基因表达

合集下载

基因表达系统及技术

基因表达系统及技术

基因表达系统的研究意义
理解生命活动的基本原理 揭示疾病的发生和发展机制 提供新的药物靶点和治疗策略 ቤተ መጻሕፍቲ ባይዱ动生物技术的发展和应用
基因表达系统的组成
转录因子
转录因子通过与DN结合调控 基因的转录过程
转录因子是基因表达调控的 重要因素
转录因子可以分为激活因子 和抑制因子
转录因子的种类和数量众多 具有不同的功能和作用
技术: CRISPR/Cs9、 TLEN、ZFN等
优势:高效、精 确、可重复性强
基因敲入技术
原理:通过基因编辑技术将目的基因插入到宿主细胞中实现基因表达 应用:基因治疗、基因工程、生物制药等领域 技术类型:ZFN、TLEN、CRISPR等 优点:高效、精确、可重复性高
基因编辑技术
基因编辑技术:CRISPR/Cs9技术 原理:利用Cs9蛋白对DN进行切割和编辑 应用:基因治疗、基因工程、农业育种等领域 优点:高效、精确、成本低 挑战:伦理问题、安全性问题、技术难题等
基因表达系统及技术
汇报人:
单击输入目录标题 基因表达系统概述 基因表达系统的组成 基因表达调控机制 基因表达技术及应用 基因表达系统研究展望
添加章节标题
基因表达系统概述
基因表达系统的定义
基因表达系统是指在生物体内基因通过转录和翻译过程将遗传信息 转化为蛋白质的过程。
基因表达系统包括转录和翻译两个阶段其中转录是指DN被复制为 RN的过程翻译是指RN被翻译为蛋白质的过程。
转录起始复合物
核心成分:RN聚合酶II、TFII、TFIIB、TFIIE、TFIIF、TFIIH 功能:启动基因转录 结构:由多个亚基组成包括核心酶、通用转录因子和特异性转录因子 作用机制:通过与DN结合形成转录起始复合物启动基因转录

基因的表达-

基因的表达-

基因表达的调控
转录调控
转录因子可以结合到DNA的启 动子上,影响RNA聚合酶的结 合和转录速率。
后转录调控
miRNA可以结合到mRNA上, 抑制其翻译,影响蛋白质表达 水平。
表观遗传调控
组蛋白修饰和DNA甲基化等表 观遗传变化可以影响基因的表 达。基因表达的过程 Nhomakorabea1
转录
DNA转录为RNA,由RNA聚合酶依据DNA模板进行合成。
基因的表达
基因表达是生命的基础,是遗传信息的转录和翻译过程。了解基因表达是了 解生命机制的重要组成部分。
基因表达的定义
1 生命体的基础
基因表达是生命机制的基础,它决定了细胞合成哪些蛋白质。
2 蛋白质合成
基因表达是DNA转录为RNA,再由RNA翻译成蛋白质的过程。
3 重要性
基因表达是遗传和环境之间相互作用的关键环节,能够影响细胞命运和胚胎发育。
2
剪接
前体mRNA在剪接位点被剪接酶切割,形成成熟的mRNA。
3
翻译
mRNA被核糖体扫描并翻译成蛋白质,合成新的蛋白质。
基因表达与疾病
癌症
癌细胞的基因表达异常, 可能由于某些基因活化和 抑制的失衡。
遗传病
基因表达异常可能导致某 些遗传疾病的发生。
药物研发
了解基因表达的变化可以 帮助药物的研发,并为个 性化药物治疗奠定基础。
2 基因芯片
基因芯片可以同时检测 大量基因的表达水平, 广泛应用于研究和临床 诊断。
3 单细胞测序
单细胞测序技术能够检 测单个细胞的基因表达, 应用于发育生物学等研 究领域。
未来展望
1
基因编辑技术
基因编辑技术在研究和药物治疗方面

基因表达

基因表达

DNA甲基化、组蛋白修饰及RNA分子的作用可在不同层面影响DNA分子的表达,其中任何环节出现错误都会导致不同的表达错误,从而引发人类疾病。

如果我们能控制DNA的表达,将可以使癌症、病毒引发的疾病(如肝炎、艾滋病)、血液疾病等得到治愈。

首先,简单谈下基因表达。

基因表达指的是基因转录及翻译的过程。

基因表达有两种方式:一种是组成性表达,指不大受环境变动而变化的一类基因表达。

另外一种是适应性表达,指环境的变化容易使其表达水平变动的一类基因表达。

那么基因的表达有何规律呢?时间和空间的特异性是基因表达规律两大特点。

时间特异性指的是按功能需要,某一特定基因的表达严格按特定的时间顺序发生。

空间特异性指的是在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现。

基因的表达调控无论是对真核生物还是原核生物都有着重要的作用,它能维持个体发育和分化,让个体更好的适应环境。

在基因表达里有个在存在于DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列称为启动子。

真核生物根据转录的方式可将启动子分三类。

1、RNA聚合酶I的启动子主要由两部分组成。

目前了解较清楚的是人的RNA聚合酶I的启动子。

在转录起始位点的上游有两部分序列。

核心启动子(core promoter)位于-45至+20的区域内,这段序列就足以使转录起始。

在其上游有一序列,从-180至-107,称为上游调控元件(upstream control element,UCE),可以大大的提高核心启动子的转录起始效率。

两个区域内的碱基组成和一般的启动子结构有所差异,均富含G.C对,两者有85%的同源性。

2、RNA聚合酶Ⅱ的启动子位于转录起始点的上游,由多个短序列元件组成。

该类启动子属于通用型启动子,即在各种组织中均可被RNA聚合酶n所识别,没有组织特异性。

经过比较多种启动子,发现RNA聚合酶II的启动子有一些共同的特点,在转录起始点的上游有几个保守序列,又称为元件(elememt)。

基因克隆与表达

基因克隆与表达

基因克隆与表达基因克隆与表达是生物学领域中重要的技术手段和研究方法。

通过基因克隆和表达,科学家能够研究特定基因的功能、调控机制以及其在生物体内的作用,这对于深入了解生物体的生理过程和疾病发生机制具有重要意义。

本文将介绍基因克隆与表达的原理、方法以及应用。

一、基因克隆基因克隆是将特定基因从一个生物体中分离并复制到另一个载体中的过程。

这个过程主要涉及DNA的分离、复制和连接。

常用的基因克隆技术包括PCR、限制性内切酶切割、琼脂糖凝胶电泳和基因插入等。

1. PCR聚合酶链反应(PCR)是一种强大的基因扩增技术。

它通过不断地重复某一特定区域的DNA序列,使其得以大规模复制。

PCR可以在短时间内合成大量目标DNA片段,为基因克隆提供了充足的材料。

2. 限制性内切酶切割限制性内切酶可以识别并切割特定的DNA序列。

通过选择合适的限制性内切酶,可以实现将目标基因从源DNA中切割下来,为下一步的基因克隆做好准备。

3. 琼脂糖凝胶电泳琼脂糖凝胶电泳是一种常用的DNA分离技术。

通过将DNA样品加入琼脂糖凝胶槽中,并施加电场,DNA片段会根据其大小在凝胶中迁移。

凝胶电泳可以帮助科学家分离和纯化目标基因。

4. 基因插入基因插入是将目标基因连接到载体上的过程。

载体可以是质粒、病毒或者人工染色体等。

通过连接酶的作用,目标基因与载体可以稳定地结合在一起。

二、基因表达基因表达指特定基因通过转录和翻译过程转化为蛋白质的过程。

从基因克隆到基因表达,可以分为以下几个步骤:转染或转化、筛选和检测。

1. 转染或转化转染是指将外源DNA导入到动物细胞中的过程,而转化是将外源DNA导入到细菌细胞中的过程。

转染和转化可以通过多种方法实现,如化学法、电穿孔法和基因枪法等。

2. 筛选筛选是为了确定是否成功将目标基因表达在宿主细胞中而进行的步骤。

常见的筛选方法包括荧光筛选和克隆筛选。

荧光筛选利用荧光蛋白标记目标基因,观察细胞是否出现荧光信号。

克隆筛选则利用选择性培养基,筛选出含有目标基因的克隆。

检测基因表达变化的方法

检测基因表达变化的方法

检测基因表达变化的方法基因表达变化是指基因在特定条件下转录和翻译水平的变化。

检测基因表达变化的方法有很多种,以下是几种常用的方法:1. 转录组测序(RNA-seq)转录组测序是一种基于高通量测序技术的方法,可以检测基因在不同条件下的转录水平。

该方法首先从细胞中提取总RNA,然后通过建库、测序和分析得到每个基因的转录本序列。

通过比较不同条件下的转录本序列,可以发现基因表达的变化。

RNA-seq具有高灵敏度、高分辨率和高通量等优点,适用于研究基因表达的复杂性和动态性。

2. 定量反转录聚合酶链反应(qRT-PCR)qRT-PCR是一种基于PCR技术的方法,可以检测特定基因的表达水平。

该方法首先从细胞中提取总RNA,然后通过反转录得到cDNA,再通过PCR扩增得到目的片段。

通过比较不同条件下的目的片段拷贝数,可以发现基因表达的变化。

qRT-PCR具有高灵敏度、高特异性和可重复性好等优点,适用于验证RNA-seq等高通量测序方法的结果。

3. 微阵列分析微阵列分析是一种基于芯片技术的方法,可以同时检测多个基因的表达水平。

该方法将已知序列的探针集成在芯片上,然后将待测的cDNA或RNA与探针进行杂交。

通过检测杂交信号的强度,可以发现基因表达的变化。

微阵列分析具有高通量、高效率和高灵敏度等优点,适用于大规模的基因表达谱研究。

4. 原位杂交原位杂交是一种将探针与组织切片上的目标基因进行杂交的方法,可以检测目标基因在组织中的表达位置和表达水平。

该方法将探针与组织切片上的目标基因进行杂交,然后通过荧光或免疫组化等方法显色标记杂交信号。

通过观察杂交信号的数量和分布,可以发现基因表达的变化。

原位杂交具有高特异性、高灵敏度和定位准确等优点,适用于研究基因表达的组织特异性。

5. 免疫组织化学免疫组织化学是一种利用抗体与目标蛋白进行特异性结合的方法,可以检测目标蛋白在组织中的表达位置和表达水平。

该方法将抗体与目标蛋白进行特异性结合,然后通过显色标记抗体结合的位置。

基因表达的概念及特点

基因表达的概念及特点
阻止激活或阻遏作用在染色质上的传递,使染色质的活 性限定于结构域之内。
反式作用因子
反式作用因子:能够识别DNA上的顺式作用元件并与之
结合的蛋白质因子或复合物。
◆通用或基本转录因子—RNA聚合酶结合启动子所必需的一 组蛋白因子。如:TFⅡA、 TFⅡB、 TFⅡD、 TFⅡE等。
◆特异转录因子 special transcription factors —个别基因 转录所必需的转录因子.如:OCT-2:在淋巴细胞中特异性 表达,识别Ig基因的启动子和增强子。
顺式作用元件和反式作 用元件之间的相互作用
四 真核基因转录后水平的调控
• RNA 剪接
四 真核基因转录后水平的调控
人Ig基因结构 注: 1 L:先导序 列基因片段 V: 可变区基因片段 D:多样性区基因 片段J:连接区基 因片段 C:恒定 区基因片 *:假 基因 2 内含子区域所标 数字表示DNA长度 kb 3 每个CH基因用 一个方框表示,实 际上包括几个外显 子
kb 3 每个CH基因用 一个方框表示,实 际上包括几个外显 子
二 DNA水平上的调控
➢DNA甲基化 DNA Methylation
哺乳动物基因中的5‘--CG--3’序列中C—5的甲基化称为CpG 甲基化。 5‘--CG--3’序列是使处于表达状态的基因位点处的染色 体保持适当包装水平的重要化学修饰序列。当基因序列中的CpG 密度达到10/100bp时称为CpG 岛。
顺式作用元件
启动子 真核生物的启动子分为3类,分别被三类RNA 聚合酶所识别
• I 类启动子 • II 类启动子 • III类启动子
hnRNA是 mRNA的前 体,snRNA
参与 hnRNA到 mRNA的过 程

基因的表达

基因的表达
4.RNA的自我复制和逆转录只发生在RNA 病毒在宿主 细胞内的增殖过程中,且逆转录过程必须有 逆转录酶 的参与。高等动植物体内只能发生另外三 条途径。
中心法则
转录
翻译
DNA
RNA
蛋白质
逆转录
附注:只有在极少数的病毒中,才有逆转录的过程
中心法则的5个过程全都运用了碱基互补配对原则
基因 基因对性状的控制

DNA聚合酶等
RNA聚合酶等
特定的酶等
能量 原则 特点 产物
ATP
A-T、G-C
半保留复制 边解旋边复制 2个子代DNA分子
ATP A-U、T-A G-C ,C-G 边解旋边转录
1个信使RNA
ATP
mRNA与tRNA配对 A-U, G-C
多个特定氨基酸顺 序的蛋白质
DNA的碱基数、mRNA的碱基数、蛋白质中氨基 酸数三者之家有何数量关系?
转录时也要解旋, 但只解有遗传效应的部分。 并按照碱基互补配对原则, 合成mRNA
解螺旋 互补配对 合成mRNA 释放mRNA
……A-T-T-C-A-G-A-T-G…a…链 DNA ……T-A-A-G-T-C-T-A-C…b…链
……A-U-U-C-A-G-A-U- G……
假设以b链为模板,则转录出的RNA碱基排列为?
酸的DNA上的碱基是 CGT 。
2、第二个氨基酸密码子是 UGC

3、 A 链为转录的模板链,遗传密码子存
在于 C 链上。
三、中心法则的提出及发展 1.提出人: 克里克。 2.完善的中心法则内容(用简式表示)
3.最初提出的内容包括 DNA复制、转录和翻译 ,补充 完善的内容为RNA复制和 逆转录。
(4)在真核细胞中,a和b两个过程发生的主要场所 是 细胞核 。

基因的表达

基因的表达

基因的表达一、基因:1、概念:基因是具有遗传效应的DNA分子片段,是控制生物性状的结构和功能的基本单位。

2、基因与脱氧核甘酸、DNA、染色体关系3、基因的存在场所核基因:染色体上呈线性排列,有性生殖产生配子时基因和染色体真核 具有行为上的一致性。

质基因:线粒体、叶绿体原核:拟核病毒:核酸4、遗传信息:基因中脱氧核苷酸(或碱基对)的排列顺序,代表遗传信息。

每个基因都有特定的遗传信息。

二、基因的功能1、储存遗传信息:通过脱氧核苷酸的排列顺序。

2、传递遗传信息:时间:细胞分裂。

方式:DNA复制3、表达遗传信息:时间:个体发育中。

方式:转录和翻译。

三、基因控制蛋白质的合成:(一)基因的表达:基因(DNA)通过复制将遗传信息传递给后代,在后代的个体发育中,基因中的遗传信息以一定的方式反映到蛋白质的分子结构上来,使后代表现出与亲代相似的性状,这一过程叫基因的表达。

基因的表达是通过DNA控制蛋白质的合成来实现的。

(二)DNA和RNA的比较DNA RNA结构规则的双螺旋结构通常呈单链结构组成基本单位脱氧核苷酸核糖核苷酸五碳糖脱氧核糖(C5H10O4)核糖(C5H10O5)无机酸磷酸磷酸碱基嘌呤腺嘌呤 A腺嘌呤 A鸟嘌呤 G鸟嘌呤 G 嘧啶胞嘧啶 C胞嘧啶 C胸腺嘧啶 T尿嘧啶 U分类通常只有一类分为mRNA、rRNA、tRNA功能主要的遗传物质在无DNA的生物中是遗传物质,在有DNA的生物中,辅助DNA完成其功能。

考虑:下列各种生物体含有的碱基,核苷酸及核酸种类碱基种类核苷酸种类核酸种类五碳糖种类烟草烟草花叶病毒蓝藻噬菌体(三)基因表达过程1、 转录(表示为:DNA→mRNA)(1)概念:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。

示意图为说明:转录是以基因为单位进行的,因为一个DNA分子包含有许多个基因,因此,1个DNA就可转录多种多个RNA,基因在转录时为模板的那条链不是固定的,不同基因模板链不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因指导蛋白质的合成(第二课时)导学案
【学习目标】
1.了解密码子和tRNA在翻译中的作用。

2.概述遗传信息的翻译过程。

3.通过基因控制蛋白质的合成培养学生分析综合能力。

【知识回顾】
1.什么是基因的表达?
2.为什么需要RNA来充当基因表达的中间媒介?
3.基因表达有几个阶段,分别是什么?
4. 转录过程的模板、原料、产物是什么?
5.DNA的遗传信息是怎么传递给RNA的?
【新课导学】
1、翻译
(1)翻译的含义:以____________________为模板合成_______________过程。

(2)场所:
(3)条件: a、模板: b、能量:
c、运载工具:
d、原料:
(4)产物:产生
(5)碱基互补配对原则:
2、密码子
(1)概念:_______上的3个相邻的碱基决定1个氨基酸,这3个相邻碱基称为_______。

(2)种类:共有_______种,决定氨基酸的有_______种。

3、转运RNA
(1)结构:形状像三叶草的叶,一端是携带___ ___的部位,另一端有三个碱基。

每个tRNA的这3个碱基可以与mRNA上的密码子互补配对,称为____ __。

(2)种类:___ __种
【合作探究】
探究活动1:信使RNA上至少由几个碱基来决定一个氨基酸?
探究活动2:观察课本P65表4-1的密码子表,你有哪些发现?
探究活动3:观察PPT中tRNA的结构,讨论氨基酸与tRNA的关系:
1.一种转运RNA能运载多少种氨基酸?
2.一种氨基酸可以由多少种转运RNA运载?
3.运载氨基酸的转运RNA共有几种?。

相关文档
最新文档