八年级数学下册竞赛检测试题

合集下载

第九届“睿达杯” 初中生数学能力竞赛(八年级 第二试)试题

第九届“睿达杯” 初中生数学能力竞赛(八年级 第二试)试题

第九届“睿达杯”初中生数学能力竞赛试题卷八年级 第二试 时间120分钟 满分150分一、填空(本大题共18小题20空,每空6分,共120分)1. 计算:2222201720171...331221111++++++++=___2. 已知三角形的三边长均为整数,其中有一条边是3,但不是最短边,这样的三角形有___个3. 如图,AB=BC 1=C 1C 2=C 2C 3=...=C n-1C n =1(n>2),1BC AB ⊥,211C C AC ⊥,322C C AC ⊥,...,n n n C C AC 11--⊥, 则n AC =___.4.如图,在长方形ABCD 中,点E. F 分别在CD 、AB 上,AB=8cm,BC=5cm,将长方形ABCD 沿EF 折叠成如图所示,则整个阴影部分图形的周长为___.5.已知直线y=-2x-2分别与x 轴、y 轴交于A 、B 两点,O 为坐标原点。

在直线x=2上找一点P ,使得ΔPAB 与ΔOAB 面积相等,则符合条件的点P 的坐标为___.6.若锐角三角形中有两边之比为1:2,那么这两边的夹角α的取值范围是___.7.已知m 是整数,方程组⎩⎨⎧=+=-25663my x y x 有正整数,则m 的值为___. 8.满足222)()1()1(y x y x +=-+-的有序数对(x,y )有___ 对。

9.如图,△BEF 的内角∠EBF 平分线BD 与外角∠AEF 的平分线交于点D,过D 作DH ∥BC 分别交EF 、EB 于G 、H 两点。

下列结论:①HD=HB;②∠EFD=∠CFD;③HD=HF;④BH −GF=HG,其中正确的结论是___.10. 若三角形的三条高线的长度分别为6、18、h,其中h 为正整数,则h 的最大值为___.11. 若在有一个为90°的凸n 边形(n 为大于3的自然数)中,最多有M 个内角为锐角,最少有m 个内角为锐角,则M+m=___.12. 如果,32,41,2532≤-≤+=-y x y x 那么xy=___.13. 在ΔABC 中,AB=13,BC=10,CA=29,则ΔABC 的面积为___.14. 多项式6522++-++y x by axy x 的一个因式是x+y-2,则a+b 的值为___.15. 已知ΔABC 的一个顶点为A (4,-2),∠B 被y 轴平分,∠C 被直线y=x 平分,则直线BC 的解析式是___.16. 从1开始的自然数中,把能表示成两个整数的平方差的数从小到大排列成一列,则在这列数中,第2017个数是___.17.如图,在四边形ABCD 中,AD=BD,AD ⊥BD,AC ⊥BC,若CD=1,BC=2,则AC=___ ;四边形ABCD 的面积为___.18.已知关于x 的方程kx+3=221++-x x ,当k=-2时,原方程的解为___.若方程有两个解,则k 的取值范围为___.二、解答题(本大题共2小题,每题15分,共30分)19.如图,已知线段AB=12,点P 为线段AB 上一点,以AP 为边作一正方形APMN ,点Q 在BP 的中垂线上,连接MQ 、PQ ,(1)当AP=3时,求△MPQ 周长的最小值;(2)求△MPQ 的面积的最大值。

初二下学期数学竞赛试题

初二下学期数学竞赛试题

初二下学期数学竞赛试题一、选择题(每题2分,共10分)1. 若a,b,c为正整数,且满足a^2 + b^2 = c^2,那么a,b,c称为勾股数。

下列哪组数不是勾股数?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 9, 12, 152. 已知x^2 - 5x + 6 = 0,求x的值。

A. x = 2B. x = 3C. x = 1 或 x = 6D. 无解3. 一个圆的半径为r,其面积的公式为S = πr^2。

若半径增加1,则新的面积与原面积的比值是多少?A. πB. 1 + πC. 1 + 2πD. 1 + 2πr4. 一个长方体的长、宽、高分别为a、b、c,其体积为V = abc。

若长增加1,宽和高不变,新的体积与原体积的比值是多少?A. 1 + 1/aB. 1 + 1/bC. 1 + 1/cD. 1 + a/b + a/c5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第五项是多少?A. 4B. 5C. 6D. 7二、填空题(每题3分,共15分)6. 一个分数的分子与分母之和为21,分子比分母小8,该分数是________。

7. 若一个等差数列的首项为a,公差为d,且前n项和为S_n,已知S_5 = 25,S_10 = 100,求a的值。

8. 一个正六边形的内角为120°,边长为1,求其外接圆的半径。

9. 一个函数f(x) = 2x - 3,求f(2)的值。

10. 一个直角三角形的两直角边分别为3和4,求斜边的长度。

三、解答题(每题10分,共30分)11. 证明:若a,b,c为正整数,且a^3 + b^3 = c^3,则a + b = c。

12. 解不等式:2x + 5 > 3x - 2。

13. 一个班级有30名学生,其中15名男生和15名女生。

如果从班级中随机选择3名学生,求至少有1名女生的概率。

四、综合题(每题15分,共30分)14. 在平面直角坐标系中,点A(2,3),点B(-1,-2),求直线AB的方程,并求出与x轴平行且经过点A的直线方程。

初二下期数学竞赛试题

初二下期数学竞赛试题

初二下期数学竞赛试题一、选择题(每题3分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定2. 下列哪个数是无理数?A. 3.14B. πC. 0.33333…(3无限循环)D. √23. 已知一个数列的前三项为1, 2, 4,若此数列是等比数列,那么第5项是:A. 8B. 16C. 32D. 644. 一个圆的半径为r,圆心到圆上任意一点的距离是:A. rB. 2rC. 3rD. 无法确定5. 一个长方体的长、宽、高分别是a、b、c,其体积是:A. abcB. a + b + cC. a/b + b/c + c/aD. a^2 + b^2 + c^26. 一个多项式f(x) = ax^3 + bx^2 + cx + d,若f(1) = 8,f(-1) = -8,那么a + d的值是:A. 0B. 2C. 4D. 87. 一个正整数n,如果它既是3的倍数,又是5的倍数,那么它一定是:A. 15的倍数B. 15或30的倍数C. 15的倍数或30的倍数D. 15的倍数且30的倍数8. 一个等腰三角形的底边长为10,若腰长为x,根据三角形不等式,x的最小值是:A. 5B. 10C. 15D. 209. 若一个二次方程ax^2 + bx + c = 0(a ≠ 0)有实数根,那么判别式Δ = b^2 - 4ac必须:A. 大于0B. 等于0C. 大于等于0D. 小于等于010. 一个函数f(x) = kx + b,若f(0) = 3,且f(1) = 5,那么k的值是:A. 2B. 3C. 4D. 5二、填空题(每题4分,共20分)11. 若一个数的平方根是2,那么这个数是_________。

12. 一个数的相反数是-4,那么这个数是_________。

13. 一个数的绝对值是5,那么这个数可以是_________或_________。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

数学初二竞赛试题及答案

数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。

2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。

3. 一个数的立方根是2,那么这个数是________。

4. 一个数的倒数是1/2,那么这个数是________。

5. 一个圆的半径是5cm,那么它的直径是________cm。

三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。

2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。

八年级(下)数学竞赛试卷及答案

八年级(下)数学竞赛试卷及答案

八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

人教版八年级第二学期数学学科竞赛试卷.doc

人教版八年级第二学期数学学科竞赛试卷.doc

初中数学试卷桑水出品八年级第二学期数学学科竞赛试卷总分120分,考试时间90分钟一、选择题(每小题3分,共30分)1.根式2-x中x的取值范围是()A. x>2,B. x<2C. x≥2D. x≤22.下面这几个图形中,是中心对称图形而不是轴对称图形的共有()A.1个 B.2个 C.3个 D.4个3.关于一组数据的平均数、中位数、众数,下列说法正确的是()A . 平均数一定是这组数据的某个数, B. 中位数一定是这组数据的某个数C. 众数一定是这组数据中的某个数,D. 以上说法都不对4.已知四边形ABCD,∠A与∠B互补,∠D=70°,则∠C的度数为()A. 70°B.90°C. 110°D.140°5.若关于x的方程(k-1)x2-2x+1=0有实数根,则k的取值范围是()A. k≥2B. k≤2C. k>2D. k≤2且k≠16.已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b; ③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半。

其中原命题与逆命题均为真命题的有()个A. 1B. 2C. 3D.47 .已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A 、B 、C 、D .8.雅安地震牵动着全国人民的心,某单位开展“一方有难,八方支援”赈灾捐款活动,第一天收到捐款10000元,第三天收到捐款12100元。

如果第二天、第三天收到捐款的增长率相同,按照这样的捐款的增长率,则第四天该单位能收到捐款额为()A. 13310 元B.13210元C.13110元D.13010元9.已知函数()()()()22113513x xyx x⎧--⎪=⎨--⎪⎩≤>,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.310.如图是一个长方形的储物柜,它被分割成4个大小不同的正方形和一个长方形(其中①②③④是正方形),若要计算整个储物柜的周长,则只需知道哪个正方形的边长即可()A. ①B. ②C. ③D. ④二、填空题(每小题3分,共24分)11.用反证法证明命题“不相等的角不是对顶角”时,应假设 。

初二数学竞赛试卷及答案

初二数学竞赛试卷及答案

一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。

12. 下列分数中,最简分数是______。

13. 下列数中,能被5整除的是______。

14. 下列方程中,方程的解为x=3的是______。

15. 下列数中,平方根是正数的是______。

16. 下列代数式中,合并同类项后的结果为5x的是______。

17. 下列函数中,函数值为0的x值有______。

18. 下列数中,是合数的是______。

19. 下列图形中,面积最小的是______。

20. 若a=2,b=4,则a×b的值为______。

三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛初二年级第二试
一、选择题(每题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.)
1.已知式子
-1
|x|1)
8)(x
-
(x
的值为零,则x的值为( ).
(A)±1 (B)-1 (C)8 (D)-1或8
2.一个立方体的六个面上标着连续的整数,若相对的两个面上所标之数
的和相等,则这六个数的和为( ).
(A)75 (B)76 (C)78 (D)81
3.买20支铅笔、3块橡皮擦、2本日记本需32元,买39支铅笔、5块橡皮擦、3本日记本需58元,则买5支铅笔、5块橡皮擦、5本日记本需( ).
(A)20元 (B)25元 (C)30元 (D)35元
4.仪表板上有四个开关,如果相邻的两个开关不能同时是关的,那么所有不同的状态有( ).
(A)4种 (B)6种 (C)8种 (D)12种
5.如图,AD是△ ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则( ).
(A)BE+CF>EF (B)BE+CF=EF (C)BE+CF<EF (D)BE+CF与EF
的大小关系不确定
6.如果a、b是整数,且x2-x-l是ax2+bx2+l的因式,那么b的值为
( ).
(A)-2 (B)-1 (C)0 (D)2
7.如果:|x|+x+y =10,|y|+x-y =12,那么x+y=( ). (A)-2 (B)2 (C)
5
18 (D)
3
22
8.把16个互不相等的实数排列成如图。

先取出每一行中最大的数,共得到4个数,设其中最小的为x ;再取出每一列中最小的数,也得到4个数,设其中最大的数为y ,那么x ,y 的大小关系是( ).
(A)x =y (B)x<y (C)x ≥y (D)x ≤y
二、填至越(每题7分,共56分)
9.已知2 001是两个质数的和,那么这两个质数的乘积是 10.已知
a
1-
b
1=2,则
b
-3ab -a 2b -ab -2a 的值为
11.已知实数a 、b 、c 满足a+b =5,c 2=ab+b-9,则c= ² 12.已知|x+2|+|1-x|=9-|y-5|-|1+y|,则x+y 的最小值为 ,最大值为 .
13.如图,△ABC 中,点D 、E 、F 分别在三边上,AD 、BE 、CF 交于一点G ,BD =2CD ,面积S 1=3,面积S 2=4,则S △ABC = 14.本题中有两小题,请你任选一题作答.
(1)如图,设L 1 和L 2是镜面平行且镜面相对的两面镜子.把一个
小球放在L 1和L 2之间,小球在镜L 1 中的像为A',A'在镜L 2中的像为A ”.若L 1、L 2的距离为7,则AA"= (2)已知a 2
b -1+b 2
a
-1=l ,则a 2+b 2
= .
15.有一等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为 度.
16.锐角三角形ABC 中,AB>BC>AC ,且最大内角比最小内角大24°,则∠4的取值范围是 ,
三、解答题(每题1.2分,共48分、)
17. 已知:如图,△ ABC 中,AC =BC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE =
2
1BD .求证:BD 是∠ABC 的角平分线.
18.把一根1米长的金属线材,截成长为23厘米和13厘米两种规格,
用怎样的方案截取材料利用率最高?求出最高利用率.(利用率=原材料长度
实际利用材料长度
³100%,截口损耗不计)
19.将1~8这八个数放在正方体的八个顶点上,使任一面上四个数中任意三数之和不小于10.求各面上四数之和中的最小值.
20 .7位数61287xy 是72的倍数,求出所有的符合条件的7位数.
第十五届江苏省初中数学竞赛参考答案初二年级第二试 一、1.C . 2.D .
3.C .设铅笔每支为x 元,橡皮擦每块为y 元,日记本每本为z 元,则
20z+3y+2z=3 2,①
39x+5y+3z=5 8.②
①³2-②得 x+y+z=6.
5(x+y+z)=3 O.应选(C).
4.C.我们用O表示开的状态,F表示关的状态,则各种不同的状态有000O,000F,00FO,0F0O,FDD0,FOF0,0FOF,F00F共8种状态,应选(C).
8.C.选取1 6个互不相等的实数,有无穷多种不同的情况,不可能一一列举检验.由于选择题的选项中有且只有一个是正确的.所以,可以从特殊情形进行剖析.如取前1 6个自然数,把它们按自然顺序排成
图(2),交换最大数和最小数的位置得到图(3).
(1)
(2)
(3)
易得图(2)中x=4,y=4,显然x=y;图(3)中,x=8,y=5,显然x>y.因此一般情况下有x≥y.应选(C).
事实上当x≠y时,x=a
ij ,y=a
mk
,如果它们在同一行或同一列,显然x>y.否则它们所
在的行、列的交点是a
ik ,由x、y的意义得到:y<a
ik
<x.从而能够证明x≥y.
二、9.3 9 9 8.因为两个质数的和为奇数,故必有一个质数是奇数,另一个质数是偶数.而2是唯一的偶质数,所以另一个质数是1 9 9 9,它们的乘积为2³1 9 9 9=3 9 9 8. 1O.1.由已知得b一a=2ab,代入求值式得
11.O. a+b=5,a=5-b
c2=(5-b)²b+b-9=-(b-3)2, c=O.
1 2.6;-3.原式可化为|x+2|+|1-x|+|y-5|+|1+y|=9, |x+2|+|1-x|≥3,当-2≤x≤1时等号成立,
|y-5 |+|y+1|≥6,当-1≤y≤5时等号成立.
x+y的最大值=1+5=6,x+y的最小值=-3.
1 3.30.如图, BD=2CD, S3=8, BG:GE=4:1.
0≤x≤4,0≤y≤7,x、y都是整数且 3x+1 3y尽可能接近l00
当x=4时,y=0,材料利用率9 2%,
当x=3时,y=2,材料利用率9 5%,
当x=2时,y=4,材料利用率9 8%,
当x=1时,y=5,材料利用率8 8%,
当x=0时,y=7,材料利用率9 1%.
可见将1米长的金属线材,截成长为23厘米的线材2根,截成长1 3厘米的线材4根,这时材料的利用率最高,最高利用率为98%.
1 9.情形1 这个面上出现数1.
设其余三个数为a,b,c,因为a+b,b+c,c+a互不相同,且依题设加1之和不小于1 O,这样a+b,b+ c,c+a这三个数至少要不小于9,1 O,11.故(a+b)+(b+c)+(c+a)≥9+1O+11,即a+b+c≥1 5,
加上1之后,四个数之和≥1 6.
情形2 这个面上不出现数1.
显然依题意不能同时出现2,3,4,因为2+3+4=9<10.
于是,这些数至少有2,3,5,6,2+3+5+6=1 6.
故4数之和的最小值为1 6.具体分布如图.
2 O.因为所求数是7 2的倍数,所以所求数一定既是9的倍数,又是8的倍数.
是9的倍数,. 1+2+8+7+x+y+6=2 4+x+y是9的倍数,且O≤x+y≤1 8,
x+y等于3或1 2
又所求数是8的倍数,xy6必须是8的倍数.
y6必须是4的倍数. y只能是1,3,5,7,或9.
当y=1时,x=2,2 1 6是8的倍数.
当y=3时,x=O或9,3 6不是8的倍数,9 36是8的倍数,
当y=5时,x=7,但7 5 6不是8的倍数,
当y=7时,x=5,5 7 6是8的倍数,
当y=9时,x=3,但3 9 6不是8的倍数.
.符合条件的7位数是1 2 8 7 2 1 6,1 2 8 7 93 6,1 2 87 5 7 6.……。

相关文档
最新文档