2019届高考数学二轮复习 第二部分专项二 专题七 1 第1讲 专题强化训练 含解析

合集下载

2019高考数学理高分大二轮课件专题2第2讲综合大题部分

2019高考数学理高分大二轮课件专题2第2讲综合大题部分

=x2??xa+2x12+??a4xa2x++x6+a+2?21?.

6a+1>0,则当
0<x<-6a4+a 1,且|x|<
?
min?1,
?
不是 h(x)的极大值点.
1 |a|
?
?时,h′
?
(x)>
0,故
x=
0
7
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二 考点三ቤተ መጻሕፍቲ ባይዱ
若 6a+1<0,则 a2x2+4ax+6a+1=0 存在根 x1<0,
?
故当
x∈(x1,0),且
|x|<min?1,
?
1 |a|
?
?时,h′(x)<0,
?
所以 x=0 不是 h(x)的极大值点.
若 6a+1=0,则 h′(x)=?x+1x?3?x?x2--62x4-? 12?2,
则当 x∈(-1,0)时,h′(x)>0;当 x∈(0,1)时,h′(x)<0.
4
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二 考点三
2.(单调性与极值)(2018·高考全国卷Ⅲ)已知函数f(x)=(2+x+ax2)ln(1+x)-2x. (1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a. 解析:(1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x, f′(x)=ln(1+x)-1+x x. 设函数 g(x)=f′(x)=ln(1+x)-1+x x, 则 g′(x)=?1+x x?2.

2019届高考数学二轮复习 第二部分专项二 专题七 2 第2讲 专题强化训练 Word版含解析

2019届高考数学二轮复习 第二部分专项二 专题七 2 第2讲 专题强化训练 Word版含解析

.(·高考全国卷Ⅱ)设函数()=-+--.()当=时,求不等式()≥的解集;()若()≤,求的取值范围.解:()当=时,()=可得()≥的解集为{-≤≤}.()()≤等价于++-≥.而++-≥+,且当=时等号成立.故()≤等价于+≥.由+≥可得≤-或≥.所以的取值范围是(-∞,-]∪[,+∞)..(·开封模拟)已知函数()=-,<.()当=-时,求解不等式()+(-)≥-;()若不等式()+()<的解集非空,求的取值范围.解:()设()=-++=由()≥()解得{≤-或≥}.()()+()=-+-,<.设()=()+(),当≤时,()=-+-=-,则()≥-;当<<时,()=-+-=-,则-<()<-;当≥时,()=-+-=-,则()≥-.则()的值域为,不等式()+()<的解集非空,即>-,解得>-,由于<,则的取值范围是(-,)..(·石家庄质量检测(一))已知函数()=--(-).()当=时,求不等式()>的解集;()若函数()的图象与轴没有交点,求实数的取值范围.解:()当=时,不等式可化为-->,即->,所以-<-或->,即<或>,所以不等式()>的解集为.()当>时,()=要使函数()的图象与轴无交点,只需即≤<;当=时,()=+,函数()的图象与轴有交点,不合题意;当<时,()=要使函数()的图象与轴无交点,只需此时无解.综上可知,若函数()的图象与轴无交点,则实数的取值范围为[,)..(·高考全国卷Ⅲ)设函数()=++-.()画出=()的图象;()当∈[,+∞)时,()≤+,求+的最小值.解:()()==()的图象如图所示.()由()知,=()的图象与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当≥且≥时,()≤+在[,+∞)成立,因此+的最小值为..(·石家庄质量检测(二))已知函数()=-++.()当=时,求()≤的解集;()若()=+-.当>-且∈时,()≥(),求实数的取值范围.解:()当=时,()=.当<-时,()≤无解;当-≤≤时,()≤的解集为;当>时,()≤无解.综上所述,()≤的解集为.()当∈时,()=(-)+(+)=+,所以()≥()可化为+≥().又()=+-在上的最大值必为、之一,则,即,即-≤≤.。

2019届高考数学二轮复习 第二部分专项二 专题一 1 第1讲 专题强化训练 Word版含解析

2019届高考数学二轮复习 第二部分专项二 专题一 1 第1讲 专题强化训练 Word版含解析

一、选择题1.已知函数f (x )=⎩⎨⎧2-2x ,x≤-1,2x +2,x>-1,则满足f (a )≥2的实数a 的取值范围是( )A .(-∞,-2)∪(0,+∞)B .(-1,0)C .(-2,0)D .(-∞,-1]∪[0,+∞)解析:选D.因为函数f (x )=⎩⎪⎨⎪⎧2-2x ,x≤-1,2x +2,x>-1,且f (a )≥2,所以⎩⎪⎨⎪⎧a≤-1,2-2a≥2或⎩⎪⎨⎪⎧a>-12a +2≥2,解得a ≤-1或a ≥0.2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1x B .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x|解析:选B.A 中函数y =1x不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D.14解析:选B.由题意得f (0)=0,所以a =2.因为g (1)=g (-1),所以ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b ,所以b =12,所以log a b =log 212=-1.4.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:选D.当x =0时,y =2,排除A ,B.由y ′=-4x 3+2x =0,得x =0或x =±22,结合三次函数的图象特征,知原函数在(-1,1)上有三个极值点,所以排除C ,故选D.5.若函数f (x )=⎩⎨⎧ax +b ,x<-1ln(x +a),x≥-1的图象如图所示,则f (-3)等于( )B .-54A .-12C .-1D .-2解析:选C.由图象可得a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x<-1,ln(x +2),x≥-1,故f (-3)=2×(-3)+5=-1.6.(2018·开封模拟)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2015)=( )A .5B.12C .2D .-2解析:选D.由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2015)=f (503×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2,故选D.7.(2018·石家庄质量检测(一))已知函数f (x )为奇函数,当x >0时,f (x )单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为( )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1}解析:选A.由于函数f (x )是奇函数,且当x >0时f (x )单调递增,f (1)=0,故由f (x -1)>0,得-1<x -1<0或x -1>1,所以0<x <1或x >2,故选A.8.(2018·高考全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:选B.法一:设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).故选B.法二:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.9.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B.设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.10.(2018·太原模拟)已知函数f (x )是偶函数,f (x +1)是奇函数,且对于任意x 1,x 2∈[0,1],且x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]<0,设a =f ⎝⎛⎭⎫8211,b =-f ⎝⎛⎭⎫509,c =f ⎝⎛⎭⎫247,则下列结论正确的是( )A .a >b >cB .b >a >cC .b >c >aD .c >a >b解析:选B.因为函数f (x )是偶函数,f (x +1)是奇函数,所以f (-x )=f (x ),f (-x +1)=-f (x +1),所以f (x -1)=-f (x +1),所以f (x )=-f (x +2),所以f (x )=f (x +4),所以a =f ⎝⎛⎭⎫8211=f ⎝⎛⎭⎫-611=f ⎝⎛⎭⎫611,b =-f ⎝⎛⎭⎫509=f ⎝⎛⎭⎫49,c =f ⎝⎛⎭⎫247=f ⎝⎛⎭⎫47,又对于任意x 1,x 2∈[0,1],且x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]<0,所以f (x )在[0,1]上是减函数,因为49<611<47,所以b >a >c ,故选B.11.(2018·唐山模拟)已知奇函数f (x ),偶函数g (x )的图象分别如图(1),(2)所示,若函数f (g (x )),g (f (x ))的零点个数分别为m ,n ,则m +n =( )A .3B .7C .10D .14解析:选C.由题中函数图象知f (±1)=0,f (0)=0,g ⎝⎛⎭⎫±32=0,g (0)=0,g (±2)=1,g (±1)=-1,所以f (g (±2))=f (1)=0,f (g (±1))=f (-1)=0,f ⎝⎛⎭⎫g ⎝⎛⎭⎫±32=f (0)=0,f (g (0))=f (0)=0,所以f (g (x ))有7个零点,即m =7.又g (f (0))=g (0)=0,g (f (±1))=g (0)=0,所以g (f (x ))有3个零点,即n =3.所以m +n =10,选择C.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当h (x )<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C.作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.已知函数f (x )的定义域为(-∞,+∞),若f (x +2017)=⎩⎪⎨⎪⎧2sinx ,x≥0,lg(-x),x<0,则f ⎝⎛⎭⎫2017+π4·f (-7983)=________.解析:由题意得,f ⎝⎛⎭⎫2017+π4=2sin π4=1, f (-7983)=f (2017-10000)=lg10000=4,所以f ⎝⎛⎭⎫2017+π4·f (-7983)=4.答案:414.定义在R 上的函数f (x ),满足f (x +5)=f (x ),当x ∈(-3,0]时,f (x )=-x -1,当x ∈(0,2]时,f (x )=log 2x ,则f (1)+f (2)+f (3)+…+f (2018)的值等于________.解析:定义在R 上的函数f (x ),满足f (x +5)=f (x ),即函数f (x )的周期为5.又当x ∈(0,2]时,f (x )=log 2x ,所以f (1)=log 21=0,f (2)=log 22=1.当x ∈(-3,0]时,f (x )=-x -1,所以f (3)=f (-2)=1,f (4)=f (-1)=0,f (5)=f (0)=-1.f (1)+f (2)+f (3)+…+f (2018)=403×[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2016)+f (2017)+f (2018)=403×1+f (1)+f (2)+f (3)=403+0+1+1=405.答案:40515.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.所以f (x )的最大值为f (2)=23-2=6.答案:616.已知函数f (x )=⎩⎨⎧kx -3,x≥0ln(-2x),x<0的图象上有两对关于y 轴对称的点,则实数k 的取值范围是________.解析:将函数y =ln(-2x )(x <0)的图象沿y 轴翻折,得函数g (x )=ln(2x )(x >0)的图象,由题意可得g (x )的图象和y=kx-3(x≥0)的图象有两个交点.设y=kx-3(x≥0)的图象与曲线y=g(x)相切的切点为(m,ln(2m)),由g′(x)=1x,得k=1m.又ln(2m)=km-3,解得m=12e2,则k=2e2.由图象可得0<k<2e2时,g(x)的图象和y=kx-3(x≥0)的图象有两个交点.答案:(0,2e2)。

2019届高考数学二轮复习第二部分突破热点分层教学专项二专题七2第2讲不等式选讲课件20190218164

2019届高考数学二轮复习第二部分突破热点分层教学专项二专题七2第2讲不等式选讲课件20190218164

2019年7月3日
你是我心中永远的宝你是我心中永
3
远的宝
专题七 选考部分
命题分析 1. 不等式选讲是高考的选考内容之一,考查的重点是不等式的 证明、绝对值不等式的解法等,命题的热点是绝对值不等式的 求解,以及绝对值不等式与函数的综合问题的求解. 2.此部分命题形式单一、稳定,难度中等,备考本部分内容时 应注意分类讨论思想的应用.
2,x≥1, =2x,-1<x<1,
-2,x≤-1, 由|f(x)|<2 得-1<x<1,即 A={x|-1<x<1}.
2019年7月3日
你是我心中永远的宝你是我心中永
16
远的宝
(2)证明:要证1a-b-abcc>1,只需证|1-abc|>|ab-c|, 只需证 1+a2b2c2>a2b2+c2,只需证 1-a2b2>c2(1-a2b2), 只需证(1-a2b2)(1-c2)>0, 由 a,b,c∈A,得 a2b2<1,c2<1,所以(1-a2b2)(1-c2)>0 恒成 立. 综上,1a-b-abcc>1.
2019年7月3日
你是我心中永远的宝你是我心中永
19
远的宝
[对点训练] (2018·陕西教学质量检测(一))已知函数 f(x)=|2x-1|+|x+1|. (1)解不等式 f(x)≤3; (2)记函数 g(x)=f(x)+|x+1|的值域为 M,若 t∈M,证明 t2+1≥3t +3t.
-3x,x≤-1, 解:(1)依题意,得 f(x)=2-x,-1<x<12, 3x,x≥12,
2019年7月3日
你是我心中永远的宝你是我心中永
15

2019届高考数学二轮复习 第二部分专项二 专题一 2 第2讲 专题强化训练 Word版含解析

2019届高考数学二轮复习 第二部分专项二 专题一 2 第2讲 专题强化训练 Word版含解析

一、选择题 1.函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1 B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)解析:选A.要使函数有意义需满足⎩⎪⎨⎪⎧4x -3>0,log 0.5(4x -3)>0,解得34<x <1.2.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( )A .-2B .4C .3D .-2或3解析:选C.f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3.3.若a =log 1π13,b =e π3,c =log 3cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:选B.因为0<1π<13<1,所以1=log 1π1π>log 1π13>0,所以0<a <1,因为b =e π3>e 0=1,所以b >1.因为0<cos π5<1,所以log 3cos π5<log 31=0,所以c <0.故b >a >c ,选B.4.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C.令2e x -1>2(x <2),解得1<x <2; 令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).5.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.6.(2018·贵阳模拟)20世纪30年代,为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.已知5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震的最大振幅的( )A .10倍B .20倍C .50倍D .100倍解析:选D.根据题意有lg A =lg A 0+lg 10M=lg (A 0·10M).所以A =A 0·10M,则A 0×107A 0×105=100.故选D.7.函数y =x 2ln |x ||x |的图象大致是( )解析:选D.易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D. 8.设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D.设2x =3y =5z =k (k >1), 则x =log 2k ,y =log 3k ,z =log 5k ,所以2x 3y =2log 2k 3log 3k =2lg k lg 2·lg 33lg k =2lg 33lg 2=lg 9lg 8>1,即2x >3y .①2x 5z =2log 2k 5log 5k =2lg k lg 2·lg 55lg k =2lg 55lg 2=lg 25lg 32<1, 所以2x <5z .② 由①②得3y <2x <5z .9.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b 解析:选B.由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b=log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +b ab <1.又a >0,b <0,所以ab <0,所以ab<a +b <0.10.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C.当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x ,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象如图所示,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.11.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪f (ln x )-f ⎝⎛⎭⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝⎛⎭⎫0,1e B .(0,e) C.⎝⎛⎭⎫1e ,eD .(e ,+∞)解析:选C.因为函数f (x )是定义在R 上的奇函数,所以f (ln x )-f ⎝⎛⎭⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ), 所以⎪⎪⎪⎪f (ln x )-f ⎝⎛⎭⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增, 所以-1<ln x <1,解得1e<x <e.12.(2018·沈阳教学质量监测)设函数f (x )是定义在R 上的偶函数,且f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫22x -1,若关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)在区间(-2,6)内有且只有4个不同的实根,则实数a 的取值范围是( )A.⎝⎛⎭⎫14,1 B .(1,4) C .(1,8)D .(8,+∞)解析:选D.因为f (x )为偶函数,且f (2+x )=f (2-x ),所以f (4+x )=f (-x )=f (x ), 所以f (x )为偶函数且周期为4, 又当-2≤x ≤0时,f (x )=⎝⎛⎭⎫22x -1,画出f (x )在(-2,6)上的大致图象,如图所示.若f (x )-log a (x +2)=0(a >0且a ≠1)在(-2,6)内有4个不同的实根,则y =f (x )的图象与y =log a (x +2)的图象在(-2,6)内有4个不同的交点.所以⎩⎪⎨⎪⎧a >1,log a (6+2)<1,所以a >8,故选D.二、填空题13.计算:2log 410-12log 225+823-(π-3)0=________.解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x ;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2018·高考全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1, f (a )=4,则f (-a )=________. 解析:由f (a )=ln(1+a 2-a )+1=4,得ln(1+a 2-a )=3,所以f (-a )=ln(1+a 2+a )+1=-ln11+a 2+a+1=-ln(1+a 2-a )+1=-3+1=-2.答案:-216.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间的变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少; ③到了此日13时,甲所购买的食品还在保鲜时间内; ④到了此日14时,甲所购买的食品已过了保鲜时间. 其中,所有正确结论的序号是________.解析:因为某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t=⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,所以24k +6=16,即4k +6=4,解得k =-12,所以t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0.①当x =6时,t =8,故①正确;②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414小时,到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确. 所以正确结论的序号为①④. 答案:①④。

2019届高考数学二轮复习 第二部分专项二 专题二 1 第1讲 专题强化训练 Word版含解析

2019届高考数学二轮复习 第二部分专项二 专题二 1 第1讲 专题强化训练 Word版含解析

一、选择题1.(2018·南宁模拟)如图,函数f (x )=A sin(2x +φ)⎝⎛⎭⎪⎫A >0,|φ|<π2的图象过点(0,3),则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫2x -π6解析:选B.由函数图象可知,A =2,又函数f (x )的图象过点(0,3),所以2sin φ=3,即sin φ=32,由于|φ|<π2,所以φ=π3,于是f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,故选B.2.(2018·郑州质量检测(二))已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π2-cos 2x ,若要得到一个奇函数的图象,则可以将函数f (x )的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移π12个单位长度D .向右平移π12个单位长度解析:选 C.f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π2-cos 2x =3cos ⎝ ⎛⎭⎪⎫π2-2x -cos 2x =3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π12,所以将f (x )的图象向左平移π12个单位长度可得到奇函数y =2sin 2x 的图象.故选C.3.(2018·广州调研)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,则ω的取值范围为( )A.⎝ ⎛⎦⎥⎤0,83B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,83 D.⎣⎢⎡⎦⎥⎤38,2 解析:选 B.因为x∈⎣⎢⎡⎦⎥⎤-π4,2π3,所以ωx +π6∈⎣⎢⎡⎦⎥⎤-π4ω+π6,2π3ω+π6,因为函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)在区间⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,所以⎩⎪⎨⎪⎧-π4ω+π6≥2k π-π2,k ∈Z ,2π3ω+π6≤2k π+π2,k ∈Z .又ω>0,所以0<ω≤12,选B.4.(2018·石家庄质量检测(二))已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( )A .x =π12B .x =π4C .x =π3D .x =2π3解析:选 A.因为f (0)=2sin φ=3,所以sin φ=32,又|φ|<π,所以φ=π3或2π3,又f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫πω6+φ=0,所以πω6+φ=k π(k ∈Z ),所以ω=⎝ ⎛⎭⎪⎫k π-π3×6π=6k -2(k ∈Z ),或ω=⎝⎛⎭⎪⎫k π-2π3×6π=6k -4(k ∈Z ),又ω>0,且T 4=2π4ω=π2ω>π6,所以ω<3,所以ω=2,φ=2π3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3,将其图象向右平移π6个单位长度,得到函数g (x )的图象,所以g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,g (x )图象的对称轴方程满足2x+π3=k π+π2(k ∈Z ),所以x =k π2+π12(k ∈Z ),故选A.5.(2018·惠州第二次调研)已知函数f (x )=A sin(2x +θ)(|θ|≤π2,A >0)的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝ ⎛⎭⎪⎫-5π12,π12上是减函数B .f (x )在⎝ ⎛⎭⎪⎫-5π12,π12上是增函数C .f (x )在⎝ ⎛⎭⎪⎫π3,5π6上是减函数D .f (x )在⎝ ⎛⎭⎪⎫π3,5π6上是增函数解析:选B.由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,所以2sin θ=3,sin θ=32,又|θ|≤π2,所以θ=π3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增.所以选项B 正确.6.(2018·河北“五个一名校联盟”模拟)已知函数f (x )=1+2cos x cos(x +3φ)是偶函数,其中φ∈⎝ ⎛⎭⎪⎫0,π2,则下列关于函数g (x )=cos(2x -φ)的正确描述是( )A .g (x )在区间⎣⎢⎡⎦⎥⎤-π12,π3上的最小值为-1B .g (x )的图象可由函数f (x )的图象向上平移2个单位长度,向右平移π3个单位长度得到C .g (x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫-π12,0D .g (x )的一个单调递减区间是⎣⎢⎡⎦⎥⎤0,π2解析:选C.因为函数f (x )=1+2cos x cos(x +3φ)是偶函数,y =1,y =2cos x 都是偶函数,所以y =cos(x +3φ)是偶函数,所以3φ=k π,k ∈Z ,所以φ=k π3,k ∈Z ,又0<φ<π2,所以φ=π3,所以g (x )=cos ⎝ ⎛⎭⎪⎫2x -π3.当-π12≤x ≤π3时,-π2≤2x -π3≤π3,cos ⎝ ⎛⎭⎪⎫2x -π3∈[0,1],故A 错误;f (x )=1+2cos x cos(x +π)=1-2cos 2x =-cos 2x ,显然B 错误;当x =-π12时,g (x )=cos ⎝ ⎛⎭⎪⎫-π2=0,故C 正确;当0≤x ≤π2时,-π3≤2x -π3≤2π3,g (x )=cos ⎝⎛⎭⎪⎫2x -π3有增有减,故D 错误.故选C.二、填空题7.(2018·辽宁五校联合体模拟)已知函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,A (a ,0),B (b ,0)是其图象上两点,若|a -b |的最小值是1,则f ⎝ ⎛⎭⎪⎫16=________.解析:因为函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,所以cos φ=0(0<φ<π),所以φ=π2,所以f (x )=-4sin ωx ,又A (a ,0),B (b ,0)是其图象上两点,且|a -b |的最小值是1,所以函数f (x )的最小正周期为2,所以ω=π,所以f (x )=-4sin πx ,所以f ⎝ ⎛⎭⎪⎫16=-4sin π6=-2.答案:-28.已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π2),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若将f (x )的图象向左平移π12个单位长度后所得函数的图象关于原点对称,则φ=________.解析:因为f (0)=-f ⎝ ⎛⎭⎪⎫π2,则sin φ=-sin ⎝ ⎛⎭⎪⎫π2ω+φ,所以ω=4k +2,k ∈Z ,将f (x )的图象向左平移π12个单位长度后所得函数y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ12+φ的图象关于原点对称,则ωπ12+φ=k π,k ∈Z ,由ω>0,0<φ<π2得ω=10,φ=π6.答案:π69.已知函数f (x )=sin(2x +φ)+a cos(2x +φ)(0<φ<π)的最大值为2,且满足f (x )=f ⎝ ⎛⎭⎪⎫π2-x ,则φ=________.解析:因为f (x )=f ⎝ ⎛⎭⎪⎫π2-x ,所以函数f (x )的图象关于直线x =π4对称,由函数的解析式可得a 2+1=2,即a 2=3.若a =3,则f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ⎝⎛⎭⎪⎫2x +φ+π3,由函数图象的对称性可得2×π4+φ+π3=k π+π2(k ∈Z ),所以φ=k π-π3(k ∈Z ),因为0<φ<π,所以φ=2π3;若a =-3,则f (x )=sin(2x +φ)-3cos(2x +φ)=2sin ⎝⎛⎭⎪⎫2x +φ-π3,由函数图象的对称性可得2×π4+φ-π3=k π+π2(k ∈Z ),所以φ=k π+π3(k ∈Z ),因为0<φ<π,所以φ=π3.综上可得φ=π3或2π3.答案:π3或2π3三、解答题10.已知函数f (x )=sin 4x +cos 4x +32sin 2x cos 2x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,求f (x )的最值.解:f (x )=sin 4x +cos 4x +32sin 2x cos 2x=(sin 2x +cos 2x )2-2sin 2x cos 2x +34sin 4x=1-12sin 2 2x +34sin 4x=1-12·1-cos 4x 2+34sin 4x=34sin 4x +14cos 4x +34=12sin ⎝ ⎛⎭⎪⎫4x +π6+34.(1)T =2π4=π2.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,4x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,sin ⎝⎛⎭⎪⎫4x +π6∈⎣⎢⎡⎦⎥⎤-12,1,则当4x +π6=π2,即x =π12时,函数f (x )取最大值54;当4x +π6=7π6,即x =π4时,函数f (x )取最小值12.所以,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )的最大值是54,最小值是12.11.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(其中0<ω<1),若点⎝ ⎛⎭⎪⎫-π6,1是函数f (x )图象的一个对称中心.(1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象.解:(1)f (x )=3sin 2ωx +(cos 2ωx -sin 2ωx )(cos 2ωx +sin 2ωx )+1=3sin 2ωx +cos 2ωx +1=2sin ⎝⎛⎭⎪⎫2ωx +π6+1.因为点⎝ ⎛⎭⎪⎫-π6,1是函数f (x )图象的一个对称中心,所以-ωπ3+π6=k π,k ∈Z ,所以ω=-3k +12,k ∈Z .因为0<ω<1, 所以k =0,ω=12,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π6+1.由x +π6=k π+π2,k ∈Z ,得x =k π+π3,k ∈Z ,令k =0,得距y 轴最近的一条对称轴方程为x =π3.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫x +π6+1,当x ∈[-π,π]时,列表如下:则函数f (x )在区间[-π,π]上的图象如图所示.12.设函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32(ω>0)的图象上相邻最高点与最低点的距离为π2+4.(1)求ω的值;(2)若函数y =f (x +φ)(0<φ<π2)是奇函数,求函数g (x )=cos(2x -φ)在[0,2π]上的单调递减区间.解:(1)f (x )=sin ωx ·cos ωx -3cos 2ωx +32=12sin 2ωx -3(1+cos 2ωx )2+32 =12sin 2ωx -32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx -π3,设T 为f (x )的最小正周期,由f (x )的图象上相邻最高点与最低点的距离为π2+4,得⎝ ⎛⎭⎪⎫T 22+[2f (x )max ]2=π2+4, 因为f (x )max =1,所以⎝ ⎛⎭⎪⎫T 22+4=π2+4,整理得T =2π.又ω>0,T =2π2ω=2π,所以ω=12. (2)由(1)可知f (x )=sin ⎝⎛⎭⎪⎫x -π3, 所以f (x +φ)=sin ⎝⎛⎭⎪⎫x +φ-π3. 因为y =f (x +φ)是奇函数,则sin ⎝⎛⎭⎪⎫φ-π3=0. 又0<φ<π2,所以φ=π3, 所以g (x )=cos(2x -φ)=cos ⎝⎛⎭⎪⎫2x -π3. 令2k π≤2x -π3≤2k π+π,k ∈Z , 则k π+π6≤x ≤k π+2π3,k ∈Z , 所以单调递减区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z , 又因为x ∈[0,2π],所以当k =0时,递减区间是⎣⎢⎡⎦⎥⎤π6,2π3; 当k =1时,递减区间是⎣⎢⎡⎦⎥⎤7π6,5π3. 所以函数g (x )在[0,2π]上的单调递减区间是⎣⎢⎡⎦⎥⎤π6,2π3,⎣⎢⎡⎦⎥⎤7π6,5π3.。

2019年高考数学(理科,天津课标版)二轮复习专题能力训练 Word版含答案7

2019年高考数学(理科,天津课标版)二轮复习专题能力训练  Word版含答案7

(2)由(1)知 f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数 f(x)在区间(-2,0)内恰
{ ( ) ������( - 2) < 0,
1
1
有两个零点当且仅当
������( - 1) > 0,解得 ������(0) < 0,
0<a<3.所以 a 的取值范围是
0,3
专题能力训练 7 导数与函数的单调性、极值、最值
一、能力突破训练
1
1
������ 1
1.D 解析 因为 f'(x)=af'(1)+������,所以 f'(1)=af'(1)+1,易知 a≠1,则 f'(1)=1 - ������,所以 f'(x)=1 - ������ + ������.又因为 f'
所以 x1x2=1,不妨设 x1<x2,则 x2>1.
������(������1) - ������(������2) 1
ln ������1 - ln ������2
ln ������1 - ln ������2
- 2ln ������2
������(������1) - ������(������2)
( ) ( ) 1
������
1
1
1
即 f ������ - 1 > ������ - 1-1=������ - 1,∴f ������ - 1 > ������ - 1,故 C 错误.
2������
������
3������
4.C 解析 依题意得 f'(x)=3ax2+2bx+c≤0 的解集是[-2,3],于是有 3a>0,-2+3=-3������,-2×3=3������,则 b=- 2

2019届高考数学二轮复习特色专项训练及解析

2019届高考数学二轮复习特色专项训练及解析

2019届高考数学二轮复习特色专项训练小题强化练(一) 综合提能练(1)1.设集合P ={x ||x -1|<1},Q ={x |-1<x <2},则P ∩Q =( ) A.⎝⎛⎭⎫-1,12 B .(-1,2) C .(1,2)D .(0,2)2.若复数z 满足(1+i)z =1-2i 3,则|z |=( ) A.102 B .32C .22D .123.已知向量a =(2,1),b =(3,4),c =(k ,2).若(3a -b )∥c ,则实数k 的值为( ) A .-8 B .-6 C .-1D .64.设等差数列{a n }的前n 项和为S n ,若S 4=20,a 5=10,则a 16=( ) A .-32 B .12 C .16D .325.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m ⊂α,则m ⊥βB .若m ⊂α,n ⊂β,则m ⊥nC .若m ⊄α,m ⊥β,则m ∥αD .若α∩β=m ,n ⊥m ,则n ⊥α6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,现将函数f (x )图象上的所有点向右平移π4个单位长度得到函数g (x )的图象,则函数g (x )的解析式为( )A .g (x )=2sin ⎝⎛⎭⎫2x +π4 B .g (x )=2sin ⎝⎛⎭⎫2x +3π4C .g (x )=2cos 2xD .g (x )=2sin ⎝⎛⎭⎫2x -π4 7.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”,其正视图和侧视图是如图所示的直角三角形,若该“阳马”的顶点都在同一个球面上,则该球的体积为( )A.863πB .86πC .6πD .24π8.已知函数f (x +2)(x ∈R )为奇函数,且函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=x2 018,则f (2 018)=( )A .2 018B .12 018C .11 009D .09.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .n ≤7?B .n >7?C .n ≤6?D .n >6?10.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1>AB =AD ,设直线A 1B 与直线AD 1,B 1D 1所成的角分别为α,β,则( )A .60°<α<90°,60°<β<90°B .60°<α<90°,0°<β<60°C .0°<α<60°,60°<β<90°D .0°<α<60°,0°<β<60°11.如图,等腰梯形ABCD 的高为1,DC =2,AB =4,E ,F 分别为两腰上的点,且AF →·BE →=-8,则CE →·DF →的值为( )A .-10B .-8C .-6D .-412.已知点P 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上的任意一点,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一、四象限,O 为坐标原点,当AP →=12PB →时,△AOB 的面积为2b ,则双曲线C 的实轴长为( )A.329 B .169C .89D .4913.已知a =213,b =⎝⎛⎭⎫1223,则log 2(ab )=________.14.如图是调查某学校高三年级男、女学生是否喜欢篮球运动得到的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生、女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的学生中按分层抽样的方法抽取32人,则抽取的男生人数为________.15.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线l 与x 轴的交点为A ,P 是抛物线C 上的点,且PF ⊥x 轴.若以AF 为直径的圆截直线AP 所得的弦长为2,则实数p 的值为________.16.已知数列{a n }共16项,且a 1=1,a 8=4.记关于x 的函数f n (x )=13x 3-a n x 2+(a 2n -1)x ,n ∈N *.若x =a n +1(1≤n ≤15)是函数f n (x )的极值点,且曲线y =f 8(x )在点(a 16,f 8(a 16))处的切线的斜率为15,则满足条件的数列{a n }的个数为________.参考答案与解析小题强化练小题强化练(一) 综合提能练(1)1.解析:选D.由题意知P ={x ||x -1|<1}={x |-1<x -1<1}={x |0<x <2},Q ={x |-1<x <2},所以P ∩Q ={x |0<x <2}.故选D.2.解析:选A.z =1-2i 31+i =1+2i 1+i =(1+2i )(1-i )(1+i )(1-i )=3+i 2,所以|z |=⎝⎛⎭⎫322+⎝⎛⎭⎫122=94+14=102.故选A. 3.解析:选B.由题可知3a -b =(6,3)-(3,4)=(3,-1),c =(k ,2),因为(3a -b )∥c ,所以-k =2×3,k =-6.故选B.4.解析:选D.设等差数列{a n }的公差为d ,由S 4=4a 1+4×32d =20,得2a 1+3d =10 ①,由a 5=10,得a 1+4d =10 ②,根据①②可得a 1=d =2,所以a 16=a 1+15d =32.故选D.5.解析:选C.对于A :若m ⊂α,则m 与平面β可能平行或相交,所以A 错误;对于B :若m ⊂α,n ⊂β,则m 与n 可能平行、相交或异面,所以B 错误;对于C :若m ⊄α,m ⊥β,则m ∥α,C 正确;对于D :α∩β=m ,n ⊥m ,则n 不一定与平面α垂直,所以D 错误.6.解析:选D.根据函数f (x )的图象可知A =2,T 4=5π8-3π8=π4,得T =2πω=π,则ω=2,所以f (x )=2sin(2x +φ),又f (x )的图象经过点⎝⎛⎭⎫5π8,-2,所以2sin ⎝⎛⎭⎫2×5π8+φ=-2,即sin ⎝⎛⎭⎫5π4+φ=-1,5π4+φ=-π2+2k π,k ∈Z ,得φ=-7π4+2k π,k ∈Z ,因为|φ|<π2,所以φ=π4,所以f (x )=2sin ⎝⎛⎭⎫2x +π4.将函数f (x )图象上的所有点向右平移π4个单位长度得到函数g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4=2sin ⎝⎛⎭⎫2x -π4的图象. 7.解析:选C.由题可知,该“阳马”为四棱锥,记为P ­ABCD ,将其放入长方体中如图所示,则该“阳马”的外接球直径为长方体的体对角线,易知AD =AP =1,AB =2,所以PC =12+12+22=6,所以外接球的半径为PC 2=62,故该球的体积为4πR 33=4π3×64×62=6π.故选C.8.解析:选D.由题意知,f (x +2)=-f (-x +2),所以f (x )=-f (-x +4),又f (x )=f (-x +2),所以-f (-x +4)=f (-x +2),所以-f (-x +2)=f (-x ),所以f (-x +4)=f (-x ),所以f (x )的周期为4,故f (2 018)=f (2 016+2)=f (2)=f (0)=0.9.解析:选D.执行程序框图,s =0,a =2,n =1, s =s +a =2,a =a +2=4,n =n +1=2; s =s +a =6,a =a +2=6,n =n +1=3; s =s +a =12,a =a +2=8,n =n +1=4; s =s +a =20,a =a +2=10,n =n +1=5; s =s +a =30,a =a +2=12,n =n +1=6; s =s +a =42,a =a +2=14,n =n +1=7;s =s +a =56,a =a +2=16,此时符合判断框中的条件,退出循环. 所以判断框中的条件可以为“n >6?”.10.解析:选C.根据题意不妨取AA 1=2,AB =AD =1,连接BD ,BC 1,A 1C 1,A 1D ,则AD 1∥BC 1,B 1D 1∥BD ,则直线A 1B 与直线AD 1所成的角即∠A 1BC 1,直线A 1B 与直线B 1D 1所成的角即∠A 1BD .易知A 1B =BC 1=A 1D =5,A 1C 1=BD = 2.易知α=∠A 1BC 1,β=∠A 1BD ,在△A 1BD 中,易求得tan β=3,在△A 1BC 1中,易求得tan α=34,易知0°<α<90°,0°<β<90°,故0°<α<60°,60°<β<90°.11.解析:选D.设AF →=AB →+BF →=AB →+xBC →,BE →=BA →+AE →=BA →+yAD →,则AF →·BE →=-AB→2+yAB →·AD →+xBC →·BA →+xyBC →·AD →=-16+4(x +y ),由AF →·BE →=-8,得x +y =2,而CE →=CD →+DE →=CD →+(1-y )DA →,DF →=DC →+CF →=DC →+(1-x )CB →,于是CE →·DF →=-CD →2+(1-y )DA →·DC →+(1-x )CB →·CD →+(1-x )(1-y )CB →·DA →=-4-2[(1-y )+(1-x )]=-4.故选D.12.解析:选A.设A (x 1,y 1),B (x 2,y 2),P (x ,y ),由AP →=12PB →,得(x -x 1,y -y 1)=12(x 2-x ,y 2-y ),则x =23x 1+13x 2,y =23y 1+13y 2,所以⎝⎛⎭⎫23x 1+13x 22a2-⎝⎛⎭⎫23y 1+13y 22b2=1.易知点A 在直线y =b a x 上,点B 在直线y =-bax 上,则y 1=b a x 1,y 2=-bax 2,所以⎝⎛⎭⎫23x 1+13x 22a 2-⎝⎛⎭⎫2b 3ax 1-b 3a x 22b 2=1,即⎝⎛⎭⎫23x 1+13x 22b 2-⎝⎛⎭⎫2b 3a x 1-b 3a x 22a 2=a 2b 2,化简可得a 2=89x 1x 2. 由渐近线的对称性可得sin ∠AOB =sin 2∠AOx =2sin ∠AOx cos ∠AOx sin 2∠AOx +cos 2∠AOx =2tan ∠AOx tan 2∠AOx +1=2b a⎝⎛⎭⎫b a 2+1=2ab b 2+a2,所以△AOB 的面积为12|OA ||OB |sin ∠AOB =12x 21+y 21×x 22+y 22×sin ∠AOB =12x 21+⎝⎛⎭⎫b a x 12×x 22+⎝⎛⎭⎫-b a x 22×2ab b 2+a 2=x 1x 21+⎝⎛⎭⎫b a 2×1+⎝⎛⎭⎫b a 2×ab b 2+a 2=98a 2×ab b 2+a 2×⎣⎡⎦⎤1+⎝⎛⎭⎫b a 2=98a 2×ab b 2+a2×b 2+a 2a 2=98ab =2b ,得a =169,所以双曲线C 的实轴长为329.故选A.13.解析:a =213,则log 2a =13,b =⎝⎛⎭⎫1223=2-23,则log 2b =-23,所以log 2(ab )=log 2a +log 2b =13-23=-13.答案:-1314.解析:根据等高条形图可知,喜欢篮球运动的女生人数为500×0.2=100,男生人数为500×0.6=300,所以喜欢篮球运动的学生总人数为400,分层抽取32人,抽取的男生人数为300400×32=24.答案:2415.解析:由题可知,△APF 为直角三角形,设直线AP 与以AF 为直径的圆的另一个交点为B ,则BF ⊥AB ,因为AF =PF =p ,所以BF =p 2-4,易知AF 2=AB ×AP ,所以AP =p 22,又12AP ×BF =12AF ×PF ,即p 22×p 2-4=p 2,解得p =2 2. 答案:2 216.解析:f ′n (x )=x 2-2a n x +a 2n -1=[x -(a n +1)][x -(a n -1)].令f ′n (x )=0,得x =a n +1或x =a n -1,所以a n +1=a n +1或a n -1=a n +1(1≤n ≤15),所以|a n +1-a n |=1(1≤n ≤15),又f ′8(x )=x 2-8x +15,所以a 216-8a 16+15=15,解得a 16=0或a 16=8.当a 16=0时,a 8-a 1=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=3, 得a i +1-a i (1≤i ≤7,i ∈N *)的值有2个为-1,5个为1; 由a 16-a 8=(a 9-a 8)+(a 10-a 9)+…+(a 16-a 15)=-4, 得a i +1-a i (8≤i ≤15,i ∈N *)的值有6个为-1,2个为1.所以此时数列{a n }的个数为C 27C 28=588,同理可得当a 16=8时,数列{a n }的个数为C 27C 28=588. 综上,数列{a n }的个数为2C 27C 28=1 176.答案:1 176。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2018·益阳、湘潭调研)在平面直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =sin α(α为参数).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=12.直线l 与曲线C 交于A ,B 两点.(1)求直线l 的直角坐标方程; (2)设点P (1,0),求|PA |·|PB |的值.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ+π3=12得ρcos θcos π3-ρsin θsin π3=12, 又ρcos θ=x ,ρsin θ=y ,所以直线l 的直角坐标方程为x -3y -1=0. (2)由⎩⎪⎨⎪⎧x =2cos αy =sin α(α为参数)得曲线C 的普通方程为x 2+4y 2=4,因为P (1,0)在直线l 上,故可设直线l 的参数方程为⎩⎪⎨⎪⎧x =32t +1y =12t (t 为参数),将其代入x 2+4y 2=4得7t 2+43t -12=0, 所以t 1·t 2=-127,故|PA |·|PB |=|t 1|·|t 2|=|t 1·t 2|=127.2.(2018·合肥第一次质量检测)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =3cos θy =2sin θ(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2:ρ-2cos θ=0.(1)求曲线C 2的直角坐标方程;(2)若曲线C 1上有一动点M ,曲线C 2上有一动点N ,求|MN |的最小值. 解:(1)由ρ-2cos θ=0得ρ2-2ρcos θ=0. 因为ρ2=x 2+y 2,ρcos θ=x ,所以x 2+y 2-2x =0, 即曲线C 2的直角坐标方程为(x -1)2+y 2=1. (2)由(1)可知,圆C 2的圆心为C 2(1,0),半径为1. 设曲线C 1的动点M (3cos θ,2sin θ), 由动点N 在圆C 2上可得|MN |min =|MC 2|min -1.因为|MC 2|=(3cos θ-1)2+4sin 2θ=5cos 2θ-6cos θ+5,所以当cos θ=35时,|MC 2|min =455,所以|MN |min =|MC 2|min -1=455-1.3.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 解:(1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当⎪⎪⎪⎪⎪⎪21+k 2<1, 解得k <-1或k >1,即α∈⎝ ⎛⎭⎪⎫π4,π2或α∈⎝ ⎛⎭⎪⎫π2,3π4.综上,α的取值范围是⎝⎛⎭⎪⎫π4,3π4. (2)l 的参数方程为⎩⎨⎧x =t cos αy =-2+t sin α(t 为参数,π4<α<3π4).设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sinα+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin 2αy =-22-22cos 2α(α为参数,π4<α<3π4). 4.(2018·昆明调研)在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A (2,1).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点.(1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若|PQ |2=|AP |·|AQ |,求直线l 的斜率k .解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =1+t sin α(t 为参数).曲线C 的直角坐标方程为x 2+y 2=2y .(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得t 2+(4cos α)t +3=0, 由Δ=(4cos α)2-4×3>0,得cos 2α>34,由根与系数的关系,得t 1+t 2=-4cos α,t 1·t 2=3,由参数的几何意义知,|AP |=|t 1|,|AQ |=|t 2|,|PQ |=|t 1-t 2|, 由题意知,(t 1-t 2)2=t 1·t 2, 则(t 1+t 2)2=5t 1·t 2, 得(-4cos α)2=5×3,解得cos 2α=1516,满足cos 2α>34,所以sin 2α=116,tan 2α=115,所以直线l 的斜率k =tan α=±1515. 5.(一题多解)(2018·郑州第一次质量预测)在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=8cos θ1-cos θ. (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若α=π4,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积.解:(1)由题知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).因为ρ=8cos θ1-cos 2θ, 所以ρsin 2θ=8cos θ,所以ρ2sin 2θ=8ρcos θ,即y 2=8x .(2)法一:当α=π4时,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+22t y =22t (t 为参数),代入y 2=8x 可得t 2-82t -16=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=82,t 1·t 2=-16,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=8 3. 又点O 到直线AB 的距离d =1×sin π4=22,所以S △AOB =12|AB |×d =12×83×22=2 6.法二:当α=π4时,直线l 的方程为y =x -1,设M (1,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=8x ,y =x -1,得y 2=8(y +1),即y 2-8y -8=0, 由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=8,y 1y 2=-8,S △AOB =12|OM ||y 1-y 2|=12×1×(y 1+y 2)2-4y 1y 2=12×82-4×(-8)=12×46=2 6.6.(2018·陕西教学质量检测(一))在平面直角坐标系xOy 中,已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t cos αy =sin α(t >0,α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ+π4=3. (1)当t =1时,求曲线C 上的点到直线l 的距离的最大值; (2)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围. 解:(1)由2ρsin ⎝⎛⎭⎪⎫θ+π4=3得ρsin θ+ρcos θ=3,把x =ρcos θ,y =ρsin θ代入得直线l 的直角坐标方程为x +y -3=0,当t =1时,曲线C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =sin α(α为参数),消去参数得曲线C 的普通方程为x 2+y 2=1,所以曲线C 为圆,且圆心为O ,则点O 到直线l 的距离d =|0+0-3|2=322,所以曲线C 上的点到直线l 的距离的最大值为1+322.(2)因为曲线C 上的所有点均在直线l 的下方, 所以对任意的α∈R ,t cos α+sin α-3<0恒成立, 即t 2+1cos(α-φ)<3⎝ ⎛⎭⎪⎫其中tan φ=1t 恒成立,所以t 2+1<3, 又t >0,所以0<t <2 2.所以实数t 的取值范围为(0,22).7.(2018·福州模拟)在直角坐标系xOy 中,曲线C :⎩⎪⎨⎪⎧x =t cos αy =sin α(α为参数,t >0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l :ρcos ⎝⎛⎭⎪⎫θ-π4= 2.(1)若l 与曲线C 没有公共点,求t 的取值范围; (2)若曲线C 上存在点到l 的距离的最大值为62+2,求t 的值. 解:(1)因为直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,即ρcos θ+ρsin θ=2, 所以直线l 的直角坐标方程为x +y =2.因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =t cos αy =sin α(α为参数,t >0),所以曲线C 的普通方程为x 2t2+y 2=1(t >0),由⎩⎪⎨⎪⎧x +y =2,x 2t2+y 2=1,消去x 得,(1+t 2)y 2-4y +4-t 2=0, 所以Δ=16-4(1+t 2)(4-t 2)<0, 又t >0,所以0<t <3, 故t 的取值范围为(0,3).(2)由(1)知直线l 的直角坐标方程为x +y -2=0,故曲线C 上的点(t cos α,sin α)到l 的距离d =|t cos α+sin α-2|2,故d 的最大值为t 2+1+22,由题设得t 2+1+22=62+ 2. 解得t =± 2. 又t >0,所以t = 2.8.(2018·潍坊模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ=sin θ(ρ≥0,0≤θ<π).(1)写出曲线C 1的极坐标方程,并求C 1与C 2交点的极坐标;(2)射线θ=β⎝ ⎛⎭⎪⎫π6≤β≤π3与曲线C 1,C 2分别交于点A ,B (A ,B 异于原点),求|OA ||OB |的取值范围.解:(1)由题意可得曲线C 1的普通方程为x 2+(y -2)2=4,把x =ρcos θ,y =ρsin θ代入,得曲线C 1的极坐标方程为ρ=4sin θ,联立⎩⎪⎨⎪⎧ρ=4sin θ,ρcos 2θ=sin θ, 得4sin θcos 2θ=sin θ,此时0≤θ<π,①当sin θ=0时,θ=0,ρ=0,得交点的极坐标为(0,0);②当sin θ≠0时,cos 2θ=14,当cos θ=12时,θ=π3,ρ=23,得交点的极坐标为⎝⎛⎭⎪⎫23,π3,当cos θ=-12时,θ=2π3,ρ=23,得交点的极坐标为⎝ ⎛⎭⎪⎫23,2π3,所以C 1与C 2交点的极坐标为(0,0),⎝ ⎛⎭⎪⎫23,π3,⎝ ⎛⎭⎪⎫23,2π3.(2)将θ=β代入C 1的极坐标方程中,得ρ1=4sin β, 代入C 2的极坐标方程中,得ρ2=sin βcos 2β, 所以|OA ||OB |=4sin βsin βcos β=4cos 2β,因为π6≤β≤π3,所以1≤4cos 2β≤3,所以|OA ||OB |的取值范围为[1,3].。

相关文档
最新文档