地球物理随机联合反演
地球物理反演技术的原理与应用

地球物理反演技术的原理与应用地球物理反演技术是一种利用地球物理学原理和数据来研究地球结构和物理性质的方法。
它通过观测不同物理现象的数据,并将这些观测数据与理论模型进行比对,从而推断地下地质结构和属性的技术。
本文将介绍地球物理反演技术的原理和常见的应用领域。
一、地球物理反演技术的原理地球物理反演技术的原理主要基于物理学原理,包括电磁学、重力学、磁学、地震学和地热学等。
具体原理如下:1. 电磁学原理:电磁法反演技术利用地下不同电性介质对电磁场的响应特性来识别地下结构。
该方法可以通过测量地下电磁场的参数(如电阻率、电导率和介电常数)来推断地下岩石类型、孔隙度和流体性质。
2. 重力学原理:重力法反演技术基于地球重力场的变化来推测地下物质的密度分布。
地球上不同密度的岩石体会造成地球重力场的微小变化,通过测量这种变化,可以揭示地下岩石体的类型和分布。
3. 磁学原理:磁法反演技术是利用地下岩石的磁性来推测地下结构。
地球上的磁场会受到地下岩石的磁性影响,通过测量地球磁场的变化,可以了解地下岩石类型和分布。
4. 地震学原理:地震法反演技术是利用地震波在地下传播的特性来推测地下结构。
地震波在地下不同介质中传播时,会发生折射、折射、散射等现象,通过记录地震波的传播速度和幅度变化,可以计算出地下岩石的速度和密度分布。
5. 地热学原理:地热法反演技术是利用地球内部热流传递的特性来推测地下热流分布和地下岩石的导热性质。
地下不同介质的导热性质不同,通过测量地球表面的地温和热流分布,可以推断地下岩石的导热性质、岩石类型和介质性质。
二、地球物理反演技术的应用地球物理反演技术广泛应用于地质勘探、环境监测、灾害预警和能源开发等领域。
以下是一些常见的应用领域:1. 矿产勘探:地球物理反演技术在矿产勘探中具有重要作用。
根据地球物理反演技术可以获得的电阻率、重力梯度、磁场强度等信息,可以推测地下的矿体分布和性质,指导矿产资源的开发和勘探。
地球物理反演

2. 基于褶积模型的波阻抗反演
§6 反演结果的评价
1. 评价问题的提出 2. 评价准则 3. 平均函数A决定分辨率 4. 平均函数与哪些因素有关?
§7 解的稳定性
1. 稳定性的概念 2. 举例 3. 稳定性与核函数的性质有关
§8 线性反演问题综述
1. 构造一组新的正交基 2. 的含义 3. 模型构制(解的存在性) 4. 解的非唯一性 5. 长度最小模型是核函数的线性组合
§7 L 范数解
1. L 范数解的物理意义 2.目标函数
第三章 广义反演法
§1 广义逆 §2 矩阵奇异值分解(SVD)和自然逆 §3 广义反演法 §4 数据分辨矩阵 §5 参数分辨矩阵 §6 特征值对反演结果的影响 §7 分辨率高的和方差大小的测度 §8 最佳折衷解
§1 广义逆
§2 矩阵奇异值分解(SVD)和自然逆
数据加权的例子 1. 权系数矩阵为对角矩阵
E eTWee, diag(We ) (1,1, 2,1,1)T
三、等式限制条件
问题:
d Gm Fm h
目标函数:
E (d Gm)T (d Gm) T [Fm h]
例一
m1
1 N
(1, 1, , 1)mm2N
地球物理反演理论
刘学伟
第一章 绪论
§1 反演的目的和任务 §2 几个反演例子 §3 非线性问题线性化与连续模型离散化 §4 模型构制 §5 解的非唯一性 §6 反演结果的评价 §7 解的稳定性 §8 线性反演问题综述
§1 反演的目的和任务
1.什么是反演,什么是正演? 2.地球物理反演: 3.反演理论中的四大问题: 4.数学物理模型和响应函数的正演问题:
z
综合地球物理联合反演综述

综合地球物理联合反演综述地球物理联合反演是一种通过集成多种地球物理方法,以实现对地质结构、矿产资源等进行高精度探测和反演的技术。
随着科技的不断进步,地球物理联合反演在理论、方法和应用方面取得了重要进展。
本文将对地球物理联合反演的相关文献进行综述,旨在梳理该领域的发展历程,明确其现状和未来发展方向。
地球物理联合反演的理论基础主要涉及地球物理学、统计学、计算机科学等多个学科。
众多学者从不同角度对联合反演的理论进行了探讨。
其中,地球物理学主要研究地质体的物理性质和分布特征,为联合反演提供基础数据和解释;统计学则通过对地球物理数据进行建模和推断,以实现对地质目标的精确反演;计算机科学则为地球物理联合反演提供了强大的计算工具和方法支持。
在方法方面,地球物理联合反演主要涉及数据采集、预处理、反演算法等环节。
其中,数据采集是获取地球物理信息的关键步骤,包括地震、重力、电磁等多种数据类型;预处理则是对采集到的数据进行清洗、去噪等处理,以提高数据质量;反演算法则是实现从地球物理数据到地质目标推断的核心环节,包括线性反演、非线性反演、多尺度反演等。
地球物理联合反演广泛应用于地质结构探测、油气藏寻找等领域。
在地质结构探测方面,通过多种地球物理方法的联合反演,可以实现对地质体的高精度探测和三维成像,为地质调查和工程设计提供重要依据。
在油气藏寻找方面,地球物理联合反演可以通过对地层岩性、物性、含油气性等进行综合反演,有效提高油气勘探的成功率。
地球物理联合反演在环境地质、水文地质、地壳探测等多个领域也有广泛应用。
例如,通过联合反演可以对地下水分布、污染物扩散等进行精确模拟,为环境治理和灾害防控提供科学依据。
近年来,地球物理联合反演在国内外取得了显著的研究成果。
在数据采集方面,研究者们不断探索新型地球物理方法和技术,以提高数据质量和探测精度。
在反演算法方面,研究者们提出了多种有效的算法,如基于神经网络的非线性反演、多尺度广义反演等,以提高反演结果的准确性和可靠性。
大地电磁(MT)联合反演的发展

大地电磁(MT)联合反演的发展自从地球物理这个行业诞生以来,地球物理学家就一直研究求解反演问题。
在地球物理勘探中,人们基于地面观测数据如重磁场、激电场数据记录来推断地下特性。
这种由观测数据推断地下地质体模型特性的工作就是求解地球物理“反演问题”。
标签:地球物理;反演;发展1 理论基础反演被定义为一种方法,借助这种方法,人们可以根据原始观测数据来推定地下地质体模型。
以地球物理数据为例,观测结果包括那些可称之为地下构造的物理特征信号。
反演就是根据给定的一组地球物理测量数据反映地下地质模型,再由构建的地下地质模型响应拟合测量结果的方式进行,然后通过拟合差来判定所构建地质模型是否符合实际的方法来完成。
因此要确定一个优秀地质模型是很重要的,但是就算地质模型建立的很合理,仍有大量的问题需要我们去解决。
人们尝试使用最优化反演方法来观测地球物理响应与理论地球物理响应的匹配。
运用多种算法,这些算法的目的是为了使观测到的数据与模型计算出来的数据之间在某种差异上达到最小。
一般的方案都是先对模型参数最初步估计,然后用最优化算法生成一组调节或修正这种差异的参数,接着将这些参数用于理论模型,从而得到新的理论响应应改善参数的匹配工作。
若拟合差较小,则说明反演是收敛的;否则说明参数匹配的不合适,可以通过大量方法来达到匹配的目的。
反演计算的结果既取决于正演模型的选择,也取决于合适的最小化拟合差原则的选择。
常规的方法是建立在累积最小平方误差和累积最小绝对偏差的基础上。
除误差标准的选择之外,通常也可采用光滑约束的方法来避免解矢量中的虚假振荡。
2 传统的反演方法反演的主要目的是从已有的数据得到可靠的地质模型信息,建立模型与数据的函数,假设测量数据满足高斯分布,并考虑到数据对模型的限制信息,反演就变成了一个无约束最小化问题。
采用迭代法从初始模型出发,建立一系列模型逼近最小值。
大量的MT数据处理都是以一维水平层状介质模型为基础。
高斯-牛顿阻尼最小二乘法MT一维迭代反演一直被应用至今的事实说明了一维地下地质模型的能力和通用型,主要是计算Jacobian矩阵以及Hessian矩阵。
综合地球物理联合反演综述_杨辉

第17卷 第2期 地 球 物 理 学 进 展 V ol.17 N o.2 2002年6月(262~271) PROG RESS I N GE OPHY SICS June 2002综合地球物理联合反演综述杨 辉1 戴世坤1 宋海斌2 黄临平1(1.石油大学,北京102200;2.中国科学院地质与地球物理研究所,北京100101)[摘 要] 阐述了综合地球物理研究的必要性、方法学及研究思路,指出联合反演是综合地球物理重要的定量解释工具,通过回顾联合反演的研究现状与进展,指出联合反演的发展方向.[关键词] 综合地球物理;联合反演;综述[中图分类号] P631 [文献标识码] A [文章编号] 100422903(2002)022*******0 引 言“没有盆地,就没有石油”.以盆地为主要研究对象的油气勘探正向着新地区、新领域、新类型和新深度进军.虽然石油地球物理勘探方法已随着计算机科学技术的迅猛发展有了长足的进展,但是我们现在所面对的勘探目标要比以前复杂的多,难度大的多.主要表现在以下四个方面:(1)复杂地表条件.如黄土塬、沙漠、戈壁、冻土、沼泽、山地、碳酸盐岩裸露区、火山岩覆盖区等,这些地表地质条件使得难以得到高讯噪比的资料,甚至得不到有效反射信号或其能量很弱;(2)复杂地下构造.如断块、岩性、风化壳、盐下构造、火成岩等特殊油气储集体等;(3)上述两种情况的复合.即不仅地表地质条件复杂,而且地下构造也复杂,如山前高陡构造等;(4)大深度基底结构研究.如大深度基底埋深、起伏、断裂、岩性及基底内幕的研究.面对这样复杂的勘探目标,单凭一种方法就表现出了某种局限性,必须以其他方法作必要的补充.非地震方法虽然精度和分辨率不如地震方法,但它们有各自的特点,由于任一种地球物理方法所利用和反映的只是其一个侧面,实难以偏概全.综合各种地球物理方法,从不同角度来研究同一对象就较全面地接近于实际,将其综合解释不仅有可能解决上述问题,而且还可对地下构造有更全面的认识.另外,市场经济要求“最小的投入,最大的回报”因此,近年来十分重视综合地球物理方法的研究.1 综合地球物理的方法学每一种地球物理勘探方法都有它的特长和局限性,如重磁方法横向分辨率较高,而电磁勘探是介于地震和重、磁勘探方法之间的一种勘探方法.它比重、磁方法有较好的垂向分辨和分层能力,但是,由于电磁场强度随深度呈指数规律衰减的特点,其分辨能力也随着深度按指数规律减小,所以它与地震方法相比,其垂向分辩率与分层能力要低.但是,其频谱范围丰富的大地电磁场其穿透能力可达地下几十千米甚至上百千米,并且该方法具有不受高阻屏蔽且对低阻层反映灵敏等特点,使得它在研究深部构造、基底结构、火成岩分布等方面具有独特的优势,成为地震勘探方法的一种重要补充.[收稿日期] 2001212226; [修回日期] 2002202221.[基金来源] 石油大学(北京)物探重点实验室资助项目.[作者简介] 杨辉,男,1961年生,2000年获同济大学理学博士学位,高级工程师,现为石油大学(北京)博士后.研究方向:综合地球物理方法.(Email:yanghui2phd@)石油地球物理勘探发展的一个重要方向,就是开展综合地球物理研究.地球物理反演问题的多解性、单一地球物理方法解决地质问题的局限性,以及地质、地球物理条件的复杂多样性,都决定了油气物探必须在先进的地质理论指导下走综合物探之路[1].只有这样,才能充分发挥各种地球物理方法的优势和特长,高效率、高效益地评价含油气沉积盆地,加快石油勘探步伐.刘光鼎根据长期的综合地球物理勘探工作,在20世纪70年代末,总结出了“一、二、三、多”的综合地球物理解释原则[2—6],即:1.一种指导:以活动论构造历史观为指导,对具体盆地作具体分析,努力认识其演化,求得盆地形成时空分布规律性.2.二个环节:地球物理场是地球内部物理性质的综合反映,具有丰富的地球内部的信息.但要充分认识这些信息,首先必须紧紧抓住岩石物性这一重要环节,因为它是联系地质与地球物理之间的纽带;其次一个重要环节是物理模型,因为它是地球物理资料由定性解释向定量解释过渡的关键.3.三项结合:为了深化地质认识,在解决任何问题的全过程中都必须努力使各种地球物理资料与地质资料相结合,使定性解释与定量解释相结合,使正演问题与反演问题相结合,因为这是一个特定系统工程的不同层次.4.多次反馈:在地球物理这个系统工程中,必须依靠各种反馈信息进行修正和完善,减小多解性,取得比较全面的认识.该原则是我们进行综合地球物理研究的方法学,对进行综合地球物理研究有十分重要的指导意义.2 综合地球物理重要的定量解释工具—联合反演地球物理响应是由地下介质的物理特性差异激发的,虽然各种地球物理响应互不相同,但由这些响应推断的地下介质是相同的.因此,由同一地下介质激发的地球物理数据推断该图1 地质—地球物理综合解释研究思路Fig.1 Research flowing chart of integrated geologic and geophysical interpretation地下介质的特性,如埋深、厚度、速度、密度、电性等,都应相互一致.所谓联合反演就是在地球物理反演时联合应用多种地球物理观测数据,通过地质体的岩石物性和几何参数之间的・362・2期 杨辉,等:综合地球物理联合反演综述 相互关系求得同一个地下地质、地球物理模型.由于我们要推测的地球模型只有一个,它必须和地表观测到所有物理现象保持一致.因此,联合反演是地球物理数据分析的理想工具[6].联合反演的基本条件是参加反演的方法一定有公共的物性界面或地质体.联合反演分为[7]:同步反演、顺序反演、剥离法反演、伸展法反演.其总体研究思路如图1.3 联合反演的研究历程与现状联合反演包括两层意义:第一,基于相同物性地球物理观测数据之间的联合反演,如反射地震的旅行时和振幅联合反演,地面地震和垂直地震剖面(VSP )资料的联合反演,纵波和横波资料的联合反演;不同电法或电磁法所取得的观测数据的联合反演,大地电磁测深(MT )和瞬变电磁法(TE M )联合反演,MT 和垂向电测深法(DC )资料联合反演,MT 和可控源音频大地电磁测深(CS AMT )资料联合反演等.这种联合反演有天然的合理性,因为它们均基于相同的岩石物性差异,物理基础相同,观测场之间必然存在着相关性,这种联合反演已有大量的成功实例.第二,基于不同岩石物性的地球物理观测数据之间的联合反演,如地震和重力,地震和MT ,重力和MT 等.这种联合的基础是不同物性之间存在着相关的内在联系,在沉积岩地区,这种假定是合理的,因为岩石的沉积环境相同,它们的物性参数之间必然存在一定的内在联系.如纵波速度和密度之间存在明确、稳定的定量关系,可以用G ardner 公式或其它经验公式进行换算.在一定地质条件下,电阻率和速度之间可以用Faust 公式换算.由相关的物性参数必然会诱发相关的物理异常,这是利用多种地球物理信息进行联合反演的地球物理基础.这种联合反演法,是地球物理资料反演的必然趋势和最佳选择,因此引起了众多地球物理学家的高度重视[8].3.1 联合反演方法的发展历程20世纪70年代中期,澳大利亚的V ozoff 和Jupp 和[9]开创了联合反演的先河,用迭代二阶马奎特阻尼最小二乘法实现了一维直流电测深(DC )和大地电磁测深(MT )资料的联合反演.解决了层状介质中的各向异性问题.他们详尽地描述了修改的广义逆算法,还叙述了如何利用阻尼因子特征参数以及误差范围来分析反演结果的可靠程度.由于MT 和DC 均基于岩石的电性差异,物理基础相同,其共同参数为电阻率和层厚度.两种方法的互补性使反演不仅改进了电性参数的分辩率,而且减小了单一资料反演方法的多解性.进入80年代,联合反演得到了迅速发展;S ovino 等[10]利用地震P 波走时和重力资料联合反演,研究华盛顿东部地区地壳上地幔密度、速度结构.由于速度和密度这两种物性间存在着相关的内在联系,故文中以此作为其约束条件,取得了一定的效果.G olizdra [11]在对模型参数化的基础上将反演的参数化分为S (Separate ),U (Unified )和M (Mixed )三类模型,在S (独立)类模型中,没有假设密度和速度差界面的匹配关系.而且,密度差和速度界面是独立的.在U (综合)类模型中,假设密度和速度的匹配关系以及共同的密度、速度界面,Savino 等使用了这类模型.M (混合)类模型为S 和U 的混合,并且在密度和速度模型之间,假定存在着某种关系.为了减小重、磁异常反演的多解性问题,在重、磁异常由同一场源引起的情况下,Menichetti 等[12]研究了使用广义反演方法来实现二点五维重、磁联合反演,反演参数为异常体多边形的角点坐标及每一矿体的密度差及磁化率,结果说明这种类型的反演使用广义反・462・ 地 球 物 理 学 进 展 17卷演算法是合理的,并且说明了方法的实用性.G omez 2T revino 等[13]利用电磁(E M )和直流电阻率法来联合反演一维模型情况下的电阻率和地层厚度,效果明显.王一新等[14]利用地震构造图和层速度资料构成重力模型,计算其重力效应并与实测重力值对比,以检验地震构造图的准确性或配合层速度资料研究地下岩性变化.M ottl 等[15]使用非线性规化方法实现了二维重、磁联合反演,取得了一定的效果.杨文采等[16]在地层近似水平的假设条件下,利用阻尼最小二乘法对均方根速度和反射波走时联合反演速度分析道上地层的层速度和反射面的深度.通过数值计算的例子说明联合反演算法的稳定性,实际例子效果良好.Chavez 等[17]在假设重、磁观测数据的响应为同一场源所引起的前提下,通过一个参数比值建立了密度差和磁化强度的关系,使用线性规划方法实现了二维重磁联合反演.通过这个比值参数可推断异常体的岩石类型.Lines 等[18,19]使用地面地震数据、声波测井,地面重力及井中重力等资料研究了地震、重力同步反演及顺序反演方法,在反演过程中,充分利用了已有的地面地震、井下声波测井、VSP 数据、地面及井下重力数据等资料,从而大大缩小了模型的选择范围,减小了反问题的多解性,强化了解释过程.通过研究得出了如下结论:完全自动联合反演是非常困难的,也是不需要的,由于顺序反演不要求给出地震、重力贡献明显的先验权系数,因此,顺序反演更容易控制,由于这种原因,同时反演所有数据时,优先选用顺序反演.Sasaki [20]研究了二维大地电磁测深(MT )和偶极—偶极电阻率数据的联合反演,二维正演程序均使用了有限元法,将地下划分为大量的矩形网格,且每个网格内电阻率相同,使用约束圆滑最小二乘法与G ram 2Schmidt 方法联合运用,从而使解稳定,并且避免了不合逻辑的电阻率特征,理论和实际资料表明联合反演优于单种数据的反演.胡建德[21]研究了瞬变电磁测深和直流电磁测深资料的联合反演,众所周知,直流电测深对良导层和高导层都反映灵敏,但对薄层出现的多解性又使问题变的复杂化,瞬变电磁测深对良导层反映灵敏,对高阻层却不灵感.这两种方法的联合反演能扬长避短,消除单一方法中存在的某些缺陷,增加重要参数的个数.到上世纪90年代,随着计算机技术的发展,联合反演得到了广泛的应用;D obroka 等[22]对垂直地震剖面(VSP )走时数据、电法数据,采用基于最大频率值(MFV )的加权最小二乘算法进行联合反演,与阻尼最小二乘算法相比,该算法具有估计误差小以及初始模型选择对结果影响较小两个特点.用联合反演方法求取煤层的厚度、电阻率及速度等物性参数.研究结果认为,与单独一种资料的反演相比,基于MFV 算法的联合反演算法稳定、结果可靠.Ras 2mussen 等[23]用瞬变电磁测深和重力数据联合反演确定盆地的深度,取得了一定的效果.王西文等[24]利用相对准确的地震勘探结果作为分离重力场的先验信息,然后用分离后的剩余场来反演地震反射不详段界面(剥离法反演),得出了这种重力、地震联合反演的方法有可能比任何一种单一方法的效果都好的结论.Sun 等[25]提出了一个在层析成像反演中多个目标函数的极小化过程,该过程在层析成像反演中是十分有用的,特别是同时做几种类型数据模拟,该过程将分级的优化问题转成为等效约束优化的问题,从而使问题简单化.Z eyen 和P ous [26]在具有先验信息的基础上,如密度、磁化率、剩余磁化强度等,对重、磁场的联合反演问题进行了研究,而张贵宾等人[27]以BG 理论为基础,在重磁异常线性反演中将该理论与吉洪诺夫正则化方法相结合求解地下密度源(或磁源)分布及质心(或磁质心)位置;在重、磁非线性反演中结合应用正则化方法和马奎特思想给出一种确定地下密度(或磁性)界面的稳定迭代算法—正则马奎特法.在此基础上,研究了一种综合重、磁异常联合反演既是磁界面也・562・2期 杨辉,等:综合地球物理联合反演综述 是密度界面的方法,并由此建立了重、磁广义线性综合反演系统.Alekseev 等[28]定量描述了联合反演问题的解及其一般特征.指出,通过原始数据把各个单独反演问题结合成一个联合反演问题,可降低联合反演在描述参数几何形态、特别是各单独反演问题之间的自由度数,从本质上提高了地球物理调查研究的功效,从理论上给出了联合反演问题比单独一种地球物理资料反演更优越的结论.在重、震联合反演方面,汪宏年等[29]提出了一种利用重力、地震资料联合反演层状介质的层速度、层密度及界面深度的迭代算法,并首次提出层状介质中的双摄动处理方法,以及在双摄动情况下理论波场和重力异常变化的一阶线性解.对理论模型进行重力、地震联合反演的结果表明,该方法不仅可减少未知参数的个数,提高反演的收敛速度,而且可减少反演的不适定性.冯锐等[30]按照地震测深的常用方法,采用二维四边形非块状模型,通过网格节点的密度值来刻划连续性或间断性的物性分布.以此来解决地震、重力联合反演中关于建立一致性模型的问题.张树林等[31]研究井间地震和逆VSP 联合层析成像,联合反演的效果优于单一的井间地震层析成像,理论模型和实际资料的联合反演获得了令人满意的效果.关小平等[32]研究了传统的重、震联合反演中存在的问题,建议充分利用地震资料作为形体参数进行分场,对分离出的目的层位的重力效应再利用Parker 公式进行反演,以求出那较深的或没有可靠地震资料的界面.在此基础上,利用速度、密度参数之间的关系,进行地震、重力资料联合反演,并给出了两个实例,取得了较好的效果.周辉等[33,34]利用广义线性反演方法及非线性反演的预条件最速下降法开展了一维地震—大地电磁测深资料反演方法研究.得出了顺序反演的效果优于地震、电磁单独反演的效果,而同时反演的效果最优,以及非线性联合反演方法比广义线性联合反演方法更优越的结论.范兴才等[7]叙述了二维重力、地震资料的联合反演方法,并讨论了反问题解的不唯一性和约束条件的使用.对联合反演进行理论模型和实际资料运算,说明该方法在同时求取深度、速度和密度参数问题上是有效的.Zhao (1995)在红河活动断裂研究中,将重力观测数据和全球定位系统(G PS )观测数据进行联合反演,取得了一定的效果.陈冰等[7]叙述了剥离法进行联合反演的应用条件及关键问题,理论模型及实例说明了其效果.Hering 等[35]提出了一维直流电测深(DC )和地震面波数据的联合反演公式.运用线性规划反演法和最小二乘法得到浅地表(几十米以内)两种数据反演结果,电阻率和面波慢度数据的联合反演得到了更好的参数估计并且减小了平均估计误差.关小平等[36]对重力、地震资料进行了联合反演,取得了一定效果.B.T ezkan [37]利用音频大地电磁法(AMT )和瞬变电测深法(TE M )的联合反演,解决了德国C ologne 地区某一矿体的底界及边界问题.Max well [38]对一维瞬变电磁测深(TE M )和畸变的大地电磁测深数据进行联合反演,由于MT 受浅部三维效应的影响较大,而瞬变电磁受浅部三维效应的影响较小.因此,二者的联合反演可以不用对MT 数据做静校正.该法的实质是回避了受浅部不均匀体影响较大的MT 视电阻率数据,而用受浅部影响较小的MT 阻抗相位与TE M 数据做反演.由于磁异常的反演具有固有的非唯一性,而地面和井中三分量数据包含有场源信息的互补信息.因此,Li [39]研究了二者的联合反演,理论和实际资料的试算说明了该方法的效果.Vasco 等[40]研究了地震波旅行时和振幅的联合反演方法,用该法推测了Ray 2m ond 附近花岗岩裂缝的速度和Q 值,预测结果与独立的测井和地球物理资料相吻合.为了更详细地划分层序边界及层序体,改进地震剖面的分辨率,Du 提出了测井和地震数据的联合反演方法,该法分三步进行:(1)声波测井统计处理;(2)井旁声波和地震数据的相互迭代・662・ 地 球 物 理 学 进 展 17卷拟合;(3)地震剖面的宽带约束反演,试验处理表明了该法是最有效的改进地震数据垂向分辩率的方法之一.Misiek 等继Hering 理论模型研究之后,给出了野外电法(DC )和面波实际数据的联合反演结果.同样,证实联合反演要优于任一种单独资料反演的结论.G rechka 等[41]实现了P 波和PS 波旅行时的联合反演,利用该方法可以找到垂直对称平面的方向和所有九个介质的弹性参数,取得了好的效果.王西文[42]采用剥离法对重力、地震资料联合反演目的层密度值,进而预测油气藏.该方法利用深度偏移地震剖面解释的地质构造信息为地质模型,利用重力正演公式消除非目的层的密度界面对目的层的影响;然后,将目的层压缩成为一个等效密度界面,再用消除非目的层影响的剩余重力异常反演该界面的视界面密度差,最后,根据目的层反演出的视界面密度差值的相对低值区来预测油气藏的位置.Fu [43]利用多层反馈神经网络实现声阻抗的联合反演,利用地震和测井数据以井旁可利用的资料训练学习,然后再进行反演,实际例子说明了方法的效果.Aric 等[44]利用地震和大地电磁联合成像,调查最上部(小于1K M 深度)的结晶地壳,以了解传统地质制图方法未能解决的区域构造和构造关系,实例说明该方法可以用来结晶基岩范围内的构造成像.R ossi 等[45]对反射波和折射波的旅行时进行联合反演来产生一个更可信和稳定的3D 速度变化及层结构,由联合反演得到的改进速度场进行叠前深度偏移,不仅对浅层而且对深层提供了更好的成像效果.R oth 等[46]利用遗传算法联合反演高分辨率地震数据中的瑞雷波和导波,通过瑞雷波和导波两者频散特性,而利用它们之中所包含的互补信息.该方法的有效性已用来自实际地震模型的合成数据作了试验和证实.杨振武等[47]采用广义逆方法实现了一维大地电磁和地震数据联合反演,通过岩性或矿体的物性和几何参数之间的相互关系,建立待求的地球物理模型.杨辉[48]以地震资料解释的三维构造图作为先验信息,用重力三维正演剥离基底及基底以上界面所产生的重力效应,然后对分离后的基底岩性异常用稳建的S VD 算法来线性反演基底密度差.最后,利用重、磁、电、震、地面地质、钻井等资料综合解释了盆地的基底时代及岩性,取得了令人满意的地质效果.Anders on 等[49]用顺序法对地震和重力资料联合反演速度和密度资料,为深度偏移成像提供准确的速度模型,减少了深度偏移成像的迭代次数,改进了深度偏移成像的效果,预示了该方法的前景.过仲阳等[50]改进了遗传算法,并用于联合反演地震资料和大地电磁资料,认为在一维情况下采用同步反演较顺序反演合理,在二维情况下采用顺序反演较同步反演合理和有效,实际资料的反演说明了方法的有效性.Vladimir 等[51]实现了P 和PS 旅行时的联合反演,对于正交模型,P 波和PS 波的反射旅行时的结合,使得纯剪切模型的重建成为可能,并且能够得到由P 波数据不能单独确定的各向异性参数,实验室物理模型数据的联合反演展示了其效果.Y ang 等[52]用直流电测深(DC )及瞬变电磁测深(TE M )数据进行联合反演以确定淡水和盐水的界面的纵、横向分布,得出DC 和TE M 在不同深度上资料的结合可以给出比使用单一种方法更好的界面图像的结论.王斌贝等[53]采用遗传算法解决重、磁、电资料的联合反演,得出了随机联合反演同单独反演相比有优势的结论.Sharma 等[54]用最优化和VFS A 联合反演评价1D 电磁和直流电阻率法中的等效性的抑制问题,研究表明全局最优化的单独数据的反应不能解决内在等效性,而联合反应非常好的克服了等校性.Wang [55]应用反射地震的旅行时和振幅同时反演模型几何形状和弹性参数,使用该方法可能改善传统的振幅随炮检距变化(AVO )分析中对地下弹性参数的估计,通过北海实际数据应用证明这种反演方法.刘崇兵等应用广义线性反演方法研究了地震面波和重・762・2期 杨辉,等:综合地球物理联合反演综述 。
地球物理反演方法及优劣分析

地球物理反演方法及优劣分析地球物理反演是一种通过观测地球物理场的响应来推断地下介质结构和性质的方法。
地球物理反演在地质勘探、环境研究、灾害预测等领域具有重要应用价值。
本文将介绍几种常见的地球物理反演方法,并分析它们的优劣势。
1. 重力法重力法是一种通过测量地球物体潜在能的分布来推断地下密度结构的方法。
重力法具有简单、直观、非侵入性的优点,在海洋和陆地上都可应用。
然而,重力法对密度分布变化较小的地下构造敏感性不高,精度受地形影响。
此外,重力法对地下界面的分辨率较低,难以分辨细小结构。
2. 震电阻抗法震电阻抗法是一种通过测量地震波在地下传播的速度和衰减来推断地下介质的电阻率结构的方法。
震电阻抗法在勘探深层、辨析地下岩石类型等方面具有优势。
然而,震电阻抗法对电阻率界面明显的区域辨识度较高,但对电阻率变化较小的结构分辨率较低。
此外,震电阻抗法对最低频率的信号需高信噪比,仪器设备较为复杂。
3. 电法电法是一种通过测量地下电场、电位差和电流等信息来推断地下的电阻率结构的方法。
电法具有分辨率较高、不受地形影响的优势,适用于地下水、矿产资源、环境污染等的勘探。
然而,电法在复杂多层介质的情况下存在解耦问题,且对电阻率的分辨率随探测深度增加而下降。
4. 磁法磁法是一种通过测量地磁场的强度和方向变化来推测地下岩石磁性结构的方法。
磁法适用于勘探地下矿产、火山活动等。
磁法对磁性较强的物质敏感,但对非磁性物质的响应较弱。
此外,磁法的解释也受到磁化方向不明确和磁异常的干扰。
5. 地震反射法地震反射法是一种通过测量地震波在不同介质之间反射和折射的现象来推断地下介质结构的方法。
地震反射法是勘探石油和地表下岩石结构的常用方法。
地震反射法具有高分辨率、多参数的优势,可以提供地层的结构、速度、岩性等信息。
然而,地震反射法对地下介质的反射界面明显的要求较高,且受到地震波传播路径的限制。
总的来说,每种地球物理反演方法都有其适用的场景和局限性。
地球物理反演理论

地球物理反演理论一、解释下列概念1.分辨矩阵数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。
它不是数据的函数, 而仅仅是数据核G (它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。
模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。
2.协方差模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。
其映射只是数据核和其广义逆的函数, 而与数据本身无关。
在地球物理反演问题中,许多问题属于混定形式。
在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。
可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题:()(1)(cov )u aspread R size m α+-如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。
而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。
3.适定与不适定问题适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。
这三个要求中,只要有一个不满足,则称之为不适定问题4.正则化用一组与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。
对于方程c Gm d =,若其是不稳定的,则可以表述为()T T c G G I m G d α+=,其中α称为正则参数,其正则解为1()T T c m G G I G d α-=+。
地球物理反演方法及应用领域分析

地球物理反演方法及应用领域分析一、引言地球物理反演是一种通过观测地球上的物理场,并利用物理定律和数学模型,对地下结构和地球内部特征进行分析的方法。
地球物理反演方法在地质勘探、地震研究、资源勘探等领域具有重要应用价值。
本文将围绕地球物理反演方法展开讨论,并分析其在不同应用领域的具体应用。
二、地球物理反演方法1. 重力反演法:重力反演法是通过测量不同地点的重力场强度,利用物理模型和解析方法,进行地下密度结构的反演。
它在石油勘探、地质构造研究和火山活动监测等领域都有广泛应用。
2. 电磁反演法:电磁反演法通过测量电磁场数据,包括电磁地震、磁力计和电磁感应仪等,来推断地下岩石的电性性质。
电磁反演法在矿产资源勘探、地下水资源评价和环境地球物理研究等领域具有重要作用。
3. 地震反演法:地震反演法是通过地震波在地下传播的速度以及反射和折射现象,推断地下介质的物理特性。
它在地震勘探、地震监测和地震预测等领域发挥着重要作用。
4. 磁法反演法:磁法反演法是通过测量地磁场的强度和方向,推断地下岩石的磁性特征。
它在矿产勘探、石油勘探和矿床研究等领域中得到广泛应用。
三、地球物理反演方法的应用领域1. 地质勘探:地球物理反演方法在地质勘探领域中极为重要。
通过研究地球物理场的各种参数,例如重力场、磁场和电磁场,可以获得地下岩石的构造、性质和分布情况。
这对于石油勘探、矿产资源探测和地质灾害预警具有重要意义。
2. 地震研究:地球物理反演方法在地震研究中起到关键作用。
地震波的传播速度和反射、折射现象可以帮助科学家了解地震震源的位置、深度和强度,进而预测地震活动趋势和地震风险区域。
3. 矿产资源勘探:地球物理反演方法在矿产资源勘探中有广泛应用。
通过测量地下电磁场、地震波速度和重力场等物理参数,可以判断地下矿床的位置、形态和含量。
这对于矿产勘探和矿石储量评估具有重要意义。
4. 环境地球物理研究:地球物理反演方法在环境地球物理研究中也扮演着重要角色。