三年级奥数等差数列求和习题及答案
三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及答案————————————————————————————————作者:————————————————————————————————日期:计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(完整)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
高斯小学奥数含答案三年级(上)第21讲等差数列求和

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -对于一个等差数列而言,除了它的首项、公差、项数和末项很重要之外,数列中所有数之和也是非常重要的.在进行等差数列求和时,最常用的方法就是分组法.以123456789++++++++为例:把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于首项加末项()19+,而且共有项数()9那么多对,所以所有数之和等于:首项末项项数因为我们把原来的等差数列写了2遍,所以所有数之和就等于原来等差数列之和的2倍,于是可以+ + + + + + + + 1 23456789+ + + + + + + + 987654321+先把数列正着写一遍:再把数列反着写一遍:第二十一讲等差数列求和得到等差数列求和公式:2和首项末项项数- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1计算下列各题:(1)36912151821242730+++++++++;(2)4137332925211713951++++++++++.分析:试着用公式进行一下计算,首项、末项、项数分别是多少?练习1计算:61116212631364146++++++++.例题2计算下列各题:(1)511177783+++++L ;(2)827772127.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习2计算:100928412L.例题3计算下列各题:(1)10121824共项+++L 14444444244444443;(2)131********共项+++L 1444444442444444443.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习3计算:12101316共项+++L 14444444244444443.例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完.请问:萱萱一共读了多少天?这本课外书共有多少页?分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米,请问:小高这些天里一共游了多少米?例题5小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子,请问:这15个盒子中一共有多少颗珠子?分析:奇数项等差数列求和公式?中间数是几?项数有几项?例题6小明从1开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果2007.小刚也从1开始计算若干连续自然数的和,他因为漏加了其中的一个自然数,也得到了错误结果2007.请问被重复计算和漏掉的两个数之和是多少?分析:等差数列求和接近2007时,这个等差数列的最后一项是几?作业1.计算:.2.计算:.3.计算:.31581114L 144424443共项111825102++++L 7067646158555249+++++++课堂内外高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师.高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生.高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich ).弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就.他发现姐姐的儿子聪明伶俐,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力.若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”.正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲.罗捷雅直到34岁才出嫁,生下高斯时已有35岁了.她性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围.当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.高斯的故事4.一个等差数列的首项是21,从第二项起每一项都比前一项大2,它的前20项之和是多少?5.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了18根香蕉.馋嘴猴前9周一共吃了多少根香蕉?第二十一讲等差数列求和1.例题 1答案:(1)165;(2)231详解:(1)()36912151821242730330102165+++++++++=+锤=.(2)()4137332925211713951411112231++++++++++=+锤=.2.例题 2答案:(1)616;(2)712 详解:(1)先求项数=()8356114-?=,再求和:()583142616原式=+锤=.(2)先求项数=()8275116-?=,827162712原式.3.例题 3答案:(1)390;(2)2041详解:(1)先求末项=()12101666+-?,()1218661266102390原式=+++=+锤=L .(2)先求末项=()1931316121--?,()1931871211931211322041原式=+++=+锤=L .4.例题 4答案:(1)8天;(2)204页详解:先求项数,即多少天=()3615318-?=天,()151********2204++鬃?=+锤=,即共有204页.5.例题 5 答案:360颗详解:利用中间数×项数,共有1524360?颗.6.例题 6 答案:63详解:123621953++++=L ,123632016++++=L ,则多加的数为2007195354-=,则漏加的数为201620079-=,则被重复计算和漏掉的两数之和为54963+=.7.练习 1 答案:234简答:()6111621263136414664692234++++++++=+锤=.8.练习 2 答案:672简答:先求项数=()100128112-?=,10012122672原式.9.练习 3 答案:318简答:先求末项=()10121343+-?,()121013161043122318+++=+锤=L 14444444244444443共项.10.练习 4答案:3600米简答:先求项数,有()6002005019-?=天,()200250600200600923600++鬃?=+锤=,即共游了3600米.11.作业 1答案:476简答:首项为70,末项为49,项数为8.(7049)82476原式.12.作业 2答案:791简答:项数为(10211)7114,和为(10211)142791.13.作业 3答案:1550简答:末项为530395,和为(595)3121550.14.作业 4答案:800简答:公差为2,第20项为2119259,和为(2159)202800.15.作业 5答案:162根简答:前9项的中间项是第5项.所以前9项和为189162.。
奥数题库(三年级)等差数列2求和

配对求和1、13+17+21+25+29+33+37+41=__________.2、32+34+36+38+40+42+44+46+48+50=__________.3、21+24+27+30+33+36+39+42+45=__________.4、3+7+11+15+……,等差数列共12项,那么这12项的和是__________.5、4+7+10+13+……,等差数列共20项,那么这20项的和是__________.6、94+88+82+……,等差数列共14项,那么这14项的和是__________.7、计算:5+7+9+……+53+55=__________.8、计算:13+19+25+……+67+73=__________.9、计算:90+83+76+……+34+27=__________.10、文雯为了增肥,计划每天吃包子,第一天她吃了5个包子,以后每天都比前一天多吃3个包子,最后一天吃了32个包子.那么文雯一共吃了_____天包子,共吃了_____个包子.11、雁雁为了减肥,计划每天做仰卧起坐,第一天她做了5个,以后每一天都比前一天多做2个,最后一天做了95个.那么雁雁一共做了_____天的仰卧起坐,共做了_____个仰卧起坐.12.旦旦练习跳绳,第一天跳绳3次,以后每一天都比前一天多跳4次,最后一天跳绳39次.那么旦旦跳绳跳了_____天,共跳绳_____次.利用中间数求和1.一个等差数列共15项,那么这个等差数列的中间数是第__________项.2.一个等差数列共9项,那么这个等差数列的中间数是第__________项.3.一个等差数列共13项,那么这个等差数列的中间数是第__________项.4.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了20根香蕉.馋嘴猴前9周一共吃了__________根香蕉.5.旦旦很喜欢吃包子,她每天吃的包子数成等差数列,已知她第6天吃了30个包子,那么旦旦前11天一共吃了__________个包子.6.雁雁很喜欢吃鸡蛋,她每天吃的鸡蛋数成等差数列,已知她第4天吃了10个鸡蛋,那么雁雁前7天共吃了__________个鸡蛋.7.一个等差数列共9项,和等于180,那么这个等差数列的中间项是第项,这个数是.8.一个等差数列共7项,和等于210,那么这个等差数列的中间项是第项,这个数是.9.一个等差数列共5项,和等于100,那么这个等差数列的中间项是第项,这个数是.10.已知一个等差数列的下列条件:①第1项是8;②第5项是20;③第6项是23;④第11项是38;⑤公差是3;⑥共11项.以下选项中不能求出这个等差数列和的是__________.11.已知一个等差数列的下列条件:①第1项是7;②第7项是25;③第8项是28;④第13项是43;⑤公差是3;⑥共13项.以下选项中不能求出这个等差数列和的是__________.12.已知一个等差数列的下列条件:①第1项是9;②第4项是21;③第5项是25;④第9项是41;⑤公差是4;⑥共9项.以下选项中不能求出这个等差数列和的是__________.。
小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案1. 对于下列等差数列,求出其公差并继续列出下一个项:a) 3, 5, 7, 9, ...解答:a) 公差为2。
下一个项为11。
2. 给定等差数列的首项和公差,求出前n项的和。
a) 首项为2,公差为3,求前5项的和。
解答:a) 首项为2,公差为3。
前5项的和为2 + 5 + 8 + 11 + 14 = 40。
3. 给定等差数列的前n项和以及首项,求公差。
a) 前6项的和为42,首项为3,求公差。
解答:a) 前6项的和为42,首项为3。
根据等差数列求和公式,可得到以下方程:(6/2) * (2 * 3 + (6 - 1) * d) = 4218 + 15d = 4215d = 24d = 24/15公差为8/5。
4. 在下列等差数列中,求第n项:a) 1, 4, 7, 10, ...解答:a) 第n项可表示为1 + (n - 1) * 3。
例如,第5项为1 + (5 - 1) * 3 = 13。
5. 已知等差数列的首项和第n项,求公差。
a) 首项为5,第6项为20,求公差。
解答:a) 第n项可表示为首项加上公差乘以(n - 1)。
根据已知条件,可得到以下方程:5 + 5(n - 1) = 205n - 5 = 205n = 25n = 5公差为5。
6. 在下列等差数列中,求第n项的值:a) -2, -5, -8, -11, ...解答:a) 第n项可表示为-2 - (n - 1) * 3。
例如,第6项为-2 - (6 - 1) * 3 = -17。
7. 对于下列等差数列,求出给定的项:a) 2, 5, 8, 11, ...求第10项。
求第20项。
解答:a) 第n项可表示为首项加上公差乘以(n - 1)。
例如,第10项为2 + 3 * (10 - 1) = 29。
第20项为2 + 3 * (20 - 1) = 59。
8. 已知等差数列的首项和公差,求出前n项中大于m的项的个数。
三年级奥数第五讲等差数列求和

三年级奥数第五讲等差数列求和
例题1. 计算2+5+8+11+17+20+23
练习:计算1+2+3+5+7+9+11+13+15+17+19
例题2. 计算8+10+12+14+16+18+20
练习:计算3+6+9+12+15+18+21
例题3. 计算5+6+7+8+9+10+9+8+7+6+5
练习:20+17+14+11+8+5+2
例题4. 计算9+11+13+15+17+19+22
练习:计算5+7+9+11+13+15+17+19+21+25
例题5. 计算8+9+10+11+12+13+15+17+19+21+23
练习:计算12+13+14+15+16+18+20+22+24+26
例题6. 杨诚为了买课外书自己存钱,2003年元月存一元钱,以后每月都比前一个月多存1元钱,那么2003年这一年里一共可以存多少钱?
练习:一辆双层公共汽车空车出发,第一站上一位乘客,第二站上两位,第三站上三位,以此类推,到第11站之后,公汽上的作为刚好坐满。
求这两公汽共有多少个座位?
例题7. 三年级数学培优班第1小组由8名同学,开学时,老师要求该组没人都握一次手,问共握多少次手?
练习:有10把钥匙是互相配对的,但小组把锁和钥匙弄乱了,问最多需要实验多少次,就可以把锁和钥匙配起来?。
等差数列三年级奥数题

等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中每个相邻的元素之差相等。
等差数列的基本性质包括:1.等差数列中任意两个相邻元素的差值相等;2.等差数列中任意两个元素之差的值都是相同的;3.等差数列中元素的和与项数成正比。
二、等差数列求和公式等差数列求和公式是指将一个等差数列的所有元素相加得到的总和的计算公式。
等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的第一个元素,an 表示等差数列的最后一个元素。
三、三年级奥数等差数列求和习题及答案1.习题:一个等差数列的前5 个元素分别为1, 3, 5, 7, 9,求这个等差数列的和。
答案:S = 5 * (1 + 9) / 2 = 252.习题:一个等差数列的前10 个元素分别为2, 4, 6, 8, 10, 12, 14, 16, 18, 20,求这个等差数列的和。
答案:S = 10 * (2 + 20) / 2 = 110四、提高等差数列求和题目的解题技巧1.观察题目中的已知条件,如元素个数、首项和末项等,确定等差数列的性质;2.利用等差数列求和公式,将已知条件代入公式计算;3.注意数列中可能出现的公差为0 的情况,此时等差数列的所有元素都相等,和为元素个数乘以任意一项。
通过以上提纲和正文内容,我们可以了解到等差数列的概念和基本性质,以及等差数列求和公式的应用。
同时,我们通过三年级奥数等差数列求和习题及答案,学会了如何利用等差数列求和公式解决实际问题。
三年级奥数题及参考答案-等差数列

三年级奥数题及参考答案-等差数列
编者小语:“题海无边,题型有限”。学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。为大家准备了小学三年级奥数题,希望小编整理奥数题等差数列问题,可以帮助到你们,助您快速通往高分之路!!
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。那么应插入哪些数?
2、一个等差数列的首项是6,第源自项是55,公差是( )。解答1:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。
解答2:d=(55-6)÷(8-1)=7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(1)式=(1+199)×199÷2=19900答案:(1)19900 (2)1160 (3)5355例3:一个等差数列2,4,6,8,10,12,14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8756⨯=答案:56例4:求1+5+9+13+17……+401该数列的和是多少。
分析:这个数列的首项是1,末项是401,项数是(401-1)÷4+1=101,所以根据求和公式,可有:和=(1+401)×101÷2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+(61-1)×3=182根据求和公式:和=(2+182)×61÷2=5612答案:5612例6:把自然数依次排成“三角形阵”,如图。
第一排1个数;第二排3个数;第三排5个数;…求:(1)第十二排第一个数是几?最后一个数是几?(2)207排在第几排第几个数?(3)第13排各数的和是多少?分析:整体看就是自然数列,每排的个数的规律是1,3,5,7...即为奇数数列若排数为n (n≥2de 自然数),则这排之前的数共有(n-1)(n-1)个。
(1)第十二排共有23个数。
前面共有(1+21)×11÷2=121个数,所以第十二排的第一个数为122,最后一个数为122+(23-1)×1=144(2)前十四排共有196个数,前十五排共有225个数,所以207在第十五排,第十五排的第一个数是197,所以207是第(207-197=10)个数(3)前十二排共有144个数,所以第十三排的第一个数是145,而第十三排共有25个数,所以最后一个数是145+(25-1)×1=169,所以和=(145+169)×25÷2=3925答案:(1)122;144 (2)第十五排第10个数(3)3925例7:15个连续奇数的和是1995,其中最大的奇数是多少?分析:由中项定理,中间的数即第8个数为:199515133÷=,所以这个数列最大的奇数即第15个数是:1332158147+⨯-=()。
答案:147。
例8:把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?分析:由题可知:由210拆成的7个数必构成等差数列,则中间一个数为210÷7=30,所以,这7个数分别是15、20、25、30、35、40、45。
即第1个数是15,第6个数是40。
答案:第1个数:15;第6个数:40。
例9:已知等差数列15,19,23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?分析:公差=19-15=4项数=(443-15)÷4+1=108倒数第二项=443-4=439奇数项组成的数列为:15,23,31……439,公差为8,和为(15+439)×54÷2=12258 偶数项组成的数列为:19,27,35……443,公差为8,和为(19+443)×54÷2=12474 差为12474-12258=216答案:216例10:在1~100这一百个自然数中,所有能被9整除的数的和是多少?分析:每9个连续数中必有一个数是9的倍数,在1~100中,我们很容易知道能被9整除的最小的数是991=⨯,最大的数是99911=⨯,这些数构成公差为9的等差数列,这个数列一共有:111111-+=项,所以,所求数的和是:9182799999112594++++=+⨯÷=(). 也可以从找规律角度分析.答案:594例11:一串数按下面的规律排列:1、2、3、2、3、4、3、4、5、4、5、6……问:从左面第一个数起,前105个数的和是多少?分析:这些数字直接看没有什么规律,但是如果3个一组,会发现这样一个数列:6,9,12,15......即求首项是6,公差是3,项数是105÷3=35的和末项=6+3×(35-1)=108和=(6+108)×35÷2=1995答案:1995例12:在下面12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16已经填好,这12个数的和为 。
16 10 分析:由题意知:这个数列是一个等差数列,又由题目给出的两个数10和16知:公差为2,那么第一个方格填26,最后一个方格是4,由等差数列求和公式知和为:(426)122180+⨯÷=。
答案:180。
本讲小结:1. 一个数列的前n 项的和为这个数列的和,我们称为 。
2. 求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
3.对于任意一个奇数项的等差数列,各项和等于中间项乘以项数。
练习:1. 求和:(1)1+3+5+7+9= (2)1+2+3+4+ (21)(3)1+3+5+7+9+ (39)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
答案:(1)25 (2)231 (3)4002. 求下列各等差数列的和。
(1)1+2+3+…+100(2)3+6+9+…+39分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
答案:(1)5050 (2)2733.一个等差数列4,8,12,16,20,24,28,32,36这个数列的和是多少?分析:根据中项定理,这个数列一共有9项,各项的和等于中间项乘以项数,即为:20×9=180答案:1804.所有两位单数的和是多少?分析:即求首项是11,末项是99的奇数数列的和为多少。
和=(11+99)×45÷2=2475答案:24755. 数列1、5、9、13、……,这串数列中,前91个数和是多少?分析:首项是1,公差是4,项数是91,根据重要公式,可得:末项=1+(91-1)×4=361和=(1+361)×91÷2=16471答案:164716.如图,把边长为1的小正方形叠成“金字塔形”图,其中黑白相间染色。
如果最底层有15个正方形,问:“金字塔”中有多少个染白色的正方形,有多少个染黑色的正方形?分析:由题意可知,从上到下每层的正方形个数组成等差数列,其中11a =, 2d =,15n a =,所以151218n =-÷+=(),所以,白色方格数是:1238188236++++=+⨯÷=() 黑色方格数是:1237177228++++=+⨯÷=()。
答案:287. 20052006200720082009201020112008++++++÷=() 。
分析:根据中项定理知:200520062007200820092010201120087++++++=⨯,所以原式 2008720087=⨯÷=。
答案:7。
8. 把248分成8个连续偶数的和,其中最大的那个数是多少?分析:公差为2的递增等差数列。
平均数:248÷8=31,第4个数:31-1=30;首项:30-6=24;末项:24+(8-1)×2=38。
即:最大的数为38。
答案:389. 求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
分析:解法1:可以看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000答案:100010. 在1~100这一百个自然数中,所有不能被9整除的数的和是多少?分析:先计算1~100的自然数和,再减去能被9整除的自然数和,就是所有不能被9整除的自然数和了.12100110010025050+++=+⨯÷=(),9182799999112594++++=+⨯÷=(),所有不能被9整除的自然数和:50505944456-=.如果直接计算不能被9整除的自然数和,是很麻烦的,所以先计算所有1~100的自然数和,再排除掉能被9整除的自然数和,这样计算过程变得简便多了。