机械振动多自由度系统的自由振动

合集下载

《机械振动学》教学大纲

《机械振动学》教学大纲

《机械振动学》教学大纲一、一、课程性质和目标机械振动学是机械设计、制造及自动化专业的一门专业选修课,总学时32,学分3.2。

随着机器生产率的不断提高,导致了载荷的速度和加速度的增加,这就使得机械动力学的问题变得日益突出起来,机械动力学的一个重要组成部分机械振动同样也不会例外。

本课程就是为了适应生产实际的需要,为大学本科高年级学生开设的一门技术基础课。

本课程着重从工程实际的角度对机械振动的有关理论进行讨论,使学生在掌握基本理论的基础上,能够把工程中的实际机械抽象为力学模型,然后在正确的力学模型基础上运用已有的知识进行正确的力学分析,解决一些工程实际的问题,达到学与用的统一。

二、二、先选课程或知识理论力学、材料力学、高等数学、线性代数和相关的专业知识等。

三、三、教学内容基本要求绪论(1学时)第一章第一章单自由度系统的振动(10学时)振动系统的力学模型及自由度的概念;弹性元件的形式和刚度;振动微分方程的推导;无阻尼自由振动;固有频率的计算;粘性阻尼对自由振动的影响;无阻尼受迫振动;具有粘性阻尼的受迫振动;等效粘性阻尼的概念;单自由度系统振动的利用及振动分析;单自由度系统的减动;机械结构的动应力和动刚度的概念。

第二章第二章二自由度系统的振动(8学时)应用动静法建立方程式;应用拉格朗日方程建立方程式;振动方程的一般形式及其矩阵表示法;无阻尼二自由度系统的自由振动;无阻尼二自由度系统的受迫振动;具有粘性阻尼的二自由度系统的自由振动;具有粘性阻尼的二自由度系统的受迫振动;二自由度振动系统的利用及振动机械的振动分析;振动机械及测试机器的二次隔振;动力减振原理与动力减振器。

第三章第三章多自由度系统的自由振动(6学时)多自由度系统举例;刚度矩阵与刚度影响系数;柔度矩阵与柔度影响系数;惯性藕联和弹性藕联;固有频率与振型矩阵。

第四章第四章多自由度系统的受迫振动(3学时)无阻尼系统受迫振动的响应;多自由度系统的阻尼。

四、实践性环节基本要求25个自由度系统的计算机辅助振动分析4学时五、课程考核要求由主讲教师自定考核。

什么是自由振动、受迫振动

什么是自由振动、受迫振动

什么是自由振动、受迫振动
自由振动和受迫振动是描述振动系统行为的两种基本类型。

1. 自由振动(Free Vibration):
•定义:自由振动是指振动系统在没有外部干扰或驱动力的情况下自发进行的振动。

一旦振动系统受到初位置或初速度的扰动,它将以自身的固有频率振荡。

•特点:
•自由振动的特征频率由系统的固有属性(如质量、弹性系数)决定。

•在自由振动中,系统的能量在势能和动能之间交换,且振幅随时间逐渐衰减,这种衰减被称为阻尼。

2. 受迫振动(Forced Vibration):
•定义:受迫振动是指振动系统受到外部驱动力的作用,系统在外力的作用下进行振动。

外部驱动力通常有一个固定的频率,可以与系统的固有频率相同或不同。

•特点:
•外部驱动力引起了系统的振动,并且系统的振幅和相位角可能受到外力的影响。

•当外力的频率与系统的固有频率相匹配时,共振现象可能发生,振幅会急剧增大。

总体而言,自由振动和受迫振动是描述振动系统行为的两种基本情况,它们在实际应用中都具有重要的意义。

自由振动常见于没有外
部扰动的自然振动系统,而受迫振动则常见于系统受到外力驱动或激励的情况,如机械振动、电路振动等。

多自由度振动系统的动力学模型构建

多自由度振动系统的动力学模型构建

多自由度振动系统的动力学模型构建引言:多自由度振动系统是指由多个自由度的质点组成的系统,在这样的系统中,每个自由度都可以独立地进行运动。

动力学模型的构建是研究和理解振动系统行为的基础。

本文将介绍多自由度振动系统动力学模型的构建方法及应用。

一、质点模型多自由度振动系统的最基本组成单位是质点。

质点的运动可以用坐标形式以及质点的质量、刚性等参数来描述。

对于一个有n个自由度的振动系统,可以通过将每个自由度的质点模型相连接构成整个系统。

二、约束关系与广义坐标在多自由度振动系统中,质点之间相互约束,其运动不再是自由的,而是受到约束的影响。

为了描述约束关系,引入广义坐标来表示系统各个自由度的相对运动。

广义坐标是将实际坐标通过约束条件变换得到的坐标表示。

三、拉格朗日方程与振动方程拉格朗日方程是多自由度振动系统的基本动力学方程。

通过对系统的动能和势能进行推导和求导,可以得到描述系统运动的拉格朗日方程。

对于振动系统而言,通过求解拉格朗日方程,可以得到系统的振动方程,进一步描述系统的运动行为。

四、模态分析与特征频率模态分析是研究振动系统固有特性的方法。

对于多自由度振动系统,可以通过模态分析得到系统的固有模态和特征频率。

固有模态是指系统在自由振动时,各个自由度的振动模式。

特征频率是指系统在不同固有模态下的振动频率。

五、系统的耦合与动态响应多自由度振动系统中的各个质点之间存在耦合关系,一个自由度的振动会对其他自由度的振动产生影响。

通过研究系统的耦合关系,可以得到系统的动态响应。

动态响应是指系统对外界激励的响应行为,可以通过求解振动方程得到。

六、应用案例:建筑结构振动多自由度振动系统的应用广泛,尤其在建筑结构的振动研究中起到了重要作用。

通过对建筑结构的多自由度振动系统进行建模和分析,可以评估结构的稳定性、抗震性能等。

振动模型的构建和分析可以提供设计和改进建筑结构的依据。

结论:多自由度振动系统的动力学模型构建是研究振动系统行为的关键步骤。

振动力学与结构动力学-(第一章).

振动力学与结构动力学-(第一章).

摩擦力: Fd cdx2sgxn
c d :阻力系数
在运动方向不变的半个周期内计算耗散能量,再乘2:
Ecdx2sgxndx2
T/4
c T/4 d
x3dt
8 3
cd02
A2
等效粘性阻尼系数:
ce
8
3
cd0
A
24
四、结构阻尼
由于材料为非完全弹性,在变形过程中材料的内摩擦所引起 的阻尼称为结构阻尼
特征:应力-应变曲线存在滞回曲线
6
第一章 概 论
§1-1 动荷载及其分类 - 从广义上讲,如果表征一种运动的物理量作时而增大时而减
小的反复变化,就可以称这种运动为振动。 - 如果变化的物理量是一些机械量或力学量,例如物体的位移
、速度、加速度、应力及应变等,这种振动便称为机械振动 。 - 各种物理现象,诸如声、光、热等都包含振动
7
– 知识要点:结构被动控制、主动控制的基本概念。常用主动 控制方法的原理。结构主动控制在机械、土木结构工程中应 用简介。
– 重点难点:理解各种控制方法的原理及其具体实现。 – 教学方法:课堂讲授与引导讨论相结合。
主要参考书: • 刘延柱.振动力学.北京:高等教育出版社,1998 • 倪振华. 振动力学. 西安:西安交通大学出版社,1989 • 张准、汪凤泉. 振动分析.南京:东南大学出版社,1991 • 陈予恕.非线性振动. 天津:天津科技出版社,1983 • 龙驭球等编著.《结构力学》下册. 北京:高等教育出版 社,1994
– 教学方法:课堂讲授与引导讨论相结合
• 第六章 结构反应谱与地震荷载计算(8学 时)
– 知识要点:结构反应谱、单自由度和多自由度地震 荷载计算公式、规范中地震荷载计算公式。

振动基础知识

振动基础知识
响 应 位 相
幅频特性
激励频率 相频特性 激励频率
由强迫振动确定模态参数
共振频率m n 122
固有频率fn
2
m 1- 22
半功率带宽2 1 阻尼比 1 2 1
2 n
多自由度系统的强迫振动
振动的频率等于外激励的频率。 振型为各阶振型的叠加。 各阶振型所占的比例,决定于外激励的频率和作用点位置。 激励频率接近某阶固有频率时,该阶振型增大而占主导地位,呈现为该阶模态振动。 共振峰大小决定于该阶阻尼比和激励的位置。 作用在某阶节点上的激励力,不能激起该阶振动。
振动基础知识
简谐振动三要素 振动波形 频率分析和频谱图
振动系统 单自由度与多自由度系统
振动系统的模态Βιβλιοθήκη 固有频率、振型、阻尼比自由振动与强迫振动 共振
内容提要
旋转机械振动的测量 传感器及其选用 基频分量的幅值和相位 旋转机械的振动图示 定转速:波形图、频谱图、
轴心轨迹 变转速:波德图和极坐标图
三维频谱图 轴心位置图
第二阶模态
三自由度系统的模态举例
节点 振型是各自由度坐标的比例值。振型具有正交性。
第一阶模态 第二阶模态 第三阶模态
振动系统对激励的响应
激励 初始激励
持续激励
振动系统 单自由度 多自由度
▪ 由初始激励引起的响应,称为自由振动。 ▪ 由持续激励引起的响应,称为强迫振动。 ▪ 从响应中能看出系统的模态特性。
阻尼固有频fd率 T1d
无阻尼固有f频 n 率1f-d2
对数减幅系 l数 nXi
Xi1
阻尼比 422
多自由度系统的自由振动
系统的自由振动为各阶模态振动的叠加。它一般不再是简谐的。 各阶模态振动所占成分的大小,决定于初始条件。 各阶模态振动衰减的快慢,决定于该阶的阻尼比。阻尼比大,衰减快;阻尼比小,衰减慢。 在衰减过程中,各阶的振型保持不变,即节点位置不变。

《机械振动》课程教学大纲(60)

《机械振动》课程教学大纲(60)

《机械振动》课程教学大纲(60)《机械振动》课程教学大纲课程名称:机械振动课程编号:s031007课程学时:60课程学分:3适用于专业:工程力学,石油天然气机械工程,油气钻井工程,化工过程机械课程性质:学位课先修课程:理论力学,材料力学,线性代数执笔人:毛东风撰写时间:2002年6月28日一、课程的目的和要求振动理论就是为工程技术人员恰当展开产品和结构的动力特性设计而上开的一门基础知识课程,就是石油机械等有关学科硕士生的一门学位课程。

本课程着重介绍机械系统的线性振动理沦,包括单自由度,两自由度,多自由度和弹性体振动的基本理论及其在工程实际中的应用。

它就是学生在本科初步自学了单自由度系统振动和分析力学的基础上展开的。

它建议学生创建振动的一系列基本概念,掌控振动的关键特性,能运用所学的力学原理和数学知识建立相应的数学方程从而将振动问题归咎于数学问题的典型力学方法;并为运用非常有限单元法电子计算机算法,处置机械产品和工程结构的振动问题打下基础。

二、教学内容及学时安排第一章第一章绪论课程的内容和任务,振动的分类,力学模型第二章第二章单自由度系统的民主自由振动(4学时)第一节第一节单自由度系统的自由振动。

振动微分方程。

初始响应。

第二节第二节系统固有频率(圆频率)第三节第三节等效质量与等效刚度第四节第四节存有阻尼民主自由振动微分方程及其特性第三章单自由度系统的胁迫振动(学时)第一节第一节简谐激振力作用下的强迫振动。

旋转矢量法,稳态强迫振动的特性,起始阶段的振动(瞬态),拍摄的概念。

第二节第二节偏心质量引起的强迫振动。

幅频,相频特性。

第三节第三节车轴并作简谐运动引发的受迫振动。

幅频,相频特性。

第四节第四节惯性式测振仪原理,加速度计,快速仪。

第五节第五节隔振原理。

隔振系数。

第六节第六节周期激振的积极响应。

第四章任一激振的积极响应。

杜哈美分数。

第五章两自由度系统的振动(10-12学时)第一节第一节开场白两自由度系统振动的共同特性,研究方法,主座标(正则坐标)。

理论力学 第5章 小振动

理论力学 第5章 小振动
A sin( 0 t )
2. 单自由度系统的小振动
三、复摆系统的自由振动 绕不通过质心的光滑水平轴摆动的刚体
d M mgl sin I 2 d t ( 5 )
d mgl I 2 dt
2
2
M l F
转动正向 O 向外
l
*C
d 2 0 2 dt
2. 单自由度系统的小振动
例2:已知 m, OA=AB=L, 求系统微振动固有频率 解:系统的动能和势能 1 1 1 1 2 2 2 2 T J o mv c J c mv B 2 2 2 2 xc 1.5L cos , yc 0.5L sin , xB 2L cos 1 2 2 2 ~ T ( mL 6mL2 sin 2 ) k 6g 2 3 ~ V 4mgL(1 cos ) m L 2 2 1 1~ 2 ~ 2 m mL mq T m (0) q 3 2 2 1 1~ 2 ~ 2 V (q) V " (0)q k q k 4mgL 2 2
3.1 多自由度系统小振动问题(推导)

ˆ 0 ˆ A ˆ 2M K

本征值问题(求本征值 2 和本征矢量 A )
f ( 2 ) det k m 2 0

k11 m11 2 k21 m21 2 ks1 ms1 2
k12 m12 2
T ——周期,每振动一次所经历的时间。 T
2
0
f —— 频率,每秒钟振动的次数, f = 1 / T 。
0 —— 固有频率,振体在2秒内振动的次数。
反映振动系统的动力学特性,只与系统本身的固有参数有关。
2. 单自由度系统的小振动

机械振动4两自由度系统的动力学方程

机械振动4两自由度系统的动力学方程

实际振动为:
x(t ) x ( 2) (t ) x ( 2) (t )
1 1 C1 sin(1t 1 ) C2 sin(2t 2 ) (4.1 17) r1 r2
其中C1、C2和1、2由初始条件确定。
《振动力学》 12
例4.1-1: m1 m, m2 2m,
2 2 k11k22 (k1 k2 )(k2 k3 ) k2 k12
i2 0 (i 1,2) i (i 1,2)为正实根,即两个固有 频率。 每个i 代入方程 (4.1 10),得到: 2 k u k12 2 11 i m1 2 (k11 i m1 )u1 k12u2 0 u1 k12 k22 i2 m2
(4.1 15a) (4.1 15b)
u(1)、u( 2)称 为 振 型 向 量 或 模 态 向
量 , 分 别 对 应 于 1、2。
x1(i ) Ci u1(i ) sin( i t i ), 对每个 i: (i ) (i 1,2) (i ) x2 Ci u2 sin( i t i ),
以O点为参考点,O点与质心C的距离为a,距离A、B点分 别为l1、l2,相对静平衡位置O0的位移为x,刚性杆相对平 衡位置的偏角为θ 。 试建立系统的动力学方程。
《振动力学》 19
解:以x、θ 为广义坐标
xc x a sin
θ 为小量
θ
xc x a
k1
x O0
k2
系统的动能:
T 1 2 1 2 C I c C mx 2 2 1 ) 2 1 J 2 a m( x 2 2
m人
k1 c1
m车
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档