高层建筑结构第四章

合集下载

高层建筑施工(练习—课后思考)(4章 )

高层建筑施工(练习—课后思考)(4章 )

课后思考题目1根据《建筑基坑支护技术规程》的规定,基坑支护结构设计应采用分项系数以表示的极限状态设计表达式进行设计。

题目2支护工程勘察范围应根据开挖深度及场地的岩土工程条件确定。

题目3支护工程勘察的勘探点深度应根据基坑支护结构设计要求,且不宜小于1 倍开挖深度。

题目4支护工程勘察的勘探点间距应视地层条件而定。

可在15内选择。

题目5深基坑工程勘察内容主要是水文地质勘察、岩土勘察及基坑周边环境等。

题目6深基坑支护结构应具有挡土、挡水和保护环境的作用。

题目7支护结构按照其工作机理和围护墙形式分为:水泥土墙式、排桩与板墙式、边坡稳定式和逆作拱墙式。

题目8水泥土墙式支护结构分为深层搅拌水泥土桩墙和高压旋喷桩墙两种。

题目9基坑支护结构计算方法主要有经典法、弹性地基梁法和有限元法。

题目10支护结构承受的荷载,一般包括:土压力、水压力、墙后地面荷载引起的附加荷载。

题目11非重力支护结构稳定验算的内容包括整体滑动失稳验算、坑底隆起验算和管涌验算。

题目12在有支护开挖的情况下,基坑工程包括哪些内容一般包括:①基坑工程勘察;②基坑支护结构的设计与施工;③控制基坑地下水位;④基坑土方工程的开挖与运输;⑤基坑土方开挖过程中的工程监测;⑥基坑周围的环境保护。

题目13支护结构设计的原则是什么(1)要满足强度、稳定和变形的要求,确保基坑施工及周围环境的安全。

(2)经济合理在支护结构的安全可靠的前提下,从造价、工期及环境保护等方面经过技术经济比较,具有明显优势的方案。

(3)在安全经济合理的原则下,要考虑施工的可能性和方便施工题目14什么是基坑支护结构承载能力极限状态承载能力极限状态对应于支护结构达到最大承载能力或基坑底失稳、管涌导致土体或支护结构破坏,内支撑压屈失稳。

支护桩墙锚杆抗拔失效等。

题目15什么是基坑支护结构正常使用极限状态正常使用极限状态对应于支护结构的变形已破坏基坑周边环境的平衡状态并产生了不良影响,如引起周边相邻的建筑物倾斜、开裂;道路沉降、开裂;周边的地下管线沉降变形开裂等。

高层建筑结构设计-第4章-结构设计基本规定

高层建筑结构设计-第4章-结构设计基本规定

高层建筑结构设计广西大学土木建筑工程学院贺盛第四章结构设计基本规定4.6 舒适度验算4.7 抗震设防类别4.8 抗震等级4.9 变形缝设置4.1 适用最大高度及高宽比4.2 结构布置的规则性4.3 承载力验算4.4 荷载效应组合4.5 变形验算本章重点➢掌握各类房屋的适用最大高度及高宽比➢掌握各类结构布置原则及规则性判别方法➢掌握荷载效应组合及承载力验算方法➢掌握变形验算方法➢了解舒适度验算方法➢掌握各类建筑抗震等级确定方法➢熟悉各种变形缝的类型及设置原则4.1 适用最大高度及高宽比结构设计首先需根据房屋高度、抗震设防、设防烈度等因素,确定一个与之匹配的、经济且合理的结构体系,以使结构效能得到充分发挥,材料强度得到充分利用。

《建筑结构抗震设计规范》GB50011-2010(以下简称《抗规》)、《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称《高混规》)及《高层民用建筑钢结构设计规程》JGJ-2015(以下简称《高钢规》)规定了钢筋混凝土结构、钢结构及混合结构房屋建筑的最大适用高度。

将钢筋混凝土结构房屋划分为A与B级。

当房屋高度满足下表时,为A级。

当钢筋混凝土结构房屋高度不满足上表,但满足下表时,为B级。

当房屋高度不满足下表时,为超限高层建筑。

民用钢结构房屋的最大适用高度如下表所示。

表中筒体不包括钢筋混凝土筒。

混合结构房屋的最大适用高度如下表所示。

4.1.2 房屋建筑适用的高宽比房屋建筑适用的高跨比,是对结构刚度、整体稳定承载能力及经济合理性的宏观控制指标。

当结构设计满足承载力、稳定、抗倾覆、变形及舒适度等基本条件之后,仅从结构安全角度考虑,高宽比限值不是必须满足的。

高宽比主要影响结构设计的经济性。

钢筋混凝土结构房屋建筑的适用高宽比如下表。

4.1.2 房屋建筑适用的高宽比钢结构房屋建筑的适用高宽比如下表。

混合结构房屋建筑的适用高宽比如下表。

4.2 结构布置的规则性建筑平面可分为板式和塔式两大类。

高层建筑结构设计 第04章 高层框架结构内力计算

高层建筑结构设计 第04章 高层框架结构内力计算

4.2 竖向荷载作用下的内力计算
一、分层法 1.竖向荷载作用下框架结构的受力特点及内力计算
假定 (1)不考虑框架结构的侧移对其内力的影响; (2)每层梁上的荷载仅对本层梁及其上、下柱的内
力产生影响,对其他各层梁、柱内力的影响可忽 略不计。 应当指出,上述假定中所指的内力不包括柱轴力, 因为各层柱的轴力对下部均有较大影响,不能忽 略。
M EH

FQHE

h2 2

3.42kN
3.3 m 2

5.64
kN m
(反弯点位于h/2处)
M EB

FQBE

h1 3

10kN
• 柱截面尺寸
框架柱的截面形式常为矩形或正方形。 有时由于 建筑上的需要, 也可设计成圆形、 八角形、 T 形、 L 形、十字形等, 其中 T 形、 L 形、十 字形也称异形柱。构件的尺寸一般凭经验确定。 如果选取不恰当, 就无法满足承载力或变形限值 的要求, 造成设计返工。确定构件尺寸时, 首先 要满足构造要求, 并参照过去的经验初步选定尺 寸, 然后再进行承载力的估算, 并验算有关尺寸 限值。
9.53 3.79 12.77 3.79
1.61
2.固端弯矩
下柱 3.79 3.79 1.61 7.11 4.84 3.64
相对线刚 度总和 左梁 11.42 0.000 21.63 0.353 11.82 0.864 20.43 0.000 30.93 0.308 18.02 0.709
分配系数 右梁 上柱 0.668 0.000 0.472 0.000 0.000 0.000 0.466 0.185 0.413 0.123 0.000 0.089

高层建筑施工(练习—课后思考)(4章 )

高层建筑施工(练习—课后思考)(4章 )

4.1课后思考题目1根据《建筑基坑支护技术规程》的规定,基坑支护结构设计应采用分项系数以表示的极限状态设计表达式进行设计。

题目2支护工程勘察范围应根据开挖深度及场地的岩土工程条件确定。

题目3支护工程勘察的勘探点深度应根据基坑支护结构设计要求,且不宜小于1 倍开挖深度。

题目4支护工程勘察的勘探点间距应视地层条件而定。

可在15内选择。

题目5深基坑工程勘察内容主要是水文地质勘察、岩土勘察及基坑周边环境等。

题目6深基坑支护结构应具有挡土、挡水和保护环境的作用。

题目7支护结构按照其工作机理和围护墙形式分为:水泥土墙式、排桩与板墙式、边坡稳定式和逆作拱墙式。

题目8水泥土墙式支护结构分为深层搅拌水泥土桩墙和高压旋喷桩墙两种。

题目9基坑支护结构计算方法主要有经典法、弹性地基梁法和有限元法。

题目10支护结构承受的荷载,一般包括:土压力、水压力、墙后地面荷载引起的附加荷载。

题目11非重力支护结构稳定验算的内容包括整体滑动失稳验算、坑底隆起验算和管涌验算。

题目12在有支护开挖的情况下,基坑工程包括哪些内容?一般包括:①基坑工程勘察;②基坑支护结构的设计与施工;③控制基坑地下水位;④基坑土方工程的开挖与运输;⑤基坑土方开挖过程中的工程监测;⑥基坑周围的环境保护。

题目13支护结构设计的原则是什么?(1)要满足强度、稳定和变形的要求,确保基坑施工及周围环境的安全。

(2)经济合理在支护结构的安全可靠的前提下,从造价、工期及环境保护等方面经过技术经济比较,具有明显优势的方案。

(3)在安全经济合理的原则下,要考虑施工的可能性和方便施工题目14什么是基坑支护结构承载能力极限状态?承载能力极限状态对应于支护结构达到最大承载能力或基坑底失稳、管涌导致土体或支护结构破坏,内支撑压屈失稳。

支护桩墙锚杆抗拔失效等。

题目15什么是基坑支护结构正常使用极限状态?正常使用极限状态对应于支护结构的变形已破坏基坑周边环境的平衡状态并产生了不良影响,如引起周边相邻的建筑物倾斜、开裂;道路沉降、开裂;周边的地下管线沉降变形开裂等。

高层建筑结构设计要求及荷载效应组合讲解

高层建筑结构设计要求及荷载效应组合讲解
② 短暂设计状况:适用于结构出现的临时情况,包括 结构施工和维修时的情况等;
③ 偶然设计状况:适用于结构出现的异常情况,包括结 构遭受火灾、爆炸、撞击时的情况等;
④ 地震设计状况:适用于结构遭受地震时的情况,在抗 震设防地区必须考虑地震设计状况。
1.1、持久设计状况和短暂设计状况下(无地震作用组合) 当荷载与荷载效应按线性关系考虑时,按下式:
压区高度 材料变形能力 塑性变形中不能剪坏
计算和构造
我国《规范》依据设防分类、设防烈度、结构类型、 房屋高度,划分了结构的抗震等级。一级要求最高,延性 很好,二级、三级次之,四级要求最低。
不同抗震等级,对应不同的延性要求。设计时采取不 同的计算和构造措施。
对钢筋混凝土结构,如下表所示:
抗震设防标准:
⑵不利方面:出现塑性变形,意味着混凝土构件要出 现塑性铰、较大的裂缝和永久变形。会影响到结构的稳定。
结构的继续使用需要修复。
从抗震角度来看,出现超过设防烈度的地震是不可避 免的,结构应该具备足够的塑性变形能力。
但是结构过早地出现塑性变形也是十分不利的。结构 在小震、甚至风荷载作用下就出现塑性变形,必然导致裂 缝和变形过大,将影响到建筑物的正常使用。
结构顶点最大加速度
使用功能 住宅、公寓 办公、旅馆
alim (m / s2 )
0.15 0.25
2、楼盖竖向振动加速度限值
《高层规程》中规定楼盖结构的竖向振动频率不宜小于3Hz, 竖向振动加速度不应超过下表的限值。
2.4、稳定性与抗倾覆
结构整体稳定性是高层建筑设计的基本要求。研究表 明,高层建筑混凝土结构仅在竖向重力荷载作用下产生整 体丧失稳定的可能性很小。稳定性设计主要是控制在风荷 载或水平地震力作用下,重力荷载产生的二阶效应(P-Δ) 不致过大,以免引起结构的失稳、倒塌。

高层建筑结构

高层建筑结构

(2)风压高度变化系数uz
4.3.2风荷载
b.位于山区的高层建筑,其风压高度变化系数按照平坦 地面的粗糙度类别由于表 4-6确定外,尚应按照现行国 家标准《荷载规范》的有关规定,考虑地形条件加以修 正。
(3)风荷载体形系数us
风荷载体型系数是指建筑物表面实际风压与基本风压的比 值,它表不同体型建 筑物表面风力的大小。当风流经过建 筑物时,通常在迎风由产生压力(此时风荷载体型 系数用+表 示),在侧风面及背风面产生吸力(此时风荷载体型系数用-表 示)。风压值 沿建筑物表面的分布并不均匀,迎风面的风压 力在建筑物的中部最大,侧风向和背风面 的风吸力在建筑 物的角区最大。风荷载体型系数与高层建筑的体型、平面尺 寸、表面状 况和房屋高宽比等因素有关。
4.3.3地震作用
4.3.3地震作用
4.3.3地震作用
二、设计反应谱
工程抗震设计是针对未来可能遭遇 的地震设防的,因此, 由过去某次已经发 生的地震动记录得出的反应谱实际意义 不大。国家组织专家经过对我国历史上的所有 地震资料的 专题研究,提出能利用抗震计算、曲线形状又相对简单的反 应谱曲线,这就 是设计反应谱。图4-7是我国《抗震规范》 以地震影响系数形式给出的设计反应谱。 也称为《抗震规 范》反应谱曲线。
4.1.1高层建筑结构受力特点
4.1.2正常使用条件下水平位移的限制
在正常使用条件下,应使高层建筑处于弹性状态。《高层 规程》对楼层层间最大位移与层高之比Δu /h小作出了以 下规定: (1)高度不大于150 m的高层建筑,其楼层层间最大位移与 层高之比Δu /h,不宜大 于表4-1中的数值。
4.1.2正常使用条件下水平位移的限制
钢筋混凝土筒体结构体系中的筒体主要有核心筒和框筒。 1、核心筒 核心筒一般由布置在电梯间、楼梯间及没备管线井道四周的 钢筋混凝土墙所组成。 为底端固定、顶端自由、竖向放置 的薄壁筒状结构,其水平截面为单孔或多孔的箱形截 面, 如图4-3所示。

第四章设计要求及荷载效应组合共59页文档

第四章设计要求及荷载效应组合共59页文档

4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
大部分钢结构计算需要考虑P-△效应。
《高钢规》5.2.10条 高层建筑钢结构同时符合下列条件
时,可不验算结构的整体稳定。
一、结构各层柱子平均长细比和平均轴压比满足下式要
求:
Nm m 1 N pm 80
式中,λm—楼层柱的平均长细比; Nm—楼层柱的平均轴压力设计值; Npm—楼层柱的平均全塑性轴压力;
钢结构
除框架结构外的转 换层
各种结构类型
1/120 1/50
4.2 侧移限制
4.2.2 防止倒塌层间位移限制
对框架结构,当轴压比小于0.40时,可提高10%;当柱子全 高的箍筋构造采用比本规程中框架柱最小配箍特征值大30% 时,可提高20%,但累计提高不宜超过25%。
4.3 舒适度要求
高度不小于150m的高层建筑结构应具有良好的使用条 件,满足舒适度要求。按现行国家标准《建筑结构荷载规 范》规定的10年一遇的风荷载取值计算的顺风向与横风向 结构顶点最大加速度不应超过表4-4的值。必要时,可通过 专门风洞试验结果计算确定顺风向与横风向结构顶点最大 加速度 a m a x。
Npm fyAm
fy—钢材屈服强度; Am—柱截面面积的平均值。
4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
二、结构按一阶线性弹性计算所得的各楼层相对侧移值, 满足下列公式要求:
u 0.12 Fh
h
Fv
式中,Δu—按一阶线性弹性计算所得的质心处层间侧移; h—楼层层高; ∑Fh—计算楼层以上全部水平作用之和; ∑Fv—计算楼层以上全部竖向作用之和;
式中,E J d 为结构一个主轴方向的弹性等效侧向刚度,可按倒 三角形分布荷载作用下结构顶点位移相等的原则,将结构的侧

完整word版,高层建筑结构设计_苏原_第4章习题

完整word版,高层建筑结构设计_苏原_第4章习题

第四章4.1 承载力验算和水平位移限制为什么是不同的极限状态?这两种验算在荷载效应组合时有什么不同?答:(1)高层建筑结构设计应保证结构在可能同时出现的各种外荷载作用下,各个构件及其连接均有足够的承载力。

我国《建筑结构设计统一标准》规定构件按极限状态设计,承载力极限状态要求采用由荷载效应组合得到的构件最不利内力进行构件截面承载力验算。

水平位移限制是正常使用极限状态,主要原因有:要防止主体结构开裂、损坏;防止填充墙及装修开裂、损坏;过大的侧向变形会使人有不舒适感,影响正常使用;过大的侧移会使结构产生附加内力(P-Δ效应)。

(2)承载力验算是极限状态验算,在内力组合时,根据荷载性质的不同,荷载效应要乘以各自的分项系数和组合系数。

对于水平位移限制验算,要选择不同方向的水平荷载(荷载大小也可能不同)分别进行内力分析,然后按不同工况分别组合。

4.2 为什么高而柔的结构要进行舒适度验算?答:因为高而柔的结构抗侧刚度较小,在风荷载作用下会产生较大的侧向加速度,使人感觉不舒适,因此要进行舒适度验算,按重现期为10年的风荷载计算结构顶点加速度,或由风洞试验确定顺风向与横风向结构顶点最大加速度,使其满足规范要求。

4.3 P-△效应计算与结构总体稳定的含义有何不同?答:P-△效应是指在水平荷载作用下,出现侧移后,重力荷载会产生附加弯矩,附加弯矩又增大侧移,这是一种二阶效应。

在高层建筑结构设计中,一般所说的考虑P-△效应即是进行结构的整体稳定验算,但结构的整体稳定验算还包括结构仅在重力作用下,出现的丧失稳定问题,不过这种情况出现的很少。

4.4 延性和延性比是什么?为什么抗震结构要具有延性?答:(1)延性是指构件和结构屈服后,具有承载能力不降低或基本不降低、且有足够塑性变形能力的一种性能,一般用延性比表示延性,即塑性变形能力的大小。

(2)当结构设计成延性结构时,由于塑性变形可以耗散地震能量,结构变形虽然会加大,但结构承受的地震作用(惯性力)不会很快上升,内力也不会再加大,因此具有延性的结构可降低对结构承载力的要求,也可以说,延性结构是用它的变形能力(而不是承载力)抵抗罕遇地震作用;反之,如果结构的延性不好,则必须有足够大的承载力抵抗地震,则必须有足够大的承载力抵抗地震。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导 言
– D值法主要用于计算层数较多的高层框架,用D值法比较接近实际 情况,尤其是最高和最低数层。 – D值法的计算步骤与反弯点法基本相同,计算简单且实用, D值法 法在多、高层建筑结构设计中得到广泛应用。 – D值法也是一种近似方法。随着高度增加,忽略柱轴向变形带来的 误差也增大。此外,在规则框架中使用效果较好。 – 适用条件:考虑梁的线刚度与柱的线刚度比不满足≥3条件的情况 (梁柱线刚度比较小,结点转角较大)。
框架结构内力与 位移的计算方法
渐近法
近似法
4.3 水平荷载作用下的反弯点法
4.3.1 基本假定
1 . 适用条件:梁的线刚度与柱的线刚度比大于等于3, 即
ib / ic 3
2 . 基本假定: ⑴所有荷载简化为作用在节点上的水平力; ⑵平面框架假定,并忽略柱的轴向变形; ⑶梁的刚度无限大,柱上下节点转角相等,同一楼层 中各柱端的侧移相等; ⑷各杆件弯矩为直线,除底层外反弯点在各柱中点, 底层在距柱底2/3高度处。
• (2)求出各柱柱端的弯矩 • 第三层
M CD M DC 11.77
M GH M HG
M LM M ML
3.3 19.42 kN .m 2 3.3 10.09 16.65kN .m 2 3.3 15.14 24.98kN .m 2
4.3.3 反弯点法计算方法实例
4.1.1 计算单元的确定
• 框架结构是一个空间受力体系。分析纵向框架和横向框架, 常常忽略结构纵向和横向之间的空间联系,忽略各构件的 抗扭作用,将纵向框架和横向框架分别按平面框架进行分 析计算。
4.1.2
节点的简化
• 框架节点可简化为刚接节点、铰接节点和半铰节点。
4.1.3
跨度与层高的确定
第4章 框架结构设计
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4. 9
框架结构的计算简图 竖向荷载作用下的近似计算 水平荷载作用下的反弯点法 水平荷载作用下的D值法 水平荷载作用下位移的近似计算 框架结构的内力组合 框架梁的设计 框架柱的设计 框架节点的设计
退出本章
4.1 框架结构的计算简图
4.1.4
构件截面杭弯刚度的计算
• 在框架梁两端节点附近,梁受负弯矩,顶部的楼板受拉, 楼板对梁的截面抗弯刚度影响较小;而在框架梁的跨中, 梁受正弯矩,楼板处于受压区形成T形截面梁,楼板对梁 的截面抗弯刚度影响较大。 考虑楼板的影响,框架梁的截面抗弯刚度应适当提高 。 • 现浇钢筋混凝土楼盖: • 中框架:I=2 I 0 边框架:I=1.5I0 • 装配整体式钢筋混凝土楼盖: • 中框架:I=1.5I0 边框架:I=1.2I0 • 装配式钢筋混凝土楼盖: • 中框架:I=I0 边框架:I=I0
L 0.9 3300 1.2 J 0.8 I 8100
80.7kN
F
0.8 E
3900
4.3.3 反弯点法计算方法实例
解:(1)求出各柱在反弯点处的剪力 • 第三层 0.7
VCD 0.7 0.6 0.9
37 11.77 kN
VGH
VLM
• 第二层
VBC
0.9 37 15.14 kN 0.7 0.6 0.9
悬臂柱 弯曲变形
(1)剪切型变形
(2)弯曲型变形
梁柱弯曲变形产生的侧移 柱轴向变形产生的侧移 特点:底层层间侧移最大, 特点:顶层层间侧移最大, 向上逐渐减小 向下逐渐减小
框架总变形=梁柱弯曲变形侧移+柱轴向变形侧移
4.5.2 梁柱弯曲变形产生的侧移
1 . 计算公式 由抗侧刚度D值的物理意义: • 单位层间侧移所需的层剪力,可得层间侧移公式:
1 M BA 52.28 3.9 67.96 kN .m 3 1 M FE 69.71 3.9 90.62 kN .m 3
2 M IJ 69.71 3.9 181 .24 kN .m 3
1 M JI 69.71 3.9 90.62 kN .m 3
0.6 37 10.09 kN 0.7 0.6 0.9
0.7 (37 74) 31.08kN 0.7 0.9 0.9 0.9 VFG (37 74) 39.96 kN 0.7 0.9 0.9 0.9 VJL (37 74) 39.96 kN 0.7 0.9 0.9
2 . D值法需解决的问题
⑴修正柱的侧移刚度 – 节点转动影响柱的抗侧移刚度,柱的侧移刚度不但与柱本身的 线刚度和层高有关,而且还与梁的线刚度有关。 ⑵修正反弯点高度 – 节点转动影响反弯点高度位置,柱的反弯点高度不是个定值, 而是个变数。
4.4.1 修正后的柱抗侧刚度D
1 . 侧移刚度D值的计算 • 柱的抗侧刚废D值为:
12ic D 2 h
梁刚度修正系数计算
楼 层 一 边 般 柱 柱 简 图
k


k 2k
k
i1 i2 i3 i4 2ic
底 固 层 结 柱
i i k 1 2 ic

0.5 k 2k
ห้องสมุดไป่ตู้
4.4.1 修正后的柱抗侧刚度D
2 . 柱的剪力计算 • 柱的D值确定后,同一层各柱底侧移相等,可由下式 求得各柱剪力:
• 第二层
M BC M CB 31.08
M FG M GF
3.3 51.28kN .m 2 3.3 39.96 65.93kN .m 2
M JL M LJ 39.96
• 第一层
3.3 65.93kN .m 2
2 M AB 52.28 3.9 135 .92 kN .m 3 2 M EF 69.71 3.9 181 .24 kN .m 3
M FJ
1.2 (65.93 90.62) 52.18kN .m 2.4 1.2
M JF M JL M JI 65.93 90.62 156.55kN.m
(4)绘制各标杆件的弯矩图
4.4 水平荷载作用下的D值法
导 言
1 . 适用范围
– 反弯点法适用于框架层数较少(柱子轴力较小,柱子截面尺寸较 小,柱子线刚度较小),梁柱线刚度之比大于3,且假定结点转角 为零的情况。 – 对于层数较多的框架,由于柱子轴力大,柱截面也随着增大,梁 柱线刚度比较接近,甚至有时柱线刚度反而比梁的线刚度 大,结点转角较大,这与反弯点法的适用条件不符。 – 日本武藤清教授在分析多层框架的受力特点和变形特点的基础上 ,对框架在水平荷载作用下的内力计算,提出了修正柱的侧移刚 度和调整反弯点高度的方法。修正后的柱侧移刚度用D表 示,故称为D值法。
M GL
M LG M LM M LJ 24.98 65.93 90.91kN.m
4.3.3 反弯点法计算方法实例
• 第一层
M BF M BC M BA 51.28 67.96 119.24kN.m
M FB
2.4 (65.93 90.62) 104 .37 kN .m 2.4 1.2
– 注:I0 为矩形截面框架梁的截面惯性矩
4.2 竖向荷载作用下的近似计算
4.2 竖向荷载作用下的近似计算
• 简图修正原则:
– (1)除底层以外其他各层柱的线刚度均乘0.9的折减系数; – (2)柱的弯矩传递系数取为1/3。
• 分层法
力法 精确法 位移法 力矩分配法 迭代法 无剪力分配法 分层法 反弯点法 D值法
4.3.3 反弯点法计算方法实例
• 第二层
MCG MCD MCB 19.42 51.28 70.70kN.m
M GC 1.7 (16.65 65.93) 51.99 kN .m 1.7 1.0
1.0 (16.65 65.93) 30.59 kN .m 1.7 1.0
• 中柱
r i M br (M cu+M cd)l b r ib+ib
l i l u d M b (M c +M c )l b r ib+ib
4.3.2
反弯点法计算方法
5 . 框架梁柱剪力、柱轴力计算
– 同竖向荷载作用下的内力计算一样,可以通过梁的隔离体平衡, 求出梁端剪力与柱的轴力。
6 .反弯点法总结 • 检验运用反弯点法的条件:梁的线刚度与柱的线刚度比 大于等于3; • 计算各柱的抗侧刚度; • 把各层总剪力分配到每个柱; • 反弯点的确定; • 计算柱端弯矩; • 计算梁端弯矩; • 计算梁的剪力、柱的轴力。
4.3.3 反弯点法计算方法实例
• (3)求出各横梁梁端的弯矩 • 第三层
M DH M DC 19.42kN.m
M HD 1.5 16.65 10.86 kN .m 1.5 0.8
M HM
0.8 16.65 5.79 kN .m 1.5 0.8
M MH M ML 24.98kN.m
M
• 底层柱: 上端弯矩: 下端弯矩:
t cjk
M M
t c1k
b cjk
1 V jk h j 2
1 V1k h1 3 2 V1k h1 3
M
b c1k
4.3.2
反弯点法计算方法
4 . 梁端弯矩计算 根据梁柱节点平衡计算梁端弯矩 • 边柱
M b M cb M ct
4.3.3 反弯点法计算方法实例
• 第一层
0.6 (37 74 80.7) 52.28kN 0.6 0.8 0.8 0.8 VEF (37 74 80.7) 69.71kN 0.6 0.8 0.8 0.8 VIJ (37 74 80.7) 69.71kN 0.6 0.8 0.8 VAB
相关文档
最新文档