. 【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a 、b 的方程,通过解方程求得它们的值即可. 【解答】解 (1)依题意得 f (﹣2,4)=(ଵଶ×(﹣2)+0,ଵଶ×4﹣0)=(﹣1,2). 故答案是 (﹣1,2);(2)依题意得 f (2所以ଵଶ×2+a =2,ଵଶ×(﹣所以a =1,b =﹣1. ∴ab =﹣1.19.(2023春•海门市期末)﹣x 1=y 2﹣y 1≠0,则称点因为2﹣(﹣1)=6﹣3(1)若点A 的坐标是(点A 的“对角点”为点(2)若点A 的坐标是(﹣(3)若点A 的坐标是(求m ,n 的取值范围.【分析】(1)、(2)读懂新定(3)根据新定义和直角坐标【解答】解 (1)根据新定故答案为 B 2(﹣1,﹣7(2)①当点B 在x 轴上时,﹣2)=(ଵଶ×2+a ,ଵଶ×(﹣2)﹣b )=(2,﹣2).(﹣2)+b =﹣2, )在平面直角坐标系xOy 中,点A (x 1,y 1),B 称点A 与点B 互为“对角点”,例如 点A (﹣1,3,≠0,所以点A 与点B 互为“对角点”.4,﹣2),则在点B 1(2,0),B 2(﹣1,﹣7),B 2(﹣1,﹣7),B 3(0,﹣6) ;(﹣2,4)的“对角点”B 在坐标轴上,求点B 的坐(3,﹣1)与点B (m ,n )互为“对角点”,且点懂新定义,根据新定义解题即可;角坐标系中第四象限x 、y 的取值范围确定m 、n 的取据新定义可以得B 2、B 3与A 点互为“对角点”; ),B 3(0,﹣6); 上时,). (x 2,y 2),若x 2),点B (2,6),B 3(0,﹣6)中,的坐标; 且点B 在第四象限,的取值范围即可.设B (t ,0),由题意得t ﹣(﹣2)=0﹣4, 解得t =﹣6, ∴B (﹣6,0). ②当点B 在y 轴上时, 设B (0,b ),由题意得0﹣(﹣2)=b ﹣4, 解得b =6, ∴B (0,6).综上所述 A 的“对角点”点B 的坐标为(﹣6,0)或(0,6). (3)由题意得m ﹣3=n ﹣(﹣1), ∴m =n +4. ∵点B 在第四象限, ∴ቊ݉>0݊<0, ∴ቊ݊+4>0݊<0,解得﹣4<n <0, 此时0<n +4<4, ∴0<m <4.由定义可知 m ≠3,n ≠﹣1,∴0<m <4且m ≠3,﹣4<n <0且n ≠﹣1. 故答案为 0<m <4且m ≠3,﹣4<n <0且n ≠﹣1.20.(2023•朝阳区校级开学)我们规定 在平面直角坐标系xOy 中,任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的“折线距离”为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|.例如图1中,点M (﹣2,3)与点N (1,﹣1)之间的“折线距离”为d (M ,N )=|﹣2﹣1|+|3﹣(﹣1)|=3+4=7.根据上述知识,解决下面问(1)已知点P (3,﹣4,与点P 之间的“折线距离(2)如图2,已知点P 的值;(3)如图2,已知点P 写出t 的取值范围.【分析】(1)分别求出(2)通过d (P ,Q )=(3)d (P ,Q )=|3﹣t 【解答】解 (1)由题意得d (P ,B )=|3﹣(﹣1d (P ,C )=|3﹣(﹣2d (P ,D )=|3﹣0|+|﹣4故答案为 A ,B ,D .(2)d (P ,Q )=|3﹣t 解得t =﹣1或t =7.(3)d (P ,Q )=|3﹣t 化简得d (P ,Q )=|3当﹣5≤t ≤3时,|3﹣t下面问题),在点A (5,2),B (﹣1,0),C (﹣2,1距离”为8的点是A ,B ,D ;(3,﹣4),若点Q 的坐标为(t ,2),且d (P (3,﹣4),若点Q 的坐标为(t ,t +1),且d (PA ,B ,C ,D 与点P 之间的“折线距离”求解.|3﹣t |+|﹣4﹣(t +1)|=8求解.|+|﹣4﹣(t +1)|=8,分类讨论t 的取值范围去绝对题意得d (P ,A )=|3﹣5|+|﹣4﹣2|=8, )|+|﹣4﹣0|=8, )|+|﹣4﹣1|=10, ﹣1|=8,|+|﹣4﹣2|=10, |+|﹣4﹣(t +1)|, ﹣t |+|5+t |,|+|5+t |=3﹣t +5+t =8,满足题意.),D (0,1)中,,Q )=10,求t ,Q )=8,直接. 去绝对值符号求解.当t <﹣5时,|3﹣t |+|5+t 当t >3时,|3﹣t |+|5+t |∴﹣5≤t ≤3.21.(2023春•丰台区期末)y 2),定义k |x 1﹣x 2|+(1M (1,3),N (﹣2,4)2).(1)若点B (0,4),求点(2)若点B 在x 轴上,且点(3)若点B (a ,b ),且点【分析】(1)根据“k 阶距(2)设出点B 的坐标,点B 的坐标,注意x轴上的|=3﹣t ﹣5﹣t =﹣2﹣2t ,不满足题意. =t ﹣3+5+t =2+2t ,不满足题意. )在平面直角坐标系xOy 中,对于任意两点M (﹣k )|y 1﹣y 2|为点M 和点N 的“k 阶距离”,其中0)的ଵହ阶距离”为ଵହ|1െሺെ2ሻ|ସହ|3െ4|ൌହ.求点A 和点B 的“ଵସ阶距离”;且点A 和点B 的“ଵଷ阶距离”为4,求点B 的坐标且点A 和点B 的“ଵଶ阶距离”为1,直接写出a +阶距离”的定义计算点A 与点B 之间的“ଵସ阶距离,再根据“ଵଷ阶距离”的定义列出方程,求出字母的轴上的点的纵坐标为0.x 1,y 1),N (x 2,≤k ≤1.例如 点.已知点A (﹣1,的坐标;b 的取值范围. 距离”.字母的值,从而确定(3)根据“ଵଶ阶距离”的定义列出关于字母a 和b 的式子,当a 和b 在不同的取值范围内将含有a 和b 的式子中的绝对值去掉,从而求得a +b 的取值范围.【解答】解 (1)由题知,点A (﹣1,2)和点B (0,4)的“ଵସ阶距离”为ଵସ|−1−0|+(1−14)|2﹣4|=14+64=74.(2)∵点B 在x 轴上,∴设点B 的横坐标为m ,则点B 的坐标为(m ,0), ∵点A (﹣1,2)和点B (m ,0)的“ଵଷ阶距离”为4, ∴ଵଷ|−1−݉|+(1−ଵଷ)|2−0|=4,ଵଷ|−1−݉|=଼ଷ,|﹣1﹣m |=8,∴﹣1﹣m =8或﹣1﹣m =﹣8, ∴m =﹣9或7,∴点B 的坐标为(﹣9,0)或(7,0).(3)∵点A (﹣1,2)和点B (a ,b )的“ଵଶ阶距离”为1, ∴.ଵଶ|−1−ܽ|+(1−ଵଶ)|2−ܾ|=1,|﹣1﹣a |+|2﹣b |=2,①当a ≤﹣1,且b ≤2时,得|﹣1﹣a |+|2﹣b |=﹣1﹣a +2﹣b ,由此得出a +b =﹣1, ②当a ≤﹣1,且b >2时,得|﹣1﹣a |+|2﹣b |=﹣1﹣a +b ﹣2,由此得出b =5+a ,则a +b =2a +5, ∵b >2, 即5+a >2, ∴a >﹣3∵a≤﹣1,∴﹣3<a≤﹣1∴﹣1<2a+5≤3,即﹣1<a+b≤3,③当a>﹣1,且b<2时,得|﹣1﹣a|+|2﹣b|=1+a+2﹣b,由此得出a=b﹣1,则a+b=2b﹣1,∵a>﹣1,即b﹣1>﹣1,∴b>0,∵b<2,∴0<b<2,∴﹣1<2b﹣1<3,即﹣1<a+b<3,④当a>﹣1,且b≥2时,得|﹣1﹣a|+|2﹣b|=1+a+b﹣2,由此得出a+b=3,综上所得,﹣1≤a+b≤3.22.(2023春•福州期末)对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义;a=2x﹣y,b=x+y,将点M(a,b)与N(b,a)称为点P的一对“关联点”.例如P(2,3)的一对“关联点”是点(1,5)与(5,1).(1)点Q(4,3)的一对“关联点”是点(5,7) 与(7,5) .(2)点A(x,8)的一对“关联点”重合,求x的值.(3)点B一个“关联点”的坐标是(﹣1,7),求点B的坐标.【分析】(1)根据“关联点”定义求解;(2)根据“关联点”的定义列方程求解;(3)根据“关联点”的定义列方程组求解,注意分类讨论,不要漏解.【解答】解(1)∵2×4﹣3=5,4+3=7,∴点Q(4,3)的一对“关联点”是点(5,7)与(7,5).故答案为(5,7)与(7,5).(2)由题意得 2x ﹣8=x +8, 解得 x =16. (3)设B (x ,y ),∴൜2ݔ−ݕ=−1ݔ+ݕ=7或൜2ݔ−ݕ=7ݔ+ݕ=−1, ∴൜ݔ=2ݕ=5或൜ݔ=2ݕ=−3, ∴B (2,5)或B (2,﹣3).23.(2023春•雨花区校级期中)对于平面直角坐标系中任一点(a ,b ),规定三种变换如下①f (a ,b )=(﹣a ,b ).如 f (7,3)=(﹣7,3); ②g (a ,b )=(b ,a ).如 g (7,3)=(3,7); ③h (a ,b )=(﹣a ,﹣b ).如 h (7,3)=(﹣7,﹣3); 例如 f (g (2,﹣3))=f (﹣3,2)=(3,2) 规定坐标的部分规则与运算如下①若a =b ,且c =d ,则(a ,c )=(b ,d ),反之若(a ,c )=(b ,d ),则a =b ,且c =d .②(a ,c )+(b ,d )=(a +b ,c +d );(a ,c )﹣(b ,d )=(a ﹣b ,c ﹣d ).例如 f (g (2,﹣3))+h (g (2,﹣3))=f (﹣3,2)+h (﹣3,2)=(3,2)+(3,﹣2)=(6,0). 请回答下列问题(1)化简 f (h (6,﹣3))= (6,3) (填写坐标);(2)化简 h (f (﹣1,﹣2))﹣g (h (﹣1,﹣2))= (﹣3,1) (填写坐标); (3)若f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=h (g (ky ﹣1,﹣1))+f (h (y ,x ))且k 为绝对值不超过5的整数,点P (x ,y )在第三象限,求满足条件的k 的所有可能取值.【分析】(1)根据新定义进行化简即可. (2)根据新定义进行化简即可.(3)根据坐标的变换规则和运算规则,对式子进行化简,得到等式,根据点的坐标特点,列出不等式求解即可.【解答】解 (1)f (h (6,﹣3))=f (﹣6,3)=(6,3), 故答案为 (6,3);(2)h (f (﹣1,﹣2))﹣g (h (﹣1,﹣2))=h (1,﹣2)﹣g (1,2)=(﹣1,2)﹣(2,1)=(﹣3,1), 故答案为 (﹣3,1);(3)f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=f (﹣kx ,2x )﹣h (﹣1﹣y ,﹣2)=(kx ,2x )﹣(1+y ,2)=(kx ﹣1﹣y ,2x ﹣2),h (g (ky ﹣1,﹣1))+f (h (y ,x ))=h (﹣1,ky ﹣1)+f (﹣y ,﹣x )=(1,1﹣ky )+(y ,﹣x )=(y +1,1﹣ky ﹣x ),∵f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=h (g (ky ﹣1,﹣1))+f (h (y ,x )), ∴(kx ﹣1﹣y ,2x ﹣2)=(y +1,1﹣ky ﹣x ), ∴൜݇ݔ−1−ݕ=ݕ+12ݔ−2=1−݇ݕ−ݔ, ∴൜݇ݔ−2ݕ=23ݔ+݇ݕ=3, ∴൞ݔ=2݇+6݇2+6ݕ=3݇−6݇2+6, ∵点P (x ,y )在第三象限, ∴ቊ2݇+6<03݇−6<0,∴k <﹣3,∵k 为绝对值不超过5的整数, ∴k 的所有可能取值为﹣4、﹣5.24.(2023春•嵩县期末)对于平面直角坐标系中的点P (x ,y )给出如下定义 把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记作[P ],即[P ]=|x |+|y |,例如,点P (﹣1,2)的折(1)已知点A (﹣3,4(2)若点M 在x 轴的上方标.【分析】(1)根据题意可以(2)根据题意可知y >【解答】解 (1)[A ]=|(2)∵点M 在x 轴的上方∴x =±1时,y =1或x ∴点M 的坐标为(﹣125.(2023春•濠江区期末)我们称点P 为“梦之点”(1)判断点A (3,2)是否(2)若点M (m ﹣1,3【分析】(1)直接利用“(2)直接利用“梦之点”【解答】解 (1)当A 解得a =1,b =1,的折线距离为[P ]=|﹣1|+|2|=3.),B (√2,െ3√2),求点A ,点B 的折线距离.的上方,点M 的横坐标为整数,且满足[M ]=2,直接写意可以求得折线距离[A ],[B ];0,然后根据[M ]=2,即可求得点M 的坐标. −3|+|4|=7,[B ]=|√2|+|−3√2|=4√2; 的上方,其横,纵坐标均为整数,且[M ]=2, =0时,y =2,,1),(1,1),(0,2).)已知a ,b 都是实数,设点P (a +2,ାଷଶ),且满”.是否为“梦之点”,并说明理由.m +2)是“梦之点”,请判断点M 在第几象限,并说“梦之点”的定义得出a ,b 的值,进而得出答案”的定义得出m 的值进而得出答案. (3,2)时,a +2=3,ାଷଶ=2,.直接写出点M 的坐且满足3a =2+b ,并说明理由. 答案;则3a=3,2+b=3,所以3a=2+b,所以A(3,2),是“梦之点”;(2)点M在第三象限,理由如下∵点M(m﹣1,3m+2)是“梦之点”,∴a+2=m﹣1,ାଷଶ=3݉+2,∴a=m﹣3,b=6m+1,∴代入3a=2+b有3(m﹣3)=2+(6m+1),解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.26.(2023秋•兴化市校级期末)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x2﹣x1=y2﹣y1≠0,则称点A与点B互为“对角点”,例如点A(﹣1,3),点B(2,6),因为2﹣(﹣1)=6﹣3≠0,所以点A与点B互为“对角点”.(1)若点A的坐标是(4,﹣2),则在点B1(2,0),B2(﹣1,﹣7),B3(0,﹣6)中,点A的“对角点”为点B2(﹣1,﹣7),B3(0,﹣6); ;(2)若点A的坐标是(5,﹣3)的“对角点”B在坐标轴上,求点B的坐标;(3)若点A的坐标是(−√3,2√3)与点B(2m,﹣n)互为“对角点”,且m、n互为相反数,求B点的坐标.【分析】(1)、(2)读懂新定(3)根据新定义和直角坐标【解答】解 (1)根据新定故答案为 B 2(﹣1,﹣7(2)①当点B 在x 轴上时设B (t ,0),由题意得解得t =﹣8, ∴B (8,0). ②当点B 在y 轴上时,设B (0,b ),由题意得0﹣5=b ﹣(﹣解得b =﹣8, ∴B (0,﹣8).综上所述 A 的“对角点”(3)由题意得2m +√3=∴2m =﹣n ﹣3√3. ∵m 、n 互为相反数, ∴m +n =0,懂新定义,根据新定义解题即可;角坐标系中第四象限x 、y 的取值范围确定m 、n 的取据新定义可以得B 2、B 3与A 点互为“对角点”; ),B 3(0,﹣6); 上时,t ﹣5=0﹣(﹣3), (﹣3), ”点B 的坐标为(8,0)或(0,﹣8). =−n ﹣2√3,的取值范围即可.解得m +n +m =﹣3√3,∴m =﹣3√3,n =3√3∴2m =﹣6√3, ∴B (﹣6√3,﹣3√3).27.(2023秋•朝阳区校级期末得到射线OY ,如果点示点P 在平面内的位置,那么点M 在平面内的位置记(1)如图3,若点N 在平面内(2)已知点A 在平面内的位①若点B 在平面内的位置记②若点B 在平面内的位置记③若点B 在平面内的位置记【分析】(1)根据新定义直(2)①先根据新定义画图画图,证明△AOB 是等边三△AOB 1是直角三角形,从而【解答】解 (1)点N 在平故答案为 6,30; (2)①如图,.期末)如图①,将射线OX 按逆时针方向旋转β角(P 为射线OY 上的一点,且OP =m ,那么我们规定用,并记为P (m ,β).例如,图2中,如果OM =5,位置记为M (5,110°),根据图形,解答下列问题平面内的位置记为N (6,30°),则ON = 6 ,∠面内的位置记为A (4,30°),位置记为B (3,210°),则A 、B 两点间的距离为位置记为B (m ,90°),且AB =4,则m 的值为 位置记为B (3,α),且AB =5,则a 的值为 定义直接得到答案;画图,证明A ,O ,B 三点共线,从而可得答案;等边三角形,从而可得答案;③先根据新定义画图从而可得答案.在平面内的位置记为N (6,30°),则ON =6,0°≤β<360°),规定用(m ,β)表∠XOM =110°,问题XON = 30 °. 离为 7 . 4 .120°或300° .;②先根据新定义画图,证明△AOB ,,∠XON =30°.∵A(4,30°),B(3,210°),∴OA=4,∠AOX=30°,OB=3,∠BOX=360°﹣210°=150°,∴∠AOX+∠BOX=180°,∴A,O,B三点共线,∴AB=4+3=7;故答案为7;②如图,∵A(4,30°),B(m,90°),∴OA=4,∠AOX=30°,OB=m,∠BOX=90°,∴∠AOB=90°﹣30°=60°,∵AB=4,∴AB=OA,∴△AOB是等边三角形,∴OB=m=4;故答案为4;③如图,∵A (4,30°),B (3,α),∴OA =4,∠AOX =30°,OB =3=OB 1,∠BOX =α或∠B 1OX =360°﹣α, ∵AB =5,∴OB 2+OA 2=25=AB 2, ∴∠AOB =90°=∠AOB 1,∴α=90°+30°=120°或α=120°+180°=300°. 故答案为 120°或300°.28.(2023秋•大兴区期中)在平面直角坐标系xOy 中,点A ,B ,P 不在同一直线上,对于点P 和线段AB 给出如下定义 过点P 向线段AB 所在直线作垂线,若垂足Q 在线段AB 上,则称点P 为线段AB 的内垂点,当垂足Q 满足|AQ ﹣BQ |最小时,称点P 为线段AB 的最佳内垂点.已知点S (﹣3,1),T (1,1).(1)在点P 1(2,4),P 2(﹣4,0),P 3(﹣2,ଵଶ),P 4(1,3)中,线段ST 的内垂点为 P 3,P 4;(2)若点M 是线段ST 的最佳内垂点,则点M 的坐标可以是 (﹣1,4),(﹣1,2) (写出两个满足条件的点M 即可); (3)已知点C (m ﹣2,3),D (m ,3),若线段CD 上的每一个点都是线段ST 的内垂点,直接写出m 的取值范围;(4)已知点E (n +2,0),F (n +4,﹣1),若线段EF 上存在线段ST 的最佳内垂点,直接写出n 的取值范围.【分析】(1)利用图象法画(2)满足条件的点在线段(3)构建不等式组解决问题(4)构建不等式组解决问题【解答】解 (1)如图故答案为 P 3,P 4;(2)如图,点M (﹣1故答案为 (﹣1,4)(3)由题意,ቄ݉−2݉1解得﹣1≤m ≤1.象法画出图形解决问题即可; 线段ST 的中垂线上; 决问题即可; 决问题即可.1中,观察图象可知,线段ST 的内垂点为P 3,,4),M ′(﹣1,2)是线段ST 的最佳内垂点,,(﹣1,2)(答案不唯一); −3ቄ݉−3݉−21,P 4. ,故答案为 ﹣1≤m ≤1.(4)如图2中,观察图象可解得﹣5≤n ≤﹣3.29.(2023春•嘉鱼县期末)以BC 为边在x 轴的上方作(1)点A 的坐标为 (2)将正方形ABCD OMN 重叠的区域(不①当m =3时,区域内整点②若区域W 内恰好有3个整【分析】(1)先求出方形(2)①画出正方形A 'B '②在△OMN 中共有6个整数图象可知,m 满足ቄ݊+4െ1݊2െ1,)如图,在平面直角坐标系xOy 中,点B (1,0,上方作正方形ABCD ,点M (﹣5,0),N (0,5(1,4) ;点D 的坐标为 (5,4) ;向左平移m 个单位,得到正方形A 'B 'C 'D ',记含边界)为W内整点(横,纵坐标都是整数)的个数为 3 ;个整点,请直接写出m 的取值范围.正方形的边长为BC =4,再求点的坐标即可; C 'D ',结合图形求解即可;个整数点,在平移正方形ABCD ,找到恰好有3个整),点C (5,0),). 正方形A 'B 'C 'D '与△ 个整数解的情况即可.【解答】解 (1)∵点∴BC =4,∵四边形ABCD 是正方形∴A (1,4),D (5,4故答案为 (1,4),(5(2)①如图 共有3个,故答案为 3;②在△OMN 中共有6个整数2,2),(﹣3,1),∵区域W 内恰好有3个整点∴2<m ≤3或6≤m <730.(2023春•李沧区期末)补法来求它们的面积.下面如图1,2所示,分别过三角间的距离d 叫做水平宽;BD 的长叫做这个三角形的l 4,l 3,l 4之间的距离h叫做B (1,0),点C (5,0), 方形, ), ,4); , 个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3(个整点, .)对于某些三角形或四边形,我们可以直接用面积下面我们再研究一种求某些三角形或四边形面的新过三角形或四边形的顶点A ,C 作水平线的铅;如图1所示,过点B 作水平线的铅垂线交形的铅垂高;如图2所示,分别过四边形的顶点B 叫做四边形的铅垂高.),(﹣2,1),(﹣用面积公式或者用割积的新方法 垂线l 1,l 2,l 1,l 2之AC 于点D ,称线段,D 作水平线l 3,【结论提炼】容易证明“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=12dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为4,所以△ABC面积的大小为20.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是36;用其它的方法进行计算得到其面积的大小是37.5,由此发现用“S=12dh”这一方法对求图4中四边形的面积不合适.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是36,用其它的方法进行计算得到面积的大小是36,由此发现用“S=12dh”这一方法对求图5中四边形的面积合适.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(1,﹣5)四个点,得到了四边形ABCD.通过计算发现用“S=12dh”这一方法对求图6中四边形的面积合适.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到当四边形满足某些条件时,可以用“S=12dh”来求面积.那么,可以用“S=12dh”来求面积的四边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昌平
25.如图,二次函数2y x bx c =-++的图象与x 轴交于点(1,0)A -,(2,0)B ,与y 轴相交于点C .
(1)求二次函数的解析式;
(2)若点E 是第一象限的抛物线上的一个动点,当四边形ABEC 的面积最大时,求点E 的坐标,并求出四边形ABEC 的最大面积;
(3)若点M 在抛物线上,且在y 轴的右侧.⊙M 与y 轴相切,切点为D .以,,C D M 为顶点的三角形与△AOC 相似,求点M 的坐标.
朝阳
25. 在平面直角坐标系xOy 中,直线y =2x +2与x 轴,y 轴分别交于点A ,B ,抛物线
y =ax 2+bx -
3
2
经过点A 和点C (4,0) . (1)求该抛物线的表达式.
(2)连接CB ,并延长CB 至点D ,使DB =CB ,请判断点D 是否在该抛物线上,并说明
理由. (3)在(2)的条件下,过点C 作x 轴的垂线EC 与直线y =2x +2交于点E ,以DE 为
直径画⊙M ,
①求圆心M 的坐标;
②若直线AP 与⊙M 相切,P 为切点,直接写出点P 的坐标.
备用图
大兴
25.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴,两点,点P在⊙C上.
于A B
,两点的坐标;
(1)求出A B
(2)试确定经过A、B且以点P为顶点的抛物线解析式;
(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.Array
东城
25.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(-1,0),另一个交点为B,与y 轴的交点为C(0,-3),其顶点为D,对称轴为直线x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M 的坐标;
(3)将△OBC沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形△EFG,将△EFG
与△BCD重叠部分的面积记为S,用含m的代数式表示S.
图1
备用图
25.已知抛物线2154(3)22
m
y x m x -=
--+
. (1)求证:无论m 为任何实数,抛物线与x 轴总有两个交点;
(2)若A 2(3,2)n n -+、B 2(1,2)n n -++是抛物线上的两个不同点,求抛物线的表
达式和n 的值;
(3)若反比例函数(0,0)k
y k x x
=
>>的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足2<0x <3,求k 的取值范围.
密云
25. 如图1,在平面直角坐标系中,O 为坐标原点.直线y kx b =+与抛物线
219
4
y mx x n =-
+同时经过(0,3)(4,0)A B 、. (1)求,m n 的值. (2)点M 是二次函数图象上一点,(点M 在AB 下方),过M 作MN ⊥
x 轴,
与AB 交于点N ,与x 轴交于点Q .求MN 的最大值.
(3)在(2)的条件下,是否存在点N ,使AOB ∆和 NOQ ∆相似?若存在,求出N 点坐标,不存在,说明理由.
25.如图1,平面直角坐标系xOy 中,点()0,4-D ,8OC =,若抛物线2
13
y x =
平移后经过C ,D 两点,得到图1中的抛物线W .
(1)求抛物线W 的表达式及抛物线W 与x 轴另一个交点A 的坐标;
(2)如图2,以OA ,OC 为边作矩形OABC ,连结OB ,若矩形OABC 从O 点出发沿射
线OB 方向匀速运动,速度为每秒1个单位得到矩形''''O A B C ,求当点'O 落在抛物线W 上时矩形的运动时间;
(3)在(2)的条件下,如图3,矩形从O 点出发的同时,点P 从'A 出发沿矩形的边
C B B A ''→''以每秒
2
5
个单位的速度匀速运动,当点P 到达'C 时,矩形和点P 同时停止运动,设运动时间为t 秒. ①请用含t 的代数式表示点P 的坐标;
②已知:点P 在边''A B 上运动时所经过的路径是一条线段,求点P 在边''A B 上运动
25.如图,在平面直角坐标系xOy 中,二次函数2y ax bx =+的顶点为D (1,-1),且与x 轴交于O ,A 两点,二次函数2y ax bx =+的图象记作1G ,把1G 向右平移m (m >0)个单位得到的图象记作2G ,2G 与x 轴交于B ,C 两点,且2G 与1G 相交于点P . (1)①求a ,b 的值;
②求2G 的函数表达式(用含m 的式子表示); (2)若△PBC 的面积记作S ,求S 与m 的关系式;
(3)是否存在△PBC 的面积是△DAB 的面积的3倍,若存在,直接写出m 的值;若不存在,说明理由.
延庆
25.在平面直角坐标系xOy 中,已知抛物线C 1: 224y mx mx =-++(0≠m )与抛物线
C 2:22y x x =-,
(1)抛物线C 1与y 轴交于点A ,其对称轴与x 轴交于点B .求点A ,B 的坐标; (2)若抛物线C 1在21x -<<-这一段位于C 2下方,并且抛物线C 1在13x <<这一段位
于C 2上方,求抛物线C 1的解析式.。