高考数学试题汇编统计、统计案例
高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D. 【考点】关联判断2. 对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表由附表:则下列说法正确的是:( ) A .在犯错误的概率不超过的前提下认为“对激素敏感与性别有关”; B .在犯错误的概率不超过的前提下认为“对激素敏感与性别无关”; C .有以上的把握认为“对激素敏感与性别有关”; D .有以上的把握认为“对激素敏感与性别无关”; 【答案】C 【解析】因为,所以有以上的把握认为“对激素敏感与性别有关”.3. 设A 是由m×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m ,n)为所有这样的数表构成的集合。
对于A ∈S(m,n),记r i (A)为A 的第ⅰ行各数之和(1≤ⅰ≤m ),C j (A)为A 的第j 列各数之和(1≤j≤n ):记K(A)为∣r 1(A)∣,∣R 2(A)∣,…,∣Rm(A)∣,∣C 1(A)∣,∣C 2(A)∣,…,∣Cn(A)∣中的最小值。
对如下数表A ,求K (A )的值;11-0.8(2)设数表A ∈S (2,3)形如求K (A )的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【答案】(1)0.7 (2)1 (3)【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力【解析】(1)因为,所以不妨设.由题意得.又因为,所以,于是,,所以,当,且时,取得最大值1。
(3)对于给定的正整数t,任给数表如下,…任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表,并且,因此,不妨设,且。
2020新课标高考数学典型习题专项训练:统计与统计案例

统计与统计案例[A 组 夯基保分专练]一、选择题1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽选出的人数分别为( )A .25,25,25,25B .48,72,64,16C .20,40,30,10D .24,36,32,8解析:选D.法一:因为抽样比为10020 000=1200,所以每类人中应抽选出的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.故选D.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2, 所以每类人中应抽选出的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8,故选D.2.(2019·湖南省五市十校联考)在某次赛车中,50名参赛选手的成绩(单位:min)全部介于13到18之间(包括13和18),将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示,若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A .39B .35C .15D .11解析:选D.由频率分布直方图知成绩在[15,18]内的频率为(0.38+0.32+0.08)×1=0.78,所以成绩在[13,15)内的频率为1-0.78=0.22,则成绩在[13,15)内的选手有50×0.22=11(人),即这50名选手中获奖的人数为11,故选D.3.(2019·武汉市调研测试)某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A —结伴步行,B —自行乘车,C —家人接送,D —其他方式.并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,求本次抽查的学生中A 类人数是( )A .30B .40C .42D .48解析:选A.由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故选A. 4.(2019·广东六校第一次联考)某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:kW ·h)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了如下对照表:x (单位:℃) 17 14 10 -1 y (单位:kW ·h)243438a由表中数据得线性回归方程y =-2x +60,则a 的值为( ) A .48 B .62 C .64D .68解析:选C.由题意,得x =17+14+10-14=10,y =24+34+38+a 4=96+a4.样本点的中心(x ,y )在回归直线y ^=-2x +60上,代入线性回归方程可得96+a 4=-20+60,解得a =64,故选C.5.(2019·郑州市第二次质量预测)将甲、乙两个篮球队各5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A .甲队平均得分高于乙队的平均得分B .甲队得分的中位数大于乙队得分的中位数C .甲队得分的方差大于乙队得分的方差D .甲、乙两队得分的极差相等解析:选C.由题中茎叶图得,甲队的平均得分x 甲=26+28+29+31+315=29,乙队的平均得分x 乙=28+29+30+31+325=30,x 甲<x 乙,选项A 不正确;甲队得分的中位数为29,乙队得分的中位数为30,甲队得分的中位数小于乙队得分的中位数,选项B 不正确;甲队得分的方差s 2甲=15×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=185,乙队得分的方差s 2乙=15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s 2甲>s 2乙,选项C 正确;甲队得分的极差为31-26=5,乙队得分的极差为32-28=4,两者不相等,选项D 不正确.故选C.6.(多选)CPI 是居民消费价格指数(consumer price index)的简称.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.如图是根据国家统计局发布的2017年6月—2018年6月我国CPI 涨跌幅数据绘制的折线图(注:2018年6月与2017年6月相比较,叫同比;2018年6月与2018年5月相比较,叫环比),根据该折线图,则下列结论错误的是 ( )A .2018年1月至6月各月与去年同期比较,CPI 有涨有跌B .2018年2月至6月CPI 只跌不涨C .2018年3月以来,CPI 在缓慢增长D .2017年8月与同年12月相比较,8月环比更大解析:选ABC.A 选项,2018年1月至6月各月与去年同期比较,CPI 均是上涨的,故A 错误;B 选项,2018年2月CPI 是增长的,故B 错误;C 选项,2018年3月以来,CPI 是下跌的,故C 错误;D 选项,2017年8月CPI 环比增长0.4%,12月环比增长0.3%,故D 正确.故选ABC.二、填空题7.如图是某学校一名篮球运动员在10场比赛中所得分数的茎叶图,则该运动员在这10场比赛中得分的中位数为________,平均数为________.解析:把10场比赛的所得分数按顺序排列为5,8,9,12,14,16,16,19,21,24,中间两个为14与16,故中位数为14+162=15,平均数为110(5+8+9+12+14+16+16+19+21+24)=14.4.答案:15 14.48.已知一组数据x 1,x 2,…,x n 的方差为2,若数据ax 1+b ,ax 2+b ,…,ax n +b (a >0)的方差为8,则a 的值为________.解析:根据方差的性质可知,a 2×2=8,故a =2. 答案:29.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,如果7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同; ③若一组数据a ,0,1,2,3的平均数为1,则其标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y ^=a ^+b ^x ,其中a ^=2,x =1,y =3,则b ^=1.其中真命题有________(填序号).解析:在①中,由系统抽样知抽样的分段间隔为52÷4=13,故抽取的样本的编号分别为7号、20号、33号、46号,故①是假命题;在②中,数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,故②是真命题;在③中,因为样本的平均数为1,所以a +0+1+2+3=5,解得a =-1,故样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,标准差为2,故③是假命题;在④中,回归直线方程为y ^=b ^x +2,又回归直线过点(x ,y ),把(1,3)代入回归直线方程y ^=b ^x +2,得b ^=1,故④是真命题.答案:②④ 三、解答题10.(2019·兰州市诊断考试)“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数; (2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )(n 为样本容量)20 000×40200=4 000.(2)2×2列联表为K 2=200×(3540×160×140×60≈7.292>6.635,故能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关.11.(2019·武汉市调研测试)中共十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了更好地制定2019年关于加快提升农民年收入,力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入(单位:千元)并制成如下频率分布直方图:(1)根据频率分布直方图,估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示).(2)由频率分布直方图,可以认为该贫困地区农民年收入X 服从正态分布N (μ,σ2),其中μ近似为年平均收入x ,σ2近似为样本方差s 2,经计算得s 2=6.92.利用该正态分布,解决下列问题:(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的落实情况,扶贫办随机走访了1 000位农民.若每个农民的年收入相互独立,问:这1 000位农民中年收入不少于12.14千元的人数最有可能是多少?附:参考数据与公式6.92≈2.63,若X ~N (μ,σ2),则 ①P (μ-σ<X ≤μ+σ)≈0.682 7; ②P (μ-2σ<X ≤μ+2σ)≈0.954 5; ③P (μ-3σ<X ≤μ+3σ)≈0.997 3.解:(1)x =12×0.04+14×0.12+16×0.28+18×0.36+20×0.10+22×0.06+24×0.04=17.40(千元).(2)由题意,X ~N (17.40,6.92). (i)P (X >μ-σ)≈12+0.682 72≈0.841 4,μ-σ≈17.40-2.63=14.77, 即最低年收入大约为14.77千元.(ii)由P (X ≥12.14)=P (X ≥μ-2σ)≈0.5+0.954 52≈0.977 3,得每个农民的年收入不少于12.14千元的事件的概率为0.977 3,记这1 000位农民中年收入不少于12.14千元的人数为ξ,则ξ~B (103,p ),其中p =0.977 3,于是恰好有k 位农民的年收入不少于12.14千元的事件的概率是P (ξ=k )=C k 103p k (1-p )103-k ,从而由P (ξ=k )P (ξ=k -1)=(1 001-k )×pk ×(1-p )>1,得k <1 001p ,由P (ξ=k )P (ξ=k +1)=(k +1)(1-p )(1 000-k )p>1,得k >1 001p -1,而1 001p =978.277 3, 所以,977.277 3<k <978.277 3,由此可知,在所走访的1 000位农民中,年收入不少于12.14千元的人数最有可能是978. 12.(2019·洛阳市统考)某学校高三年级共有4个班,其中实验班和普通班各2个,且各班学生人数大致相当.在高三第一次数学统一测试(满分100分)成绩揭晓后,教师对这4个班的数学成绩进行了统计分析,其中涉及试题“难度”和“区分度”等指标.根据该校的实际情况,规定其具体含义如下:难度=4个班平均分100,区分度=实验班平均分-普通班平均分100.(1)现从这4个班中各随机抽取5名学生,根据这20名学生的数学成绩,绘制茎叶图如下:请根据以上样本数据,估计该次考试试题的难度和区分度;(2)为了研究试题的区分度与难度的关系,调取了该校上一届高三6次考试的成绩分析数据,得到下表:考试序号 1 2 3 4 5 6 难度x 0.65 0.71 0.73 0.76 0.77 0.82 区分度y0.120.160.160.190.200.13①用公式r =∑i =1 (x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2计算区分度y 与难度x 之间的相关系数r (精确到0.001);②判断y 与x 之间相关关系的强与弱,并说明是否适宜用线性回归模型拟合y 与x 之间的关系.参考数据:∑6i =1x i y i =0.713 4, ∑6i =1 (x i -x )2∑6i =1 (y i -y )2≈0.009 2.解:(1)由茎叶图知,实验班这10人的数学总成绩为860分,普通班这10人的数学总成绩为700分,故这20人的数学平均成绩为860+70020=78(分),由此估计这4个班的平均分为78分, 所以难度=78100=0.78.由86010=86估计实验班的平均分为86分,由70010=70估计普通班的平均分为70分, 所以区分度=86-70100=0.16.(2)①由于∑ni =1 (x i -x )(y i -y ) =∑ni =1 (x i y i -yx i -xy i +xy ) =∑ni =1x i y i -y ∑ni =1x i -x ∑ni =1y i +nx y =∑n i =1x i y i -nx y -nx y +nx y =∑n i =1x i y i -nx y , 且∑6i =1x i y i =0.713 4, ∑6i =1(x i -x )2∑6i =1 (y i -y )2 ≈0.009 2,6x y =6×0.74×0.16=0.710 4, 所以r =∑6i =1 (x i -x )(y i -y )∑6i =1(x i -x )2∑6i =1 (y i -y )2=∑6i =1x i y i -6x y∑6i =1(x i -x )2∑6i =1 (y i -y )2≈0.713 4-0.710 40.009 2≈0.326.②由于r ≈0.326∈[0.30,0.75),故两者之间相关性非常一般,不适宜用线性回归模型拟合y 与x 之间的关系,即使用线性回归模型来拟合,效果也不理想.[B 组 大题增分专练]1.(2019·济南市七校联合考试)“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q 镇2009~2018年梅雨季节的降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:(1)“梅实初黄暮雨深”,请用样本平均数估计Q 镇明年梅雨季节的降雨量;(2)“江南梅雨无限愁”,Q 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成),而乙品种杨梅2009~2018年的亩产量(单位:kg)与降雨量的发生频数(年)如2×2列联表所示(部分数据缺失),请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?(完善列联表,并说明理由)降雨量亩产量[200,400)[100,200)∪[400,500]总计 <600 2 ≥600 1 总计10附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (K 2≥k 0)0.50 0.40 0.25 0.15 0.10 k 00.4550.7081.3232.0722.706解:(1)0.1. 所以用样本平均数估计Q 镇明年梅雨季节的降雨量为150×0.2+250×0.4+350×0.3+450×0.1=30+100+105+45=280(mm).(2)根据频率分布直方图可知,降雨量在[200,400)内的频数为10×100×(0.003+0.004)=7.进而完善列联表如下.降雨量亩产量[200,400)[100,200)∪[400,500]总计 <600 2 2 4 ≥600 5 1 6 总计7310K 2=10×(2×1-5×2)7×3×4×6=8063≈1.270<1.323. 故认为乙品种杨梅的亩产量与降雨量有关的把握不足75%.而甲品种杨梅受降雨量影响的把握超过八成,故老李来年应该种植乙品种杨梅受降雨量影响更小.2.(2019·佛山模拟)表中的数据是一次阶段性考试某班的数学、物理原始成绩: 学号 1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 数学117128 96 113 136 139 124 124 121 115 115 123 125 117 123 122 132 129 96 105 106 120 物理 8084838589819178859172 7687827982848963737745学号 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 数学108137 87 95 108 117 104 128 125 74 81 135 101 97 116 102 76 100 62 86 120 101 物理 768071577265697955567763707563596442627765学号为22号的A 同学由于严重感冒导致物理考试发挥失常,学号为31号的B 同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将A ,B 两同学的成绩(对应于图中A ,B 两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩x 与物理成绩y 的相关系数r =0.822 2,回归直线l (如图所示)的方程为y ^=0.500 6x +18.68.(1)若不剔除A ,B 两同学的数据,用全部44人的成绩作回归分析,设数学成绩x 与物理成绩y 的相关系数为r 0,回归直线为l 0,试分析r 0与r 的大小关系,并在图中画出回归直线l 0的大致位置.(2)如果B 同学参加了这次物理考试,估计B 同学的物理分数(精确到个位).(3)就这次考试而言,学号为16号的C 同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式Z i =x i -xs统一化成标准分再进行比较,其中x i 为学科原始成绩,x 为学科平均分,s 为学科标准差)解:(1)r 0<r ,说明理由可以是①离群点A ,B 会降低变量间的线性关联程度;②44个数据点与回归直线l 0的总偏差更大,回归效果更差,所以相关系数更小; ③42个数据点与回归直线l 的总偏差更小,回归效果更好,所以相关系数更大; ④42个数据点更加贴近回归直线l ; ⑤44个数据点与回归直线l 0更离散. 其他言之有理的理由均可.(直线l 0的斜率须大于0且小于l 的斜率,具体位置稍有出入没关系,无需说明理由) (2)将x =125代入y ^=0.500 6x +18.68中, 得y =62.575+18.68≈81,所以估计B 同学的物理分数大约为81分.(3)由表中数据知C 同学的数学原始成绩为122分,物理原始成绩为82分, 则数学标准分Z 16=x 16-x s 1=122-110.518.36=11.518.36≈0.63,物理标准分Z ′16=y 16-y s 2=82-7411.18=811.18≈0.72, 因为0.72>0.63,所以C 同学物理成绩比数学成绩要好一些.3.(2019·济南市模拟考试)某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换.若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元.二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图1是根据200个一级过滤器更换的滤芯个数制成的柱状图,表1是根据100个二级过滤器更换的滤芯个数制成的频数分布表.二级滤芯更换的个数5 6频数6040以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;(2)记X表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求X的分布列及数学期望;(3)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数,若m+n=28,且n∈{5,6},以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定m,n的值.解:(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30,则该套净水系统中的两个一级过滤器均需更换12个滤芯,二级过滤器需要更换6个滤芯.设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30”为事件A,因为一个一级过滤器需要更换12个滤芯的概率为0.4,二级过滤器需要更换6个滤芯的概率为0.4,所以P(A)=0.4×0.4×0.4=0.064.(2)由柱状图可知,一个一级过滤器需要更换的滤芯个数为10,11,12,对应的概率分别为0.2,0.4,0.4,由题意,X可能的取值为20,21,22,23,24,并且P(X=20)=0.2×0.2=0.04,P(X=21)=0.2×0.4×2=0.16,P(X=22)=0.4×0.4+0.2×0.4×2=0.32,P(X=23)=0.4×0.4×2=0.32,P(X=24)=0.4×0.4=0.16.所以X的分布列为X 2021222324P 0.040.160.320.320.16E(X)=20×0.04(3)因为m+n=28,n∈{5,6},所以若m=22,n=6,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为22×80+200×0.32+400×0.16+6×160=2 848.若m=23,n=5,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为23×80+200×0.16+5×160+400×0.4=2 832.故m,n的值分别为23,5.4.某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该地周光照量X(单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y(千克)与使用某种液体肥料的质量x(千克)之间的关系为如图所示的折线图.(1)依据折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01);(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X限制,并有如下关系:周光照量X(单位:小时)30<X<5050≤X≤70X>70光照控制仪运行台数32 1则该台光照控制仪周亏损1 000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附相关系数公式:r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2,参考数据:0.3≈0.55,0.9≈0.95.解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4.因为∑i=15(x i-x)(y i-y)=(-3)×(-1)+0+0+0+3×1=6,∑i =15(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2∑i =15(y i -y )2=625×2=910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系.(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪. ①安装1台光照控制仪可获得周总利润3 000元. ②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =3 000-1 000=2 000(元),P (Y =2 000)=1050=0.2,当30<X ≤70时,2台光照控制仪都运行,此时周总利润Y =2×3 000=6 000(元),P (Y =6 000)=4050=0.8,故Y 的分布列为③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润 Y =1×3 000-2×1 000=1 000(元). P (Y =1 000)=1050=0.2.当50≤X ≤70时,有2台光照控制仪运行,此时周总利润 Y =2×3 000-1×1 000=5 000(元), P (Y =5 000)=3550=0.7,当30<X <50时,3台光照控制仪都运行,周总利润Y =3×3 000=9 000(元),P (Y =9 000)=550=0.1, 故Y 的分布列为综上可知,为使商家周总利润的均值达到最大,应该安装2台光照控制仪.。
高中数学 统计题型

以下是一些高中数学统计题型的示例:
1. 调查统计:假设你进行了一项关于学生喜欢的体育项目的调查。
根据收集到的数据,制作一个条形图或饼图来展示各个体育项目的受欢迎程度。
2. 抽样调查:你想了解高中生每周花在手机上的时间。
从你的班级中随机选择一部分学生,让他们记录每天使用手机的时间。
然后计算平均值、中位数和众数,并讨论结果的意义。
3. 数据分析:给定一组数据,例如学生的考试成绩。
计算平均值、中位数、众数和标准差,并用这些数据来描述学生的整体表现。
4. 概率分析:某次抛硬币实验中,连续抛掷了10次硬币,结果正面朝上的次数为7次。
计算正面朝上的概率,并讨论这个结果是否合理。
5. 相关性分析:根据一组数据,比如学生的身高和体重,计算相关系数来衡量两个变量之间的关联程度,并解释结果的含义。
以上是高中数学中统计题型的一些示例。
通过这些题目,学生可以学习统计学的基本概念、数据分析和概率计算等技巧。
教师可以根据具体的教材和教学目标来设计更多的统计题目,以帮助学生掌握统计学
的基础知识和解题方法。
高考数学统计与统计案例.doc

高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为()A.1%B.2%C.3%D.5%C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食品开支的30 = 1 ,30+40+100+80+ 50 101∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.]2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B. 3C.2D.1B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.]3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频率分布直方,据此估批品的中位数()A.20B. 25C.22.5D.22.75C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次0.1,0.2,0.4,⋯⋯,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5,故 C.]4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大小关系 ()A.b<a<c B.c<b<aC.c<a<b D.b<c<a2 50+ 60D [算得平均a=593,众数b=50,中位数c= 2 =55,故b<c<a, A.]5.(2019 南·充模 )如表是我国某城市在2017 年 1 月份至 10 月份各月最低温与最高温 (℃ )的数据一表.月份 1 2 3 4 5 6 7 8 9 10最高温 5 9 9 11 17 24 27 30 31 21最低温-12 - 3 1 - 2 7 17 19 23 25 10 已知城市的各月最低温与最高温具有相关关系,根据一表,下列的是 ()A.最低温与最高温正相关B.每月最高温与最低温的平均在前8 个月逐月增加C.月温差 (最高温减最低温 )的最大出在 1 月D.1 月至 4 月的月温差 (最高温减最低温 )相于 7 月至 10 月,波性更大B[ 根据意,依次分析:于 A ,知城市的各月最低温与最高温具有相关关系,由数据分析可得最低温与最高温正相关, A 正确;于B,由表中数据,每月最高温与最低温的平均依次:-3.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前 8 个月不是逐月增加, B ;于 C,由表中数据,月温差依次: 17,12,8,13,10,7,8,7,6,11;月温差的最大出在 1 月,C 正确;于 D,有 C 的,分析可得 1 月至 4 月的月温差相于 7 月至 10 月,波性更大, D 正确;故B.]6.某中学的高中女生体重y(位: kg)与身高 x(位: cm)具有性相关关系,根据本数据 (x i, y i )(i =1,2,3,⋯, n),用最小二乘法近似得到回直^方程 y=0.85x-85.71,下列中不正确的是()A.y 与 x 具有正性相关关系––B.回直本点的中心( x , y )C.若中学某高中女生身高增加 1 cm,其体重增加0.85 kgD.若中学某高中女生身高160 cm,可断定其体重必50.29 kg^D[ 因回直方程 y=0.85x-85.71 中 x 的系数 0.85>0,因此 y 与 x 具有正性相关关系,所以 A 正确;由最小二乘法及回直方程的求解––可知回直本点的中心( x , y ),所以 B 正确;由于用最小二乘法得到的回直方程是估,而不是具体,若中学某高中女生身高增加 1 cm,其体重增加0.85 kg,所以 C 正确, D 不正确. ]7.(2018 ·永州三模 )党的十九大告明确提出:在共享等域培育增点、形成新能.共享是公众将置源通社会化平台与他人共享,而得收入的象.考察共享企活度的影响,在四个不同的企各取两个部行共享比,根据四个企得到的数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()D[ 根据四个列联表中的等高条形图可知,图中 D 中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.]8.(2019 ·州模拟惠)已知 x 与 y 之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得的线性回归方程为^ ^ ^y= b +若某同学根据上表中的x a.前两组数据 (1,0)和 (2,2)求得的直线方程为y= b′ x+a′,则以下结论正确的是()^ ^ ^ ^A.b>b′, a>a′B.b>b′, a<a′^ ^ ^ ^C.b<b′, a>a′D.b<b′, a<a′C[ 由两组数据 (1,0)和(2,2)可求得直线方程为 y=2x-2,b′=2,a′=-^ 2.而利用线性回归方程的公式与已知表格中的数据,可求得 b =5 ^ – ^– 13 5==7,a= y -b x =6-771^^×2=-3,所以 b<b′,a>a′.]9.(2019 天·津模 )某校高中共有 720 人,其中理科生 480 人,文科生 240 人,采用分抽的方法从中抽取 90 名学生参加研,抽取理科生的人数________.48060[由分抽的定得抽取理科生的人数720×90=60.]–10.已知本数据x1,x2,⋯, x n的平均数 x = 5,本数据2x1+1,2x2 +1,⋯, 2x n+1 的平均数 ________.11[ 由 x1,x2,⋯,x n的平均数 x= 5,得 2x1+1,2x2+1,⋯,2x n+1 的平–均数 2 x +1= 2× 5+ 1= 11.]11.某学校随机抽取部分新生其上学所需(位:分 ),并将所得数据制成率分布直方(如 ),其中,上学所需的范是[0,100] ,本数据分 [0,20),[20,40),[40,60), [60,80), [80,100],(1)中的 x= ________;(2)若上学所需不少于 1 小的学生可申在学校住宿,校600 名新生中估有 ________名学生可以申住宿.0.0125 72[(1) 由率分布直方知20x= 1-20×(0.025+ 0.0065+ 0.003 +0.003),解得 x=0.0125.(2)上学不少于 1 小的学生的率0.12,因此估有0.12×600=72(人)可以申住宿. ]12.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20 分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;^③在线性回归方程 y=0.2x+12 中,当解释变量x 每增加一个单位时,预报^变量 y平均增加 0.2 个单位;④对分类变量 X 与 Y 的统计量 K2来说, K2越小,“ X 与 Y 有关系”的把握程度越大.②③[①是系统抽样;对于④,统计量 K2越小,说明两个相关变量有关系的把握程度越小. ]。
高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D.【考点】关联判断2.某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.【答案】(1);(2).【解析】(1)回归方程必过样本中心点,,将样本中心点代入回归方程,求出,即得回归方程,当广告费支出万元时,代入求得就是销售额;(2)将实际值与观测值对应列出,列举法一一列出任取两组的所有基本事件,至少有一组数据其预测值与实际值之差的绝对值不超过的对立事件为,两组都超过,找到两组都超过的基本事件的个数,.(1)因为点(5,50)在回归直线上,代入回归直线方程求得,所求回归直线方程为: 3分当广告支出为12时,销售额. 5分(2)实际值和预测值对应表为在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个, 10分两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为. 12分【考点】1.回归方程;2.古典概型的概率问题.3.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:在的范围是()A.10转/s以下B.15转/s以下C.20转/s以下D.25转/s以下【答案】B【解析】则a=-b=-0.857 5.∴回归直线方程为=0.728 6x-0.857 5.要使y≤10,则0.728 6x-0.857 5≤10,∴x≤14.901 9.因此,机器的转速应该控制在15转/s以下.故选B.4.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310-1由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.-10B.-8C.-6D.-6【答案】C【解析】由题意可得=10,=40.5,所以=+2=40.5+2×10=60.5,所以,当=72时,,解得x≈-6,故选C.【考点】回归分析5.在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。
最全高考数学统计专题解析版【真题】

精品文档第十一章统计、统计案例第一部分六年高考荟萃2013 年高考题1 .( 2013 年高考陕西卷(理))某单位有840 名职工 ,现采用系统抽样方法,抽取42人做问卷调查 ,将840人按1, 2, , 840随机编号,则抽取的42人中,编号落入区间[481,720] 的人数为()A . 11B. 12C. 13D.142 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50 名学生 , 其中有 30 名男生和 20 名女生 , 随机询问了该班五名男生和五名女生在某次数学测验中的成绩, 五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数3 .( 2013 年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))某校从高一年级学生中随机抽取部分学生, 将他们的模块测试成绩分为6组 :[40,50), [50,60),[60,70), [70,80), [80,90), [90,100)加以统计 , 得到如图所示的频率分布直方图,已知高一年级共有学生600 名, 据此估计 , 该模块测试成绩不少于60 分的学生人数为()A.588B. 480C. 450D.1204.( 2013 年高考江西卷(理))总体有编号为01,02, ,19,20的20个个体组成。
利用下面的随机数表选取 5 个个体,选取方法是从随机数表第 1 行的第 5 列和第 6 列数字开始由左到右依次选取两个数字,则选出来的第 5 个个体的编号为7816657208026314070243699728019832049234493582003623486969387481()A . 08B. 07C. 02D.015.( 2013 年高考上海卷(理))盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个 , 则这两个球的编号之积为偶数的概率是___________( 结果用最简分数表示)6.( 2013 年高考湖北卷(理))从某小区抽取100 户居民进行月用电量调查, 发现其用电量都在 50 到 350 度之间 , 频率分布直方图所示.(I) 直方图中x的值为 ___________;(II)在这些用户中 , 用电量落在区间100,250内的户数为 _____________.7.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))抽样统计甲、乙两位设计运动员的 5 此训练成绩 ( 单位 : 环 ), 结果如下 :运第 1第第第第 5动234次次员次次次甲8791908993乙8990918892则成绩较为稳定( 方差较小 ) 的那位运动员成绩的方差为_____________.8.( 2013 年高考上海卷(理))设非零常数d 是等差数列x1, x2 , x3 ,, x19的公差,随机变量等可能地取值x1 , x2 , x3 , , x19,则方差 D_______9.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))某车间共有12名工人 , 随机抽取6名 , 他们某日加工零件个数的茎叶图如图所示, 其中茎为十位数, 叶为个位数 .1 7920 1 530第 17题图( Ⅰ)根据茎叶图计算样本均值 ;( Ⅱ)日加工零件个数大于样本均值的工人为优秀工人, 根据茎叶图推断该车间12名工人中有几名优秀工人 ;( Ⅲ)从该车间12 名工人中,任取 2 人,求恰有 1名优秀工人的概率.10.( 2013年普通高等学校招生统一考试天津数学(理)试题(含答案))一个盒子里装有7张卡片 , 其中有红色卡片 4 张,编号分别为 1, 2, 3, 4; 白色卡片 3 张 , 编号分别为 2,3, 4. 从盒子中任取 4张卡片 ( 假设取到任何一张卡片的可能性相同).( Ⅰ)求取出的 4 张卡片中 ,含有编号为 3 的卡片的概率 .( Ⅱ )再取出的 4 张卡片中 ,红色卡片编号的最大值设为X,求随机变量 X 的分布列和数学期望 .11.( 2013 年高考陕西卷(理))出最受欢迎歌手 . 各位观众须彼此独立地在选票上选 3名歌手 , 其中观众甲是 1 号歌手的歌迷 , 他必选 1 号 ,不选 2 号 , 另在 3 至 5 号中随机选2 名. 观众乙和丙对 5 位歌手的演唱没有偏爱,因此在1 至 5 号中随机选 3名歌手 .( Ⅰ)求观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率 ;( Ⅱ ) X 表示 3 号歌手得到观众甲、乙、丙的票数之和, 求 X 的分布列和数学期望 .12.( 2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某商场举行的“三色球”购物摸奖活动规定 : 在一次摸奖中 , 摸奖者先从装有 3 个红球与 4 个白球的袋中任意摸出 3个球 , 再从装有12个白球的袋中任意摸出1个球 , 根据摸出4个球个蓝球与中红球与蓝球的个数 , 设一 . 二. 三等奖如下 :奖级 摸出红 . 蓝球个数获奖金额一等奖 3红 1蓝 200 元二等奖 3红 0蓝 50 元三等奖2红 1蓝10 元其余情况无奖且每次摸奖最多只能获得一个奖级 .(1) 求一次摸奖恰好摸到 1 个红球的概率 ;(2) 求摸奖者在一次摸奖中获奖金额X 的分布列与期望 E X.2012 年高考题1.【 2012 新课标文】 在一组样本数据( x 1 ,y 1),( x 2,y 2), ,( x n ,y n )(n ≥ 2,x 1,x 2, ,x n不全相等)的散点图中,若所有样本点(x i ,y i )(i=1,2, , n) 都在直线1 上,则这组y= x+12样本数据的样本相关系数为(A )- 1(B )0( C )1(D )122.【 2012 山东文】(4)在某次测量中得到的A 样本数据如下: 82, 84, 84, 86, 86, 86,88, 88,88,88.若 B 样本数据恰好是 A 样本数据都加 2 后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A) 众数(B) 平均数(C)中位数 (D) 标准差3.【 2012 四川文】 交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情 况,对甲、乙、丙、丁四个社区做分层抽样调查。
高考数学关于统计及统计案例练习试题

高考数学关于统计及统计案例练习试题高考数学关于统计及统计案例练习试题人生多磨难,要为自己鼓掌,别让迟疑阻滞了脚步,别让哀痛苍白了心灵。
下面是我共享的高考数学关于统计及统计案例练习试题,欢迎大家练习!选择题1.对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53答案:A 命题立意:本题考查中位数、众数、极差等特征数与茎叶图,难度中等.解题思路:利用相关概念求解.由茎叶图可知,第15个数据是45,第16个数据是47,所以30天中的顾客人数的中位数是45和47的平均数,即为46.消逝次数最多的是45,故众数是45;最大数据68与最小数据12的差是56,即极差是56,故选A.2.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:接受简洁随机抽样法,将零件编号为00,01,02,…,99,从中抽出20个;接受系统抽样法,将全部零件分成20组,每组5个,然后每组中随机抽取1个;接受分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个,则( )A.不论实行哪种抽样方法,这100个零件中每个被抽到的概率都是B.两种抽样方法,这100个零件中每个被抽到的概率都是,并非如此C.两种抽样方法,这100个零件中每个被抽到的概率都是,并非如此D.接受不同的抽样方法,这100个零件中每个被抽到的概率各不相同答案:A 解题思路:由于简洁随机抽样法、系统抽样法与分层抽样法均是等可能性抽样,因此不论实行哪种抽样方法,这100个零件中每个被抽到的概率都是,故选A.3.从某中学一、二两个班中各随机抽取10名同学,测量他们的身高(单位:cm)后获得身高数据的茎叶图如图甲,在这20人中,记身高在[150,160),[160,170),[170,180),[180,190]的人数依次为A1,A2,A3,A4,图乙是统计样本中身高在确定范围内的人数的程序框图,则下列说法正确的是( )A.甲可知一、二两班中平均身高较高的是一班,图乙输出的S的值为18B.甲可知一、二两班中平均身高较高的是二班,图乙输出的S的值为16C.甲可知一、二两班中平均身高较高的是二班,图乙输出的S的值为18D.甲可知一、二两班中平均身高较高的是一班,图乙输出的S的值为16答案:C 命题立意:本题主要考查统计与程序框图的相关学问,统计问题与程序框图的结合有可能成为高考命题的热点,此类题目考查的方式多样,难度适中.在该题中对程序框图的考查主要体现在对其循环结构的考查.此类题目易消逝的`问题主要是不能从整体上精确把握程序框图,无法确定赋值语句、输出语句中各个变量与实际问题的联系,从而不能确定程序框图所要解决的实际问题中的相关数据.所以解决此类问题首先要明确程序框图中的各类数据与实际问题中数据之间的对应关系,精确把握实际问题中数据的实际意义.解题思路:由茎叶图可知,一班同学身高的平均数为170.3,二班同学身高的平均数为170.8,故二班同学的平均身高较高.由题意可知,A1=2,A2=7,A3=9,A4=2,由程序框图易知,最终输出的结果为S=7+9+2=18.4.下表是降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,依据表中供应的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为( ) x 3 4 5 6 y 2.5 m 4 4.5 A.4 B.3.5C.3D.4.5答案:C 命题立意:本题考查统计的相关学问,难度中等.解题思路:依题意得=×(3+4+5+6)=4.5,=(2.5+m+4+4.5)=,由于回归直线必经过样本中心点,于是有=0.7×4.5+0.35,解得m=3,故选C.5.某调查机构对本市学校生课业负担状况进行了调查,设平均每人每天做作业的时间为x分钟.有1 000名学校生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是680,则平均每天做作业的时间在0~60分钟内的同学的频率是( )A.680B.320C.0.68D.0.32答案:D 解题思路:程序框图统计的是作业时间为60分钟以上的同学的数量,因此由输出结果为680知,有680名同学的作业时间超过60分钟,因此作业时间在0~60分钟内的同学总数有320人,故所求频率为0.32.6.两组各7名同学体重(单位:kg)数据的茎叶图.设,两组数据的平均数依次为1,2,标准差依次为s1和s2,那么( )A.12,s1s2B.12,s1s2 D.12,s13.841,因此有95%的把握认为“成果与班级有关系”.(3)抽取两次所得编号的基本事件为(1,1),(1,2),(1,3),…,(1,6),(2,1),(2,2),(2,3),…,(2,6),…,(6,1),(6,2),(6,3),…,(6,6),共36个.编号之和为6的倍数的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),共6个.因此两次编号之和为6的倍数的概率为.【高考数学关于统计及统计案例练习试题】。
统计案例高中数学

统计案例高中数学
高中数学统计案例示例如下:
假设你是一名学生,想要了解不同科目在学校的成绩分布。
你使用班级的成绩表来计算每个科目的平均分数,并将结果展示在学校官方网站上。
计算平均分数的过程如下:
1. 整理成绩表,将每个科目的成绩按列排序。
2. 计算每个科目的平均分数。
- 如果有一个科目有多个学生成绩,需要选取取平均值。
- 如果只有一个科目,则可以直接计算所有学生成绩的和再除以人数。
例如,如果成绩表如下所示:
| 科目 | 成绩 |
|------|----------|
| 数学 | 90 |
| 英语 | 85 |
| 物理 | 80 |
| 化学 | 75 |
| 历史 | 80 |
那么平均分数为(90 + 85 + 80 + 75 + 80) / 5 = 175/5 = 34.33(保留两位小数)。
将平均分数和学校官方网站上的成绩进行比较,以确保成绩分布
符合预期。
该学生在学校官方网站上发布了数学、英语和历史的平均分数分别为34.33、34.33和33.67。
这意味着在这个班级中,数学、英语和历史的平均分数相对较高,而物理、化学和历史的平均分数相对较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 统计、统计案例高考试题考点一 抽样的方法1.(2013年新课标全国卷Ⅰ,理3)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) (A)简单随机抽样(B)按性别分层抽样(C)按学段分层抽样 (D)系统抽样解析:由于小学、初中、高中三个学段学生的视力情况差异较大,而男女视力情况差异不大,因此可以按学段分层抽样.故选C. 答案:C2.(2013年安徽卷,理5)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) (A)这种抽样方法是一种分层抽样 (B)这种抽样方法是一种系统抽样(C)这五名男生成绩的方差大于这五名女生成绩的方差 (D)该班男生成绩的平均数小于该班女生成绩的平均数解析:本题采用简单随机抽样方法抽取样本,故选项A 、B 错误.因为5名男生成绩和5名女生成绩的平均数,与该班男生成绩的平均数与女生成绩的平均数不一定存在准确的对应关系,所以选项D 的说法不一定成立.对于C 项,男生成绩的平均数1x =90,女生成绩的平均数2x =91,故5名男生成绩的方差21s =15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8,5名女生成绩的方差22s =15[(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6,故选C. 答案:C3.(2013年江西卷,理4)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )(A)08 (B)07 (C)02(D)01解析:从左到右第1行的第5列和第6列数字是65,依次选取符合条件的数字分别是08,02,14,07,01,故选出来的第5个个体的编号为01. 答案:D考点二 统计图表1.(2013年福建卷,理4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )(A)588 (B)480(C)450 (D)120解析:由题频率分布直方图得,该模块测试成绩不少于60分的学生人数为600×(0.030+0.025+0.015+0.010)×10=480.故选B.答案:B2.(2012年陕西卷,理6)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则( )(A) x甲<x乙,m甲>m乙 (B) x甲<x乙,m甲<m乙(C) x甲>x乙,m甲>m乙 (D) x甲>x乙,m甲<m乙解析:把数据从茎叶图中整理出来,甲的数据为:5,6,8,10,10,14,18,18,22,25,27,30,30,38,41,43;乙的数据为:10,12,18,20,22,23,23,27,31,32,34,34,38,42,43,48,所以x甲=116(5+6+8+10+10+14+18+18+22+25+27+30+30+38+41+43)=34516,x乙=116(10+12+18+20+22+23+23+27+31+32+34+34+38+42+43+48)=45716,显然x甲<x乙.又∵m甲=18222+=20,m乙=27312+=29,所以m甲<m乙.答案:B3.(2013年新课标全国卷Ⅱ,理19)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39000,当X∈[130,150]时,T=500×130=65000,所以T=80039000,100130, 65000,130150.X XX-⎧⎨⎩≤<≤≤(2)由(1)知利润T不少于57000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45000530006100065000P0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.考点三样本的数字特征1.(2013年重庆卷,理4)如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )(A)2,5 (B)5,5(C)5,8 (D)8,8解析:由甲组数据的中位数为15,得x=5.由乙组数据的平均数为16.8,得9+30+5+y+8+24=16.8×5,即76+y=84,解得y=8.故选C.答案:C2.(2012年安徽卷,理5)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A)甲的成绩的平均数小于乙的成绩的平均数(B)甲的成绩的中位数等于乙的成绩的中位数(C)甲的成绩的方差小于乙的成绩的方差(D)甲的成绩的极差小于乙的成绩的极差解析:甲射击比赛中靶4,5,6,7,8环各1次,则甲成绩的中位数为6环,平均数为6环,极差为4环,方差为2平方环;乙射击比赛中靶5环3次,6环1次,9环1次,则乙成绩的中位数为5环,平均数为6环,极差为4环,方差为2.4平方环.所以甲成绩的方差比乙成绩的方差小.故选C.答案:C3.(2012年江西卷,理9)样本(x1,x2,…,x n)的平均数为x,样本(y1,y2,…,y m)的平均数为y(x≠y).若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数z=αx+(1-α)y,其中0<α<12,则n,m的大小关系为( )(A)n<m (B)n>m(C)n=m (D)不能确定解析:依题意得x1+x2+…+x n=n x,y1+y2+…+y m=m y,x1+x2+…+x n+y1+y2+…+y m=(m+n)z=(m+n)αx+(m+n)(1-α) y,所以n x+m y=(m+n)αx+(m+n)(1-α)y,所以()()(),1, n m n am m n a ⎧=+⎪⎨=+-⎪⎩于是有n-m=(m+n)[α-(1-α)]=(m+n)(2α-1).因为0<α<1 2 ,所以2α-1<0.又m+n>0,所以n-m<0.即n<m.故选A.答案:A4.(2011年江苏卷,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2= .解析:由于这5个数的平均数x=15×(10+6+8+5+6)=7,因此该组数据的方差s2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.答案:3.2考点四变量的相关性1.(2012年湖南卷,理4)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是( )(A)y与x具有正的线性相关关系(B)回归直线过样本点的中心(x,y)(C)若该大学某女生身高增加1 cm,则其体重约增加0.85 kg(D)若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:根据线性回归方程相关知识可知选项A、B、C是正确的.而由回归方程得到的是预报变量的可能取值的平均值,不是预报变量的精确值,故选D.答案:D2.(2011年陕西卷,理9)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图所示),以下结论中正确的是( )(A)x和y的相关系数为直线l的斜率(B)x和y的相关系数在0到1之间(C)当n为偶数时,分布在l两侧的样本点的个数一定相同(D)直线l过点(x,y)解析:相关系数是表示两个变量是否具有线性相关关系的量,可正可负也可为0,它的绝对值越接近1两变量相关性越强.因此A、B错,线性回归直线两侧样本点个数不一定相同,故C错.回归直线恒过样本中心(x,y).选项D正确.答案:D3.(2011年江西卷,理6)变量X和Y对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )(A)r2<r1<0 (B)0<r2<r1(C)r2<0<r1(D)r2=r1解析:对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r1>0;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r2<0.所以有r2<0<r1.故选C.答案:C4.(2011年山东卷,理7)某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元4235销售额y/万元49263954根据上表可得回归方程ˆy=b x+ˆa中的b为9.4,据此模型预报广告费用为6万元时销售额为( )(A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元解析:线性回归直线过定点(x,y),y=492639544+++=42, x=3.5,代入ˆa=y-ˆb x得ˆa=42-9.4×3.5=9.1,所以ˆy=6×9.4+9.1=65.5(万元).答案:B5.(2011年辽宁卷,理14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:ˆy=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元. 解析:由回归直线方程可知,x每增加1,ˆy增加0.254,从而家庭年收入每增加1万元,年饮食支出平均增加0.254万元.答案:0.2546.(2011年广东卷,理13)某数学老师的身高为176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为cm.解析:儿子和父亲的身高可列表如下:(单位:cm)父亲身高x173170176儿子身高y170176182设回归直线方程为ˆy=ˆa+ˆb x,由表中数据可求得x=173, y=176,∴ˆb=()()()31321i iiiix x y yx x==---∑∑=()223633⨯+-=1,ˆa=y-ˆb x=3,故回归直线方程为ˆy=x+3.当x=182时, ˆy=182+3=185.故预测他孙子的身高为185 cm.答案:185考点五独立性检验(2012年辽宁卷,理19)电视传媒公司为了解某地区某类体育节目的收视情况,随机抽取了100名观众进行调查.如图所示的是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,据此资料,你是否认为“体育迷”与性别有关?非体育迷体育迷总计男女1055总计(2)将上述调查得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中“体育迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).附:χ2=()211221221n n n n nn n n n-++.P(χ2≥k)0.050.01 k 3.841 6.635解:(1)由频率分布直方图可知在抽取的100人中,“体育迷”有25人,从而2×2列联表补充如下:非体育迷体育迷总计男301545女451055总计7525100将2×2列联表中的数据代入公式计算,得χ2=()2 1003010451575254555⨯-⨯⨯⨯⨯=10033≈3.030.因为3.030<3.841,所以没有足够的把握认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意知X ~B(3, 14),从而X 的分布列为: X 0123P27642764964164所以E(X)=np=3×14=34,D(X)=np(1-p)=3×14×34=916. 模拟试题考点一 抽样方法1.(2013北京市丰台区期末)某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 .解析:高三的人数为400, 所以在高三抽取的人数为45900×400=20. 答案:202.(2013青岛一中调研)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,……,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为 的学生.解析:因为12=5×2+2,即第三组抽出的是第二个同学, 所以每一组都相应抽出第二个同学. 所以第8组中抽出的号码为5×7+2=37号. 答案:37考点二 统计图表1.(2013云南师大附中检测)甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,s 1,s 2分别表示甲乙两名运动员这项测试成绩的标准差,则有( )(A)1x >2x ,s 1<s 2 (B)1x =2x ,s 1=s 2 (C)1x =2x ,s 1<s 2(D)1x =2x ,s 1>s 2解析:由样本中数据可知1x =15, 2x =15, 由茎叶图得s 1<s 2, 所以选C. 答案:C2.(2013贵州省六校联考)某同学学业水平考试的9科成绩如茎叶图所示,则根据茎叶图可知该同学的平均分为 .解析:19(68+72+73+78×2+81+89×2+92)=7209=80.答案:803.(2013北京市西城区期末)为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检.(1)求每组抽取的学生人数;(2)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.解:(1)由频率分布直方图知,第3,4,5组的学生人数之比为3∶2∶1.所以,每组抽取的人数分别为:第3组:36×6=3;第4组:26×6=2;第5组:16×6=1.所以从第3,4,5组应依次抽取3名学生,2名学生,1名学生.(2)记“从6名学生中抽取2名学生不在同一组”为事件A,则P(A)=11111131213226C C C C C CC+⋅+⋅=1115.考点三样本的数字特征1.(2012西安五校模拟)已知一组正数x1,x2,x3,x4的方差s2=14(22221234x x x x+++-16),则数据x1+2,x2+2,x3+2,x4+2的平均数为( ) (A)2 (B)3 (C)4 (D)6解析:设x1,x2,x3,x4的平均值为x,则s2=14[(x1-x)2+(x2-x)2+(x3-x)2+(x4-x)2]=14(22221234x x x x+++-42x),∴42x=16,∴x =2,∴x 1+2,x 2+2,x 3+2,x 4+2的平均数为4. 答案:C2.(2013昆明一中检测)某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷.该卷共有6个单选题,每题答对得20分,答错、不答得零分,满分120分.阅卷完毕后,校方公布每题答对率如下:则此次调查全体同学的平均分数是 分.解析:假设全校人数有x 人,则每道试题答对人数及总分分别为所以六个题的总分为66x,所以平均分为66xx=66. 答案:66考点四 线性回归方程1.(2013青岛一中调研)某学生四次模拟考试中,其英语作文的减分情况如下表:显然所减分数y 与模拟考试次数x 之间有较好的线性相关关系,则其线性回归方程为( )(A)y=0.7x+5.25 (B)y=-0.6x+5.25 (C)y=-0.7x+6.25(D)y=-0.7x+5.25解析:由题意可知,所减分数y 与模拟考试次数x之间为负相关,所以排除A. 考试次数的平均数为x =14(1+2+3+4)=2.5, 所减分数的平均数为y =14(4.5+4+3+2.5)=3.5, 即直线应该过点(2.5,3.5),代入验证可知直线y=-0.7x+5.25成立,故选D. 答案:D2.(2012湘潭三模)某种产品的广告支出x 与销售额y(单位:百万元)之间有如下的对应关系:(1)假定x 与y 之间具有线性相关关系,求回归方程;(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?参考公式: ˆb=1221ni ii nii x ynx y xnx==--∑∑,ˆa=y -ˆb x . 解:(1)∵x =15×(2+4+5+6+8)=5, y =15×(30+40+60+50+70)=50,521ii x=∑=22+42+52+62+82=145,51i ii x y=∑=2×30+4×40+5×60+6×50+8×70=1380,∴ˆb=51522155i ii ii x yx y xx==--∑∑=21380555014555-⨯⨯-⨯=6.5,ˆa=y -ˆb x =50-6.5×5=17.5. ∴回归方程为ˆy=6.5x+17.5. (2)由回归方程得ˆy ≥60,即6.5x+17.5≥60, 解得x ≥8513≈6.54. 故广告支出应该不少于6.54百万元.考点五 独立检验1.(2012枣庄模拟)下面是2×2列联表:则表中a,b 的值分别为( )(A)94,72 (B)52,50 (C)52,74 (D)74,52 解析:∵a+21=73,∴a=52, 又a+22=b,∴b=74. 答案:C2.(2012汕头期末)下列命题中假命题是( )(A)对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的可信程度越大(B)用相关指数R 2来刻画回归的效果时,R 2的值越大,说明模型拟合的效果越好(C)两个随机变量的相关性越强,相关系数的绝对值越接近1 (D)等高条形图可以展示2×2列联表数据的频率特征解析:K 2的观测值k 越大,“X 与Y 有关系”的可信程度越大.答案:A综合检测1.(2011汕头期末)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:如果根据上表提供的数据求出y 关于x 的线性回归方程为y =0.7x+0.35,那么表中t 的值为( )(A)3 (B)3.15 (C)3.5(D)4.5解析:由y=0.7x+0.35得2.54 4.54t+++=0.7×34564++++0.35,即114t+=3.5,解得t=3.答案:A2.(2011佛山联考)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为30的样本,已知B层中每个个体被抽到的概率都是112,则总体中的个体数为.解析:因为分层抽样为等可能抽样,故每个个体被抽到的可能性都是相等的.设总体中的个体数为n,则30n=112,∴n=360.答案:3603.(2012广州期末)在一次调研中,随机调查了某社区若干居民的年龄,将调查数据绘制成如图所示的扇形和条形统计图,则a-b= .(60以上含60)解析:设共调查了x名居民的年龄,由x·46%=230,得x=500,于是得a=100500×100%=20%,b=1-(20%+46%+22%)=12%.故a-b=8%.答案:8%。