小升初数学知识点之数论
小升初数学知识点之数论

小升初数学知识点之数论数字的魅力一直以来都备受人们的关注和热爱。
数论作为数学的一个重要分支,研究整数之间的性质和关系,为我们揭示了数字的奥秘。
在小升初考试中,数论是一个重要的考点,掌握好数论的知识对学生来说至关重要。
本文将介绍小升初数学知识点之数论,帮助读者更好地理解和掌握这一领域的知识。
1. 质数和合数质数指的是只能被1和自身整除的整数,比如2、3、5等。
而合数则指的是可以被除了1和自身之外的其他整数整除的整数,比如4、6、8等。
掌握质数和合数的概念十分重要,可以帮助我们判断一个数的性质,并解决一些数的因子相关的问题。
2. 最大公约数和最小公倍数最大公约数(GCD)指的是两个或多个整数中能够整除它们的最大整数,最小公倍数(LCM)则是两个或多个整数中能够被它们整除的最小整数。
求最大公约数和最小公倍数的方法有很多,比如质因数分解法、辗转相除法等。
了解和掌握这些方法可以帮助我们解决一些关于数的倍数和约数的问题。
3. 素数分解和唯一分解定理素数分解是将一个合数分解成若干个素数的积的过程。
唯一分解定理指出,每一个大于1的正整数都可以写成质数的乘积,而且这个质因数分解的形式是唯一的。
通过素数分解,我们可以将一个较大的整数进行简化,方便我们进行计算和分析。
4. 奇偶性质每一个整数都可以分为奇数和偶数两类,其中奇数指的是不能被2整除的数,偶数则是可以被2整除的数。
奇偶性质在数论中有很多应用,比如判断一个数的因子个数、质因数分解中的奇偶关系等。
5. 同余定理同余定理是数论中一个重要的概念,它描述了整数间除以一个正整数所得的余数的性质。
同余定理可以帮助我们解决一些关于模运算的问题,比如计算大数的末几位、判断两个数是否互质等。
6. 质数的判定判断一个数是否为质数是数论中一个经典且重要的问题。
常见的质数判定方法有试除法、费马小定理等。
了解这些方法可以帮助我们高效地判断一个数是否为质数。
7. 常见的数论应用题数论的知识点在小升初数学考试中有着广泛的应用。
(完整版)数论知识点总结

(完整版)数论知识点总结1. 整数与整除性质整数是数的基本单位,整除是整数相除所得到的商是整数的关系。
- 整数运算:加法、减法、乘法、除法。
- 整数性质:正整数、负整数、零。
- 整数除法:被除数、除数、商、余数。
2. 质数和合数质数是只能被1和自身整除的正整数,合数是除了1和本身外还能被其他正整数整除的正整数。
- 判断质数:试除法、素数筛法。
- 质因数分解:将一个合数分解成质因数的乘积。
3. 最大公约数和最小公倍数最大公约数是一组数的最大公因数,最小公倍数是一组数的最小公倍数。
- 欧几里得算法:用辗转相除法求最大公约数。
- 求最小公倍数:将数分解成质因数,再取每个质因数的最高次幂相乘。
4. 同余定理同余定理是描述整数之间关系的定理。
- 同余关系:如果两个整数对于同一个模数的除法所得的余数相等,则它们对于这个模数是同余的。
- 同余定理:如果a与b对于模数m同余,那么它们的和、差、积也对于模数m同余。
5. 欧拉函数欧拉函数是比给定正整数小且与它互质的正整数的个数。
- 欧拉函数公式:对于正整数n,欧拉函数的值等于n与所有小于n且与n互质的正整数的个数。
6. 莫比乌斯函数莫比乌斯函数是一个常用于数论的函数。
- 莫比乌斯函数的定义:对于任何正整数n,莫比乌斯函数的值分为三种情况,分别是μ(n) = 1,μ(n) = -1,μ(n) = 0。
7. 勒让德符号勒让德符号是用来判断一个整数是否是二次剩余的符号。
- 勒让德符号的定义:对于正整数a和奇素数p,勒让德符号的值是一个取值为-1、0或1的函数。
- 勒让德判别定理:如果勒让德符号等于1,则a是模p的二次剩余;如果勒让德符号等于-1,则a不是模p的二次剩余。
8. 素数定理和费马小定理素数定理和费马小定理是数论中的重要定理。
- 素数定理:对于足够大的正整数n,小于等于n的素数的个数约为n/(ln(n)-1)。
- 费马小定理:如果p是素数,a是不是p的倍数的正整数,则a^(p-1)与模p同余。
小升初数学讲义之——数论

小升初——数论数论是考察学生数感、数字规律的观察能力的重点专题,这一讲我们将熟练运用已经学过的数论知识,解决数论问题。
掌握代数式处理数论问题的方法。
1、 六位数□2004□能被99整除,这个六位数是多少?2、 有一个六位数,前四位是2857,即2857□□,这六位数能被11和13整除,请你算出最后两位数。
3、 若四位数a a 89能被15整除,则a 代表的数字是什么?4、 一个七位数c b a 9020是33的倍数,那么_______=++c b a5、 在一个四位数的某位数字前添上一个小数点,再和原来的四位数相减,差的绝对值是1803.6,则原来的四位数是多少?6、一个两位数除310,余数是37,求这样的两位数。
7、有一个整数,用它去除70、110、160所得到的3个余数和是50,这个整数是多少?8、两个整数相除商8,余16,并且被除数、除数、商及余数和是463.那么被除数是多少?311,那么这三个质数和是多少?9、三个质数倒数和是100110、有四个学生,他们的年龄恰好是一个比一个大1岁,而他们的年龄的乘积是5040,那么他们的年龄各是多少?11、一个正整数与1470的积是一个完全平方数,那么这个数的最小值是多少?12、求2520、14850、819的最大公因数和最小公倍数(用因数分解法)13、现有4个自然数,他们的和是1111,如果要使这4个数的公因数尽可能大,那么4个数的公因数最大是多少?14、一个三位数正好等于它各位数字之和的18倍,这个三位自然数是多少?15、六位数2003□□能被99整除,它的最后两位数是多少?16、将1996加一个整数,使和能被23与19整除,加的整数要尽可能小,那么所加的整数是多少?A1999311能被72能除,试求A、B两数的差(大减小)17、如果一个九位数B18、一个四位数,给它加上小数点后,比原数小2003.4,这个四位数是多少?19、已知一个两位数除1477,余数是49.那么满足那样条件的所有两位数是多少?1661,这三个质数和是多少?20、三个质数倒数的和是198621、小明是个中学生,最近他参加了一次数学竞赛,并获得了好成绩。
小升初第三讲――专题训练之数论问题.(优选)

小升初专项训练---数论数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。
翻开任何一本数学辅导书,数论的内容都占据了不少的版面。
在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大概占据整张试卷总分的12%左右,小学阶段的数论知识点主要有:1、质数与合数、因数与倍数、分解质因数2、数的整除特征及整除性质3、余数的性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清楚,2是唯一偶质数(1)质数:一个数除了1和它本身以外,没有其他的因数,这样的数统称质数。
(2)合数:一个数除了1和它本身以外,还有其他的因数,这样的数统称合数。
例如:4、6、8、10、12、14,…都是合数。
在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一个不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。
如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,例如,(6,9,15)=3。
3.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如,把42分解质因数,即是42=2×3×7。
其中2、3、7叫做42的质因数。
又如,50=2×5×5,2、5都叫做50的质因数。
4、要注意以下几条:(1)1既不是质数,也不是合数。
小升初数论必考知识点归纳

小升初数论必考知识点归纳数论是数学中研究整数性质的分支,对于小升初的学生来说,掌握数论的基础知识是非常重要的。
以下是一些小升初数论的必考知识点归纳:1. 整数和自然数:理解整数包括正整数、负整数和0,自然数则是从1开始的正整数。
2. 奇数和偶数:能够识别奇数(不能被2整除的整数)和偶数(能被2整除的整数)。
3. 质数和合数:质数是指只有1和它本身两个因数的大于1的自然数,合数则是有其他因数的自然数。
4. 最大公约数和最小公倍数:理解最大公约数(两个或多个整数共有约数中最大的一个)和最小公倍数(能够被几个整数整除的最小正整数)的概念,并掌握求法。
5. 因数和倍数:理解一个数的因数是能够整除该数的所有整数,倍数则是该数的整数倍。
6. 数的整除性:掌握整除的概念,即如果一个整数a除以另一个整数b(b≠0),得到的商是整数且没有余数,我们就说a能被b整除,或b能整除a。
7. 分解质因数:将一个合数写成几个质数相乘的形式,这个过程称为分解质因数。
8. 完全平方数:如果一个数可以表示为某个整数的平方,那么这个数就是完全平方数。
9. 数位和位数:理解数位是指数字在数中的位置,位数是指一个数包含的数位的个数。
10. 带余除法:掌握带余除法的概念,即除法运算中除不尽时的余数。
11. 同余:如果两个整数除以同一个数得到的余数相同,那么这两个整数是同余的。
12. 等差数列:理解等差数列的概念,即每一项与前一项的差是一个常数。
13. 奇偶性规律:掌握一些基本的奇偶性规律,如奇数加奇数等于偶数,偶数加偶数等于偶数,奇数乘以奇数等于奇数等。
14. 数的进位制:了解不同进位制的基本概念,例如十进制、二进制等。
15. 约数个数的计算:掌握如何根据一个数的质因数分解来计算它的约数个数。
通过这些知识点的学习,学生可以更好地理解整数的性质,为进一步学习数学打下坚实的基础。
在实际的学习过程中,不仅要理解这些概念,还要通过大量的练习来加深理解并提高解题能力。
小升初之数论专题

[知识要点]小学升初考试中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1 •带余除法:若a, b是两个整数,b>0,则存在两个整数q, r,使得a=bq+r (0<r v b), 且q, r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。
2. 若a|c , b|c,且a, b 互质,则ab|c。
3•唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即PJp# …用, (1)其中pl v p2v・・・v pk为质数,a1, a2,…,ak为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4. 约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d (n)= (a1+1)(a2+1)・・・(ak+1)。
5. 整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x v y与x < y-1是等价的。
下面,我们将按数论题的内容来分类讲解。
第一节整除【专题简析】:在数的整除中要熟记数整除的特点,在用整除的知识来解决相关试题的时候要注意首先确定末尾那个数字,在确定其他的数字。
数整除的特征【例题精讲】例1.老师买了72本相同价格的书,当时没有记住书的单价,只用铅笔记下了用的总钱数,回到学校后其中有两个数字已经模糊不清了,总钱数成了口13.7 □元, 你能帮忙补上□中数字吗?练习1.马虎的采购员,买了72只桶,洗衣服时将购货发票洗烂了,只能依稀看到72只桶共□ 67.9 □元,□内的字迹已经看不清楚,请帮他算一下一共多少钱?例2.在算式labcde 3二abcdel中,不同字母代表不同的数,相同的字母代表相同的数,求abcde这个五位数是多少?练习2. 一个六位数,他的个位数字是6,将6移动到最前面,所得的数是原数的4倍,求这个六位数例3.从0,3,5,7,这4个数中任选3个,组成没有重复数字的三位数,在组成的数中能同时被2、3、5整除的数有多少个?练习3.从1、2、3、4、5中任取3个数组成没有重复数字的三位数,在这些三位数中能同时被2和9整除的数有多少个?【综合练习】1. 学校李老师一共买了28支价格相同的钢笔,共付人民币9口. 2 □元,已知□处的数字相同,请问每支铅笔多少钱?2. 已知x1993y是45的倍数,求所有满足条件的六位数x1993y。
2023年小升初数学备考之数论篇

小升初数学备考之——数论篇在小升初数学择校考试中,我们通常将其内容分为五大板块:计算问题、数论问题、几何问题、应用题以及数学原理类问题。
那么,什么是数论呢?数论最初是从研究整数开始的,所以叫做整数论。
后来整数论又进一步发展,就叫做数论了。
确切的说,数论就是一门研究整数性质的学科。
数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。
翻开任何一本数学辅导书,数论的内容都占据了不少的版面。
在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大约占据整张试卷总分的12%左右,命题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定学生是否可以在选拔考试中拿到满意的分数。
既然数论知识这么重要,那么,在小升初择校考试中,同学们在数论问题上的得分率如何呢?从近几年武汉市某些学校小升初试卷来看,数论问题在五大板块内容中得分率较低,得分率38.5%左右。
目前小学阶段的数论知识考点重要有哪些呢?它们真的就这么难吗?小学阶段的数论知识点重要有:整除及整除特性、奇偶性、极值问题;因数倍数、质数与合数、分解质因数;带余除法、同余性质、中国剩余定理、乘方等。
下面我们就从近年来武汉市各重点学校小升初择校试题来看看这些知识的难度究竟如何吧!小升初试题选讲(一)①从0、4、2、5四个数字中选出三个组成一些可以同时被2、3、5整除的三位数,其中最小的三位数是()。
【2023年武汉市十一中试题】②期末考试六年级(1)班数学平均分是90分,总分是□95□,这个班共有()名学生。
【2023年水二中试题】③假如形如“2□1□”的四位数能被9整除,那么这样的四位数有()个。
【2023年武珞路中学试题】④一个五位数,假如去掉万位和个位上的数字,就是一个能被2、3、5同时整除的最小三位数,在满足条件的这些五位数中,能被11整除的最大的一个数是()。
【2023年武钢实验学校试题】这类题型重要考察数的整除特性。
小升初数学知识点之数论

千里之行,始于足下。
小升初数学学问点之数论数论是数学中的一个分支,主要争辩整数的性质和关系,涉及到整数的整除性、素数性质、同余关系等内容。
在小升初数学中,数论也是一个重要的学问点,以下是数学学问点之数论的主要内容。
一、整数的整除性1. 整数的定义及性质:整数是指正整数、0和负整数的统称。
整数有加法、减法、乘法运算,但并非全部整数都可以进行除法运算。
2. 整除与倍数:整数a除以整数b得到整数c,可以表示为a能整除b,记作a|b;假如b能整除a,也就是存在整数c,使得b=ac,则称a是b的倍数,b是a的约数。
3. 因数与倍数的关系:一个数的因数是指能整除这个数的整数,而这个数称为这些因数的倍数。
二、素数与合数1. 素数的定义:素数是大于1且只能被1和自身整除的整数。
2. 基本性质:素数只有两个因数,即1和自身;除了2之外的素数都是奇数。
3. 求解素数的方法:试除法、素数筛法等。
4. 合数的定义:合数是指除了1和本身之外还有其他因数的整数。
三、最大公约数与最小公倍数1. 公约数的定义:假如a和b都能被c整除,则称c是a和b的公约数。
2. 最大公约数的定义:最大公约数是指a和b的公约数中最大的那个数,记作gcd(a,b)。
3. 求解最大公约数的方法:辗转相除法、质因数分解法等。
4. 公倍数的定义:假如a和b都能被c整除,则称c是a和b的公倍数。
第1页/共2页锲而不舍,金石可镂。
5. 最小公倍数的定义:最小公倍数是指a和b的公倍数中最小的那个数,记作lcm(a,b)。
6. 最大公约数与最小公倍数的关系:对于任意两个整数a和b,有gcd(a,b) * lcm(a,b) = a * b。
四、同余关系1. 同余关系的定义:设a、b、n为整数,假如n能整除a-b,则称a和b 对模n同余,记作a ≡ b (mod n)。
2. 同余定理:若a≡b (mod n),c≡d (mod n),则有a±c≡b±d (mod n),ac≡bd (mod n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学知识点之数论
小升初数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,小编特此整理了小升初数学知识点之数论,以供大家参考。
1.奇偶性问题
奇奇=偶奇奇=奇
奇偶=奇奇偶=偶
偶偶=偶偶偶=偶
2.位值原则
形如:=100a+10b+c
3.数的整除特征:
4.整除性质
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a。
⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法
一般地,如果a是整数,b是整数(b0),那么一定有另外两个整数q和r,0r
当r=0时,我们称a能被b整除。
当r0时,我们称a不能被b整除,r为a除以b的余数,q
为a除以b的不完全商(亦简称为商)。
用带余数除式又可以表示为ab=qr,0r
6。
唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n=p1p2。
pk
7。
约数个数与约数和定理
设自然数n的质因子分解式如n=p1p2。
pk那么:
n的约数个数:d(n)=(a1+1)(a2+1)。
(ak+1)
n的所有约数和:(1+P1+P1+p1)(1+P2+P2+p2)(1+Pk+Pk+pk) 8。
同余定理
①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为ab(modm)
②若两个数a,b除以同一个数c得到的余数相同,则a,b 的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
9.完全平方数性质
①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B
同奇偶性。
②约数:约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分解:把数字分解,使他满足积是平方数。
④平方和。
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计。