一元二次方程求根公式及讲解

合集下载

一元二次方程的公式法讲解

一元二次方程的公式法讲解

一元二次方程的公式法讲解一元二次方程是高中数学中经常遇到的一种形式,它的一般形式为ax²+bx+c=0,其中a、b、c分别为已知系数。

为了求解这种类型的方程,人们发展出了一元二次方程的公式法。

一元二次方程的公式法是一种通过一元二次方程的一般形式,利用特定的公式来求解方程的方法。

这个公式被称为二次方程的求根公式,它可以帮助我们快速地计算出方程的根。

二次方程的求根公式如下:x = (-b ± √(b²-4ac)) / 2a其中,±表示两个解,√表示平方根。

这个公式中的√(b²-4ac)被称为判别式,它的值决定了方程的根的性质。

当判别式大于0时,方程有两个不相等的实根。

当判别式等于0时,方程有两个相等的实根。

当判别式小于0时,方程没有实根,但有两个共轭复根。

通过这个公式,我们可以很方便地求解一元二次方程。

首先,我们需要确定方程中的系数a、b、c的值。

然后,我们将这些值代入到求根公式中,计算出方程的根。

例如,考虑方程2x²+5x-3=0。

根据公式法,我们可以得到:x = (-5 ± √(5²-4*2*(-3))) / 2*2= (-5 ± √(25+24)) / 4= (-5 ± √49) / 4根据公式,我们可以得到两个根:x₁ = (-5 + 7) / 4 = 2/4 = 1/2x₂ = (-5 - 7) / 4 = -12/4 = -3因此,方程2x²+5x-3=0的根为x=1/2和x=-3。

公式法是求解一元二次方程的一种常用方法,它的优点是计算简单、快速。

通过这个公式,我们可以直接求解方程的根,无需进行其他繁琐的计算步骤。

需要注意的是,使用公式法求解一元二次方程时,我们需要注意判别式的值。

判别式的正负与方程的根的性质有关,可以帮助我们判断方程有几个实根或复根。

一元二次方程的公式法是一种简洁高效的求解方法。

用公式法求解一元二次方程

用公式法求解一元二次方程

用公式法求解一元二次方程 一、公式法公式法:求根公式:一般地,对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac ≥0时,它的根是:2b x a-±=.上面这个式子称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.【知识拓展】(1)求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用.(2)应用公式法解一元二次方程时,要先把方程化成一般形式,确定二次项系数、一次项系数、常数项,且要注意它们的符号.(3)b 2-4ac ≥0是公式使用的前提条件,是公式的重要组成部分.一元二次方程的求根公式的推导:一元二次方程的求根公式的推导过程就是用配方法解一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的过程. ∵a ≠0,∴方程的两边同除以a 得20b cxx a a++=. 配方得22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,222424b b ac x a a -⎛⎫+= ⎪⎝⎭, ∵a ≠0,∴a 2>0,∴4a 2>0.∴当b 2-4ac ≥时,2244b ac a-是一个非负数.此时两边开平方得22b x a a+=,∴2b x a-±=【知识拓展】(1)被开方数b2--4ac有意义.(2)由求根公式可知一元二次方程的根是由其系数a ,b ,c 决定的,只要确定了a ,b ,c 的值,就可以代入公式求一元二次方程的根.【新课导读·点拨】因为a =1,b =-1,c =-90,所以()()2114190119212x ±--⨯⨯-±==⨯.故x 1=10,x 2=-9(不符合实际,舍去).所以全校有10个队参赛.【例1】解下列方程.(1)x 2-2x =0; (2)3x 2+4x =-1; (3)2x 2-4x +5=0. 分析:解:(1)x 2-2x -2=0,∵a =1,b =-2,c =-2,∴b 2-4ac =(-2)2-4X1×(-2)-12>0,∴21222322x ±±==,∴113x =+,113x =- (2)原方程可化为3x 2+4x +1=0,∵a =3,b =4,c =1,∴b 2-4ac =42-4×3×1=4>0, (3)2x 2-4x +5=0,∵a =2,b =-4,c =5,∴b 2-4ac =(-4)2-4×2×5=-24<0, ∴该方程没有实数根.二、一元二次方程根的判别式定义:一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“△”来表示,读作:“delta(德尔塔)”.对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac <0时,方程没有实数根. 反之亦成立.【知识拓展】(1)根的判别式是△=b 2-4ac ,而不是24b ac =-(2)根的判别式是在一元二次方程的一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况,要注意方程中各项系数的符号.(3)如果一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b 2-4ac ≥0.探究交流已知关于x的一元二次方程x2+2x+m=0有实数根,当m取最大值时,求该一元二次方程的根.分析:根据根的判别式的意义可得△=4-4m≥0,解得m≤1,所以m的最大值为1,此时方程为x2+2x+1=0,然后运用公式法解方程.解:∵关于x的一元二次方程x2+2x+m=0有实数根,∴△=4-4m≥0,∴m≤1,∴m的最大值为1,当m=1时,一元二次方程变形为x2+2x+1=0,解得x1=x2=1.【例2】一元二次方程x2+x+3=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.∵a=1,b=1,c=3,∴△=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根.故选C.##整理归纳##$$练习$$##题型##单选##题干##(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,x2-2x--3=0.下列说法正确的是( )A.99帮有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解##答案##B##解析##方程①的判别式△=4-12=-8,则①没有实数解;②的判别式△=4+12=16,则②有实数解.故选B.$$更多练习$$##题型##主观填空题##题干##(2011·上海中考)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是______. ##答案## c >9##解析##∵关于xx 2-6x +c =0(c 是常数)没有实数根,∴△=(-6)2-4c <0,即36-4c <0,c >9##题型## 主观题 ##题干##(2012·珠海中考)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =3时,求方程的根. ##答案##解:(1)当m =3时,△=b 2-4ac =22-4×3=-8<0,∴原方程无实数根. (2)当m =-3时,原方程变形为x 2+2x -3=0.∵b 2-4ac =4+12=16,216122x -±==-±,∴x 1=1,x 2=-3.##题型## 主观题 ##题干##(2013·乐山中考)已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0. (1)求证方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.##答案##(1)证明:∵△=(2k +1)2-4(k 2+k)=1>0,∴方程有两个不相等的实根.(2)解:一元二次方程x 2-(2k+1)x +k 2+k =0的解为2112k x +±=,即x 1=k ,x 2=k+1,不妨设AB =k ,AC =k +1,当AB =BC 时,△ABC 是等腰三角形,则k =5;当AC =BC 时,△ABC 是等腰三角形,则k +1=5,解的k =4.所以k 的值为5或4.$$典型$$ ##典例精析##类型一 用公式法解一元二次方程 【例1】用公式法解下列方程. (1)x 2+2x -2=0;(2) 23x+=;(3)21028n n -+=分析:方程(1)(3)可直接确定a ,b ,c 的值,方程(2)需先化为一般形式,再确定a ,b ,c 的值.解:(1)∵a =1,b =2,c =-2,∴b 2-4ac =22-4×1×(-2)=12>0,∴212x -±==-±11x =-+,11x =--(2)将方程化为一般形式,得230x -+=.∵a =1,b =-,c =3,∴(22441340b ac -=--⨯⨯=-<∴原方程没有实数根.(3)∵a =1,b =-,18c =,∴221441028b ac ⎛⎫-=--⨯⨯= ⎪⎝⎭,∴224n ±==,∴124n n ==.规律方法小结:(1)用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.(2)b 2-4ac ≥0是公式中的一个重要组成部分,b 2-4ac <0时,原方程没有实数根.(3)当b2-4ac =0时,应把方程的根写成122bx x a==-,的形式,用以说明一元二次方程有两个相等的根,而不是一个根.类型二 不解方程判定根的情况【例2】不解方程,判断下列方程的根的情况.(1)x 2-x -1=0; (2)2x 2+3x =-2; (3)-2x 2-3x +4=0. 解:(1)∵a =1,b =-1,c =-1,∴△=b 2-4ac =1+4=5>0, ∴该方程有两个不相等的实数根. (2)原方程可变形为2x 2+3x +2=0, ∵a =2,b =3,c =2,∴△=b 2-4ac =9-16=-7<0, ∴原方程没有实数根.(3)原方程可变形为2x 2+3x -4=0,∵a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0,∴原方程有两个不相等的实数根.类型三 几何图形中的方案设计问题【例3】(2012·湘潭中考)如图2所示,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.(所备材料全部用完)分析:设未知数,将矩形的长和宽表示出来,再根据矩形的面积公式列方程,解一元二次方程即可.解:设AB =x m ,则BC =(50-2x)m .根据题意可得x(50-2x)=300,解得x 1=10,x 2=15.当x =10时,BC =50-2×10=30>25,不符合题意,舍去, 当x =15时,BC =50-2×15=20<25,符合题意, 故AB =15 m ,BC =20 m.答:可以围成AB 的长为15 m ,BC 的长为20 m 的矩形.【解题策略】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列方程求解,注意围墙MN 最长可利用25 m ,舍掉不符合题意的数据.类型四 用公式法解含字母系数的一元二次方程【例4】解关于x 的方程x 2-2mx +m 2-2=0. 解:∵a =1,b =-2m ,c =m 2-2, ∴()228422222212m b b ac m x m a --±-±-±====±⨯∴1x m =+2x m =- 【解题策略】要熟练运用公式法求一元二次方程的解,准确确定a ,b ,c 的值是解题的关键.类型五 根据方程根的情况,确定待定系数的取值范围.【例5】k 取何值时,关于x 的一元二次方程kx 2-12x +9=0. (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?分析:(1)当△=b 2-4ac >0时,方程有两个不相等的实数根;(2)当△=b 2-4ac =0时,方程有两个相等的实数根;(3)当△=b 2-4ac <0时,方程没有实数根.分别求出是的取值范围即可.解题时注意二次项系数k ≠0. 解:方程是一元二次方程,则k ≠0. (1)若方程有两个不相等的实数根,则△= b 2-4ac =144-36k >0,解得k <4.所以k <4且k ≠0. (2)若方程有两个相等的实数根,则△=b 2-4ac =144—36k =0,解得k =4. (3)若方程没有实数根,则△=b 2-4ac =144-36k <0,解得k >4.类型六 设计方案解决几何图形面积问题【例6】(2013·连云港中考)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪? (2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.分析:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可;(2)设剪成的较短的一段长优咖,则较长的一段长(40-m)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确. 解:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm , 由题意,得22405844x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得x 1=12,x 2=28.当x =12时,40-x =40-12=28,当x =28时,40-x =40-28=12<28(舍去). ∴较短的一段长12 cm ,较长的一段长28 cm.(2)设剪成的较短的一段长m cm ,则较长的一段长(40-m)cm ,由题意,得22404844m m -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理,得m 2-40m +416=0,∵△=(-40)2-4×416=-64<0,∴原方程无解.∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.类型七 分类讨论求方程的根【例7】解关于x 的方程(k -1)x 2+(k -2)x -2k =0.(23k >)分析:解含有字母系数的方程,往往要按字母的取值分类讨论.此题有两种情况,k =1和k ≠1,当且仅当k ≠1时,二次项系数不为零,才能用一元二次方程的求根公式来解.解:当k =1时,原方程为-x -2=0,∴x =-2. 当k ≠1时,∵a =k -1,b =k -2,c =-2k ,∴b 2-4ac =(k -2)2-4(k -1)(-2k)=9k 2-12k +4=(3k -2)2≥0, ∴x=11kx k =-,22x =-【解题策略】当二次项系数中含有参数时,要讨论;次项系数是否为零.类型八 应用根的判别式判断三角形的形状【例8】已知a ,b ,c 分别是伽c 的三边长,当m >0时,关于x 的一元二次方程()()220cx m b x m ++--=有两个相等的实数根,则△ABC 是什么形状的三角形?分析:由方程有两个相等的实数根可得根的判别式为0,得到与m 有关的等式,由m >0得a ,b ,c之间的关系,从而判定三角形的形状. 解:将方程化为一般形式()()20b c x c b m +-+-=.因为原方程有两个相等的实数根, 所以()()()240b c c b m ∆=--+-=,即4m(a 2+b 2-c 2)=0,又因为m >0,所以a 2+b 2-c 2=0,即a 2+b 2=c 2.根据勾股定理的逆定理知△ABC 是直角三角形.类型九 探索含字母系数的一元二次方程的根的情况【例9】已知关于z 的一元二次方程ax 2+bx +c =o(a ≠0).(1)当a ,c 异号时,试说明该方程必有两个不相等的实数根;(2)当a ,c 同号时,该方程要有实数根,还需要满足什么条件?请你写出一个a ,c 同号,且有实数根的一元二次方程,并解这个方程.分析:(1)只需说明b 2-4ac >0即可.(2)是一个开放性问题,写出的方程满足a ,c 同号,且b 2-4ac ≥0即可.解:(1)因为a ,c 异号,所以ac <O ,所以-4ac >0,所以b 2-4ac >0, 所以,当a ,c 异号时,该方程必有两个不相等的实数根.(2)当a ,c 同号时,该方程要有实数根,还需满足条件b 2-4ac ≥0. 例如方程x 2-4x +3=0,解得x 1=3,x 2=1.【解题策略】(2)中并不是任意的方程都可以,它满足的条件是a ,c 同号且b 2-4ac ≥0,而这样的方程有无数个,我们可以选取一些解答较方便的方程。

一元二次方程式的求根公式(一)

一元二次方程式的求根公式(一)

一元二次方程式的求根公式(一)
一元二次方程式的求根公式
什么是一元二次方程式?
一元二次方程式是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是已知系数,x 是未知数。

求根公式
一元二次方程式的求根公式是通过解方程 ax^2 + bx + c = 0 找到方程的解。

根据求根公式,我们可以得到方程的两个根:
x = (-b ± √(b^2 - 4ac)) / (2a)
其中,± 表示两个不同的根,即正根和负根。

求根公式的例子
假设我们有一个一元二次方程式:2x^2 - 5x + 3 = 0,现在我们来使用求根公式来求解它。

根据求根公式:
x = (-(-5) ± √((-5)^2 - 423)) / (2*2)
化简得:
x = (5 ± √(25 - 24)) / 4
继续化简得:
x = (5 ± √1) / 4
x = (5 ± 1) / 4
所以,这个方程的两个根分别是:
x1 = (5 + 1) / 4 = 6 / 4 =
x2 = (5 - 1) / 4 = 4 / 4 = 1
所以,方程 2x^2 - 5x + 3 = 0 的根是 x = 和 x = 1。

总结
通过求根公式,我们可以解决一元二次方程式的问题。

只需要将方程的系数代入公式,我们就可以得到方程的解。

注意,当方程的判别式 b^2 - 4ac 小于 0 时,方程没有实数根;当判别式等于 0 时,方程有一个实数根;当判别式大于 0 时,方程有两个实数根。

一元二次方程求根公式推导过程

一元二次方程求根公式推导过程

一元二次方程求根公式推导过程
一元二次方程求根是数学中的一个常见问题,它的数学表达式为
ax²+bx+c=0,这里a、b、c是未知数,且a≠0。

要求解这个方程,就要根据a、b、c来求解二次方程的两个根。

解求方法增添一个变量Δ,Δ=b²-4ac,可以有三种不同的情况。

第一种是,Δ>0,此时二次方程有两个不相等的实数根,其求根
公式为x₁= [-b+√Δ]/2a、x₂= [-b-√Δ]/2a。

第二种情况下,Δ=0,此时二次方程有一个重根,求根公式为x= -b/2a 。

第三种情况,Δ<0,此时二次方程没有任何实数根,只有复根,
即无解。

因此,一元二次方程求根公式就是这样的,当Δ>0时,根为
x₁=[-b+√Δ]/2a、x₂=[-b-√Δ]/2a;当Δ=0时,根为x=-b/2a;
当Δ<0时,方程无实数根。

通过改变a、b、c的值,可以实际求解一
元二次方程的根。

一元二次方程的虚根求根公式

一元二次方程的虚根求根公式

一元二次方程的虚根求根公式一元二次方程是数学中常见且重要的方程形式,它的一般形式为ax^2+bx+c=0,其中a、b、c为已知实数,且a≠0。

对于一元二次方程,我们通常通过求根来解决问题。

当一元二次方程的根为实数时,我们可以通过求根公式来求解。

但是,当一元二次方程没有实根时,我们就需要借助虚根求根公式来解决问题了。

虚根求根公式的形式如下:设一元二次方程ax^2+bx+c=0没有实根,那么它的根可以表示为:x1 = (-b+√(b^2-4ac))/2ax2 = (-b-√(b^2-4ac))/2a在这个公式中,√(b^2-4ac)表示方程的判别式,通过判别式的值可以确定一元二次方程的根的性质。

当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根,但有两个复数根。

虚根求根公式是由一元二次方程的解的性质而推导出来的,它的出现是为了解决方程没有实根的情况。

通过虚根求根公式,我们可以计算出一元二次方程的虚根。

例如,我们来看一个实际应用的例子:假设小明在一次物理实验中发现,从一个高度为h的建筑物上抛出一个物体,其运动轨迹可以用一元二次方程来描述。

已知该物体的运动方程为y = -16t^2 + vt + h,其中t为时间,v为初速度,h为初始高度。

我们想要知道在什么时间,该物体会着地。

根据物体着地时的条件,我们可以得到方程y = 0,即-16t^2 + vt + h = 0。

由于这是一个一元二次方程,我们可以使用虚根求根公式来解决。

根据虚根求根公式,我们可以计算出该方程的根,从而确定物体着地的时间。

通过计算判别式b^2-4ac,我们可以判断一元二次方程的根的性质。

如果判别式大于0,则方程有两个不相等的实根;如果判别式等于0,则方程有两个相等的实根;如果判别式小于0,则方程没有实根,但有两个复数根。

在这个例子中,我们可以计算出判别式v^2-4(-16h)的值。

一元二次方程的求根公式推导

一元二次方程的求根公式推导

一元二次方程的求根公式推导摘要:1.一元二次方程的一般形式2.求根公式的推导过程3.求根公式的应用实例正文:一、一元二次方程的一般形式在一元二次方程中,我们通常会遇到这样一个形式:ax + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

我们要解决的就是这个形式的方程。

二、求根公式的推导过程为了求解这个一元二次方程,我们可以运用韦达公式(Vieta"s Formula),也称为求根公式。

求根公式为:x1,2 = (-b ± √(b - 4ac)) / (2a)接下来,我们来推导这个公式。

首先,将方程ax + bx + c = 0两边同时除以a,得到:x + (b/a)x + (c/a) = 0然后,我们将这个方程看作一个完全平方的形式,即:(x + (b/2a)) = (b/4a) - (c/a)接下来,我们对等式两边取平方根,得到:x + (b/2a) = ±√[(b/4a) - (c/a)]最后,我们将x的解表示为:x1,2 = (-b ± √[(b - 4ac)/4a]) / (2a)这就是求根公式的推导过程。

三、求根公式的应用实例现在我们已经得到了求根公式,接下来看一个具体的应用实例。

例如,给定方程:2x - 3x - 2 = 0,我们要找到x的解。

首先,我们可以得到a = 2,b = -3,c = -2。

将这些值代入求根公式,得到:x1,2 = (-(-3) ± √[(-3) - 4 × 2 × (-2)]) / (2 × 2)计算后得到:x1 = (-(-3) + √(9 + 16)) / 4 = 1x2 = (-(-3) - √(9 + 16)) / 4 = -1/2所以,方程2x - 3x - 2 = 0的解为x1 = 1,x2 = -1/2。

通过这个实例,我们可以看到求根公式在实际问题中的应用。

1元二次方程求根公式

1元二次方程求根公式

1元二次方程求根公式一元二次方程求根公式是解决一元二次方程的一种方法,可以通过这个公式得出方程的解析解。

在解决实际问题时,我们经常会遇到一元二次方程,因此掌握求根公式是十分重要的。

一元二次方程的一般形式为:ax^2 + bx + c = 0。

其中,a、b、c 为已知系数,x为未知数。

我们通过求根公式可以得到方程的两个根,公式的形式如下:x1 = (-b + √(b^2 - 4ac)) / 2ax2 = (-b - √(b^2 - 4ac)) / 2a这里√(b^2 - 4ac)表示计算平方根,通常我们称为“根号”。

根号下面的内容称为判别式,它代表了根的性质。

接下来,我们将详细解释这个求根公式。

1.第一步:计算判别式方程的判别式Δ(Delta)等于 b^2 - 4ac,根据判别式的值我们可以判断方程的根的性质。

-当Δ>0时,方程有两个不同的实数根。

-当Δ=0时,方程有两个相等的实数根,也称为重根。

-当Δ<0时,方程没有实数解,但有两个复数解。

2.第二步:套用求根公式根据判别式的值,我们可以得到不同的求根公式。

-当Δ>0时:求根公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。

这时方程有两个不同的实数根。

-当Δ=0时:求根公式为x1=x2=-b/(2a)。

这时方程有两个相等的实数根。

-当Δ<0时:求根公式为x1=(-b+√(,Δ,)i)/2a,x2=(-b-√(,Δ,)i)/2a。

其中i为虚数单位,这时方程没有实数解,但有两个复数解。

3.第三步:将系数代入求根公式将方程的系数a、b、c代入求根公式后,即可计算出x1和x2的值。

需要注意的是,除数不能为0,即a不能为0,否则方程不再是二次方程。

下面我们通过一个实例来解释求根公式的使用。

例题:解方程2x^2+5x+3=0的根。

解法:根据给定方程,我们可以知道a=2,b=5,c=3计算判别式Δ = b^2 - 4ac = 5^2 - 4*2*3 = 25 - 24 = 1由于Δ>0,所以方程有两个不同的实数根。

一元二次方程的求根公式及根的判别式

一元二次方程的求根公式及根的判别式

一元二次方程的求根公式及根的判别式Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】一元二次方程的求根公式及根的判别式主讲:黄冈中学高级教师余国琴一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:①②③④⑤⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主讲:黄冈中学高级教师
一、一周知识概述
1、一元二次方程的求根公式
将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.
该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.
说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);
(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;
(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.
2、一元二次方程的根的判别式
(1)当b2-4ac>0时,方程有两个不相等的实数根;
(2)当b2-4ac=0时,方程有两个相等的实数根;
(3)当b2-4ac<0时,方程没有实数根.
二、重难点知识总结
1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方
程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:
(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;
(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;
(3)根的判别式是指b2-4ac,而不是
三、典型例题讲解
例1、解下列方程:
(1);
(2);
(3).
分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10
所以
所以
(2)原方程可化为
因为a=1,,c=2
所以
所以.
(3)原方程可化为
因为a=1,,c=-1
所以
所以;
所以.
总结:
(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;
(2)用求根公式法解方程按步骤进行.
例2、用适当方法解下列方程:
① ②
③ ④
⑤ ⑥

分析:
要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

就直接开平方法、配方法、公式法、因式分解法这四种方
法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。

⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式
求值,所以对某些方程,解法又显得复杂了。

如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。

⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。

若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。

如②,因为224比较大,分解时较繁,此题中一次项系数是-2。

可以利用用配方法来解,经过配方之后得到
,显得很简单。

⑶ 直接开平方法一般解符合型的方程,如第①小题。

⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。

解:①
两边开平方,得
所以

配方,得
所以
所以

配方,得
所以
所以

因为
所以 =4+20=24 所以
所以

配方:
所以
所以

整理,得
所以

移项,提公因式,得
所以
小结:
以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。

例3、已知关于x的方程ax2-3x+1=0有实根,求a的取值范围.
解:当a=0时,原方程有实根为
若a≠0时,当原方程有两个实根.
故,综上所述a的取值范围是.
小结:
此题要分方程ax2-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0两种情况.
例4、已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
解:(1)因为方程x2-4x+k=0有两个不相等的实数根,
所以b2-4ac=16-4k>0,得k<4.
(2)满足k<4的最大整数,即k=3.
此时方程为x2-4x+3=0,解得x1=1,x2=3.
①当相同的根为x=1时,则1+m-1=0,得m=0;
②当相同的根为x=3时,则9+3m-1=0,得
所以m的值为0或
例5、设m为自然数,且3<m<40,方程有两个整数根求m的值及方程的根。

解:,
∵方程有整数根,
∴4(2m+1)是完全平方数。

∵3<m<40∴7<2m+1<81
∴2m+1值可以为9,25,49
∴m的值可以为4,12,24。

当m=4时方程为解得x=2或x=8
当m=12时方程为解得x=26或x=16
当m=24时方程为解得x=52或x=38
总结:
本题先由整数根确定2m+1是完全平方数,再由3<m<40中m为整数确定m的值,再分别试验求x,是本题特点。

相关文档
最新文档