浙教版 八下 数学 第六章 反比例函数

合集下载

浙教版八年级下册 6.1 反比例函数 课件(共18张PPT)

浙教版八年级下册  6.1 反比例函数  课件(共18张PPT)
⑵ 求当x=50时,函数y的值,并说明这个值的实际意义;
求当x=25,100,200时,函数y的值.
x(cm) …
25
50 100 200 …
y(N) … 200 100 50 25 …
理解应用
例1 如图,阻力为1000N,阻力臂长为5cm. 设动力y(N),动力 臂为x(cm)(图中杠杆本身所受重力略去不计. 杠杆平衡时,动 力×动力臂=阻力×阻力臂)
回顾旧知
一次函数
概念
图象
研 究

性质

应用
新知探究
面积为6cm2的长方形,长和宽分别是多少?
长(cm) …
3
4
宽(cm) …
2
3
2
设长为xcm,宽为ycm.5Fra bibliotek5.5 6

6 5
12
11
1

思考1:x和y的取值有多少种?这两者之间满足什么数量关系? xy=6 y与x成反比例关系
思考2:若x确定,y随之唯一确定吗?能用含x的代数式表示y吗?
(1)汽车沿一条公路从A地驶往B地所需的时间t与平均速度v. (2)圆的周长l与圆的半径r.
(3)圆的面积S与圆的半径r.
(4)100元钱购买糖果的千克数y与糖果的单价x.
理解应用
背景知识
给我一个支点,我就能撬 起整个地球 !
——阿基米德
理解应用
背景知识
理解应用
背景知识
杠杆定律




阻力臂 杠杆平衡时
动力臂
阻力×阻力臂=动力×动力臂
理解应用
例1 如图,阻力为1000N,阻力臂长为5cm. 设动力y(N),动力 臂为x(cm)(图中杠杆本身所受重力略去不计. 杠杆平衡时,动 力×动力臂=阻力×阻力臂)

浙教版八年级下《第6章反比例函数》含答案

浙教版八年级下《第6章反比例函数》含答案

阶段性测试(十二)[考查范围:第 6章 6.1〜6.3 总分:100分]、选择题(每小题5分,共30分)y = k 的图象经过点(2, 3),那么下列四个点中,也在这个函数图象上的 x 是(B )(-6, 1) (2, - 3) D .质量m 为(C )A . 1.4 kgB . 5 kgC . 7 kgD . 6.4 kg3•正比例函数y = 6x的图象与反比例函数y =:的图象的交点位于(D )A .第一象限B .第二象限C .第三象限D .第一、三象限4. 已知一次函数y 1= x — 1与反比例函数y 2 = 2的图象交于点 A (2, 1), B (— 1, — 2),则y j >y 2 x时x 的取值范围为(B )A . x>2B . x>2 或 —1<x<0C .— 1<x<2D . x>2 或 x< — 1 第4题图第5题图 kk 5.反比例函数 y = -和正比例函数 y = mx 的图象如图所示.由此可以得到方程 k = mx 的实xx 数根为(C ) A . x = 1 B . x = 2C . X 1= 1 , x 2 =— 1D . x 1 = 1 , x 2= — 26. 如图所示,在Rt △ ABC 中,AB = 3, BC = 4, / ABC = 90 ° ,点B , C 在两坐标轴上滑动. 当k边AC 丄x 轴时,点A 刚好在双曲线y = -上,此时下列结论不正确的是 (D )xA . C . 2•在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积 V 时,气 体的密度p 也随之改变,p 与V 在一定范围内满足 尸V 它的图象如图所示,则该气体的 1.已知反比例函数B • (1 , (3, - 2)A .点B 坐标为0, 1612B . AC 边上的高为~512C .双曲线为y =—D .此时点A 与点O 距离最大二、填空题(每小题5分,共25分)7. 已知反比例函数 y = 6,当x >3时,y 的取值范围是 一0<y<2一. x ~: --------- — 1&若梯形的下底长为X ,上底长是下底长的3,高为y ,面积为60,则y 与x 之间的函数关系式是_y =乎(不考虑x 的取值范围).f P/kPa 25020015010050 ■ I L 丄 1. ■! 0 0」I 1.5 2 Wm 39.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p(kPa )是气体体 积V(m 3)的反比例函数,其图象如图所示.当气球内气体的气压大于 150 kPa 时,气球将爆炸.为了安全,气体体积 V 的范围应该是__V > 0.64_m 3 .11. 如图所示,在 Rt A AOB 中,点A 是直线y = x + m 与双曲线y =号在第一象限的交点,且 G AOB = 2,贝y A 点的坐标为 (2 2-2, 2 ,2+ 2).三、解答题洪45分)m — 1 12.(10分)如图所示,线段OA 与反比例函数y = —在第一象限的图象相交于点 B(4,3),xB 是OA 的中点,AC // x 轴交图象于点 C.求:(1) m 的值;(2) AC 的长.作x 轴的垂线,垂足为点C,连结AB,BC.若厶ABC 的面积为3,则点B 的坐标为 A(1,2),B 两点,过点A4,予.^(as.120)--m — 1 = 4 X 3, •・ m = 13;⑵•/ B 是OA 的中点, • A(8, 6).•/ AC // x 轴,• C , A 两点纵坐标相同,都为 6.12将y = 6代入y =—,解得x = 2,X•-C (2, 6),• AC = 8 — 2= 6.13. (10分)如图,在矩形 OABC 中,OA = 3, OC = 2, F 是AB 上的一个动点(F 不与 A ,Bk重合),过点F 的反比例函数y = Jk > 0)的图象与BC 边交于点E.(1)当F 为AB 的中点时,求该函数的表达式;k•••点F 在反比例函数y = k (k >0)的图象上,• k = 3,X3•该函数的表达式为 y = 3; x⑵由题意知E , F 两点坐标分别为 E$, 2 ;,F3, 3 ,1 1 1( • EFA = ^AF • BE = 2X ^k 3 — 2•••△ EFA 的面积为3,—丄k 2= 22 12 3'整理,得 k 2— 6k + 8 = 0,解,得 k 1= 2, k 2 = 4,2•当k 的值为2或4时,△ EFA 的面积为孑14. (12分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在温度为 解:(1) •••反比例函B(4, 3),1 1 12 2k = 2k —匚k. m — 1 y= -••• F 为 AB 的中点,••• F (3, 1).15〜20 C的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里。

浙教版数学八年级下册第6章 反比例函数.docx

浙教版数学八年级下册第6章 反比例函数.docx

第6章 反比例函数6.1 反比例函数(一)1.有下列函数:①y =2x -1;②y =-5x ;③y =x 2+8x -2;④y =3x 2;⑤y =12x ;⑥y =ax .其中y 是x 的反比例函数的有②⑤(填序号).2.(1)若函数y =xm 2-5是关于x 的反比例函数,则m =±2. (2)把y =-32x 转化成y =k x 的形式为y =-32x ,比例系数k 为-32.3.已知函数y =(n +2)xn 2+n -3(n 是常数),当n =__1__时,此函数是反比例函数. 4.下列两个变量之间的关系一定不是反比例关系的是(D )A .若r 为圆柱底面的半径,h 为圆柱的高,当圆柱的侧面积一定时,h 与r 之间的关系B .汽车在一定路程上的平均行驶速度v (km/h)与行驶时间t (h)之间的关系C .三角形的面积一定,三角形的高h 与对应的底边长a 之间的关系D .矩形的周长一定,其面积S 与矩形的一边长x 之间的关系 5.已知一个函数的几组对应值如下表所示(x 为自变量):x -3 -2 -1 1 2 3 y34.59-9-4.5-3则这个函数的表达式为(B ) A. y =9xB. y =-9xC. y =x 9D. y =-x96.先列出下列问题中的函数表达式,再指出它们各属于什么函数. (1)电压为16 V 时,电阻R 与电流I 的函数关系.(2)食堂每天用煤1.5 t ,用煤总量W (t)与用煤天数t (天)的函数关系. (3)积为常数m (m ≠0)的两个因数y 与x 的函数关系.(4)杠杆平衡时,阻力为800 N ,阻力臂长为5 cm ,动力y (N)与动力臂x (cm)的函数关系(杠杆本身所受重力不计).【解】 (1)∵电阻=电压电流,∴R =16I,属于反比例函数.(2)∵用煤总量=每天用煤量×用煤天数, ∴W =1.5t ,属于正比例函数.(3)由题意可知xy =m ,∴y =mx (m 是常数,m ≠0),属于反比例函数.(4)∵动力×动力臂=阻力×阻力臂, ∴yx =800×5,∴y =4000x,属于反比例函数.7.有一个水池,池内原有水500 L ,现在以20 L/min 的速度注入水,35 min 可注满水池. (1)水池的容积是多少?(2)若每分钟注入的水量达到Q (L),注满水池需要t (min),写出t 关于Q 的函数表达式. (3)若要14 min 注满水池,则每分钟的注水量应达到多少升? 【解】 (1)∵500+20×35=1200(L), ∴水池的容积是1200 L.(2)t 关于Q 的函数表达式是t =700Q .(3)∵当t =14时,根据函数表达式,得 Q =700t =70014=50(L),∴每分钟的注水量应达到50 L.8.(1)若y =(a +2)xa 2+2a -1为反比例函数,则a =__0__. (2)当m =-1时,函数y =(m -1)x |m |-2是反比例函数,其函数表达式为y =-2x.【解】 (1)若y =(a +2)xa 2+2a -1为反比例函数,则⎩⎪⎨⎪⎧a +2≠0,a 2+2a -1=-1, 解得⎩⎪⎨⎪⎧a ≠-2,a =-2或0,∴a =0.(2)若函数y =(m -1)x |m |-2是反比例函数,则⎩⎪⎨⎪⎧m -1≠0,|m |-2=-1, 解得⎩⎪⎨⎪⎧m ≠1,m =±1,∴m =-1.此时其函数表达式为y =-2x.9.若y 与x 1成正比例,x 1与x 2成反比例,x 2与x 3成正比例,x 3与x 4成反比例……则y 与x 2016成__正__比例.【解】 ∵y 与x 1成正比例,x 1与x 2成反比例,x 2与x 3成正比例,x 3与x 4成反比例……∴可设y =k 1x 1(k 1≠0),x 1=k 2x 2(k 2≠0),∴y =k 1k 2x 2,∴y 与x 2成反比例.同理可得,y 与x 3成反比例,y 与x 4成正比例,y 与x 5成正比例,y 与x 6成反比例…… ∴比例关系每四个一循环,分别是:正比例,反比例,反比例,正比例. ∵2016÷4=504, ∴y 与x 2016成正比例关系.10.下列表中分别给出了变量y 与x 之间的对应关系,其中是反比例函数关系的是(D ) A.x 1 2 3 4 y6897B.x 1 2 3 4 y8543C.x 1 2 3 4 y5876D.x 1 2 3 4 y1121314【解】 只有选项D 中xy 的乘积为定值1.11.已知两个变量x ,y 之间的关系如图所示.(第11题)(1)求当x 分别取0,32,3时函数y 的值.(2)求当y 分别取0,32,3时自变量x 的值.【解】 (1)当x =0时,y =x +1=1; 当x =32时,y =2x =43;当x =3时,y =x -1=2.(2)当y =0时,只能由y =x +1(x <1)输出,∴x +1=0,∴x =-1.当y =32时,三种变量都有可能输出,代入y =x +1,得x =12;代入y =2x ,得x =43;代入y =x -1,得x =52.当y =3时,只能由y =x -1(x >2)输出, ∴3=x -1,∴x =4.12.我们知道,若一个三角形的一边长为x (cm),这条边上的高为y (cm),则它的面积S =12xy (cm 2),现已知S =10 cm 2.(1)当x 越来越大时,y 越来越大还是越来越小?当y 越来越大时,x 越来越大还是越来越小?无论x ,y 如何变化,它们都必须满足的等式是什么?(2)如果把x 看成自变量,则y 是x 的什么函数? (3)如果把y 看成自变量,则x 是y 的什么函数? 【解】 把S =10 cm 2代入S =12xy (cm 2),得y =20x.(1)当x 越来越大时,y 越来越小; 当y 越来越大时,x 越来越小.无论x ,y 如何变化,它们都必须满足的等式是xy =20.(2)如果把x 看成自变量,则y =20x ,y 是x 的反比例函数.(3)如果把y 看成自变量,则x =20y,x 是y 的反比例函数.13.将x =23代入反比例函数y =-1x 中,所得的函数值记为y 1,又将x =y 1+1代入原反比例函数中,所得的函数值记为y 2,再将x =y 2+1代入原反比例函数中,所得的函数值记为y 3……如此继续下去,求y 2016的值.【解】 由题意,得y 1=-1x =-123=-32,此时x =-32+1=-12;y 2=-1x =-1-12=2,此时x =2+1=3;y 3=-1x =-13,此时x =-13+1=23;可见每3个数一循环.∵2016=672×3,∴y 2016=-13.初中数学试卷鼎尚图文**整理制作。

浙教版-八下-数学-第六章-反比例函数

浙教版-八下-数学-第六章-反比例函数

浙教版 八下 数学 第六章 反比例函数【知识要点】 1、一般地,函数ky x=或()10y kx k -=≠叫做反比例函数. 2、反比例函数图象的特点:3、反比例函数的应用就是指运用反比例函数的概念、性质去解决实际问题,因此必须要通过对题目的阅读理解抽象出实际问题的函数关系,再利用反比例函数的思想去解决.4、应注意以下几个问题:⑴在反比例函数关系中,xy k =(定值);⑵在实际问题中:0x >. 【典型例题】例1:已知()2212,mm y m m x ++=+⑴如果y 是x 的正比例函数,求m 的值; ⑵如果y 是x 的反比例函数,求m 的值.例2:已知一次函数(),0y kx b k =+≠的图象与x 轴,y 轴分别交于A 、B 两点,且与反比例函数(),0my m x=≠的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若 1.OA OB OD ===⑴求点,,A B C 的坐标; ⑵求一次函数和反比例函数的解析式.例3:一定质量的氧气,它的密度()3/kg m ρ是它的体积()3V m 的反比例函数,当310V m =时, 31.43/.kg m ρ= :⑴ 求ρ与V 的函数关系式; ⑵求当32V m =时,氧气的密度ρ.单元巩固一、选择题1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.(2012·哈尔滨中考)如果反比例函数的图象经过点(-1,-2),则k 的值是( ) A.2B.-2C.-3D.33.在同一坐标系中,函数xky =和3+=kx y 的图象大致是( )4.当>0,<0时,反比例函数的图象在()A.第一象限B.第二象限C.第三象限D.第四象限5.购买只茶杯需15元,则购买一只茶杯的单价与的关系式为( ) A.x y 15= (取实数) B. xy 15= (取整数) C. x y 15=(取自然数) D. xy 15= (取正整数) 6.若反比例函数的图象位于第二、四象限,则的值是( )A. 0B.0或1C.0或2D.47.如图,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴B 点,若S △AOB =3,则k 的值为 ( ) A.6 B.3C.23D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.(2012·福州中考)如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线k x ky =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知与成反比例,且当时,,那么当时,.12.(2012·山东潍坊中考)点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数x m y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.(2012·河南中考)如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、 N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积 为6,则k 的值为 . 17.已知反比例函数,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函 数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标.20.(6分)如图,正比例函数12y x=的图象与反比例函数kyx=(0)k≠在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA PB+最小.21.(6分)如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.23.(7分)(2012·天津中考)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x=(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .第6章 反比例函数 参考答案1.D2. D3.A4. C C.5.D6.A7.A8.D9.C 10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A. 11.6 解析:因为 与成反比例,所以设,将,代入得,所以,再将代入得. 12. y =- 解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P (-2,4),∴ k=xy=-2×4=-8.∴ y=-. 13. 14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4. 15. 反比例 16. 4解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4 17. 或 18.> 19.解:(1)因为反比例函数x y 3=的图象经过点A (m ,1),所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1).将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3x y =.(2)由方程组⎪⎩⎪⎨⎧==,3,3x y x y 解得所以正比例函数与反比例函数的图象的另一个交点的坐标为(-3, -1). 20. 解:(1) 设A 点的坐标为(a ,b ),则k b a =.∴ ab k =.∵ 112ab =,∴ 112k =.∴ 2k =. ∴ 反比例函数的解析式为2y x =. (2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为.如要在x 轴上求一点P ,使PA+PB 最小,即最小,则P 点应为BC 和x 轴的交点,如图所示.令直线BC 的解析式为y mx n =+.∵ B 为(1,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+. 当0y =时,53x =.∴ P点坐标为.21. 解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水将要9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为xky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数xy 6=与一次函数42-=x y 的图象的交点坐标,得到方程:x x 642=-,解得. 所以另外一个交点是(-1,-6)画出图象,可知当或时,426->x x .23. 分析:(1)显然P 的坐标为(2,2),将P (2,2)代入y =即可.(2)由k -1>0得k >1.(3)利用反比例函数的增减性求解.解:(1)由题意,设点P 的坐标为(m ,2),∵ 点P 在正比例函数y =x 的图象上,∴ 2=m ,即m =2.∴ 点P 的坐标为(2,2). ∵ 点P 在反比例函数 y =的图象上,∴ 2=,解得k =5.(2)∵ 在反比例函数y =图象的每一支上,y 随x 的增大而减小,∴ k -1>0,解得k >1.(3)∵ 反比例函数y =图象的一支位于第二象限,∴ 在该函数图象的每一支上,y 随x 的增大而增大.∵ 点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2,∴ x 1>x 2.点拨:反比例函数的图象和性质是解反比例函数题目的基础. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+,得,所以13y x =+;将C 点坐标(1-,2)代入2k y x=,得.所以22y x=-.(2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方,此时x 的取值范围是21x -<<-.。

浙教版初中数学初二数学下册《反比例函数》教案及教学反思

浙教版初中数学初二数学下册《反比例函数》教案及教学反思

浙教版初中数学初二数学下册《反比例函数》教案及教学反思教学目标•知识目标:1.理解反比例函数的定义和基本性质;2.掌握反比例函数的图像、零点和极限;3.能够应用反比例函数解决实际问题。

•能力目标:1.培养学生分析和解决数学问题的能力;2.培养学生独立思考、合作交流的能力。

教学重难点•教学重点:1.反比例函数的定义、基本性质和图像;2.反比例函数的应用。

•教学难点:1.反比例函数的极限和零点的理解和计算;2.实际问题中反比例函数的应用。

教学内容与方法教学内容第一部分:反比例函数的概念和性质1.反比例函数的定义和基本性质;2.反比例函数的图像和特征;3.反比例函数的零点和极限。

第二部分:反比例函数的应用1.实际问题中反比例函数的应用。

教学方法1.教师讲授:通过PPT、黑板、教学视频等方式,讲解反比例函数的定义、性质、图像和特征。

2.示范讲解:通过讲解多个例题和练习,帮助学生掌握反比例函数的应用方法。

3.独立思考:让学生自己思考、归纳整理、总结反比例函数的应用方法。

4.合作交流:通过小组活动、讨论等方式,让学生互相交流、合作思考,提高自己的思考和解决问题的能力。

教学流程第一部分:反比例函数的概念和性质1.反比例函数的定义和基本性质1.教师讲解:通过PPT,讲解反比例函数的定义和基本性质。

2.示范讲解:通过例题演示,让学生理解反比例函数的定义和基本性质。

3.学生练习:通过课堂练习,让学生掌握反比例函数的定义和基本性质。

2.反比例函数的图像和特征1.教师讲解:通过PPT和黑板,讲解反比例函数的特征和图像。

2.示范讲解:通过演示例题,让学生了解反比例函数的图像和特征。

3.学生练习:通过课堂练习,让学生掌握反比例函数的图像和特征。

3.反比例函数的零点和极限1.教师讲解:通过PPT,讲解反比例函数的零点和极限。

2.示范讲解:通过演示例题,让学生了解反比例函数的零点和极限。

3.学生练习:通过课堂练习,让学生掌握反比例函数的极限和零点。

浙教版八年级下册 6.1.1 反比例函数 课件(共21张PPT)

浙教版八年级下册 6.1.1 反比例函数  课件(共21张PPT)
6.1.1 反比例函数
复习旧知
常量
变量
假如你去买铅笔,铅笔每支0.4元,你想买x支,需要多少钱呢(用y表示)?
总价=单价×数量,y=0.4x
正比例函数
y与x的比值等于定值,y与x成正比例。
如果你只带了10元钱,铅笔每支a元,你又能买多少支呢(用y表示)?
数量=总价÷单价,y=


?函数
y与a的乘积等于定值,y与x成反比例。
新课讲解
(1)求y关于x的函数解析式.这个函数是反比例函数吗?如果是,
请说出比例系数;
解:(1)根据题意,得 y·x=1000×5
5000
所以所求函数的解析式为 y =
x
这个函数是反比例函数,比例系数为5000.
新课讲解
(2)求当x=50时,函数y的值,并说明这个值的实际意义;
解:(2) 当x=50时,
的函数叫反比例函数
k叫作比例系数
k叫作比例系数
其中x是自变量,y是x的函数.
其中x是自变量,y是x的函数.
新课讲解
k
一般地,形如 y = (k是常数,k≠0)的函数叫做反比例函数.
x
其中x是自变量,y是x的函数,k是比例系数
例如,前面可得到的 =
1287


都是反比例函数,其中的比例系数
分别是1287,100.
注意:自变量x的取值范围,
(1)因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.
(2)在实际问题中自变量x的取值范围要根据具体情况来确定.
新课讲解
正比例函数与反比例函数有什么相同点和不同点?
名称
正比例函数
反比例函数

新浙教版初二数学第六章_《反比例函数》各节知识点及典型例题

新浙教版初二数学第六章_《反比例函数》各节知识点及典型例题

第六章 《反比例函数》各节知识点及典型例题第1节 反比例函数 第二节 反比例函数的图象和性质 第三节 反比例函数的应用五大知识点:1、反比例函数的定义和表达式2、反比例函数的图象和性质3、反比例函数的应用【课本相关知识点】1、一般地,形如 的函数叫做反比例函数,其中x 是自变量,y 是x 的函数,k 叫做反比例系数。

自变量x 的取值范围是★★2、反比例函数有三种表达形式:(1)y=k x(k ≠0);(2)y=kx -1(k ≠0);(3)xy=k (k ≠0) 3、判断具体情景中的两个变量是否成反比例函数关系,关键看这两个变量的积是否为一个 的常数。

4、根据实际问题中的条件确定反比例函数的表达式时,一般采用 法。

5、要确定一个反比例函数y=kx的表达式,只需求出 ,若已知一对 的对应值,就可以由此求出比例系数,然后写出所求的反比例函数。

【典型例题】【题型一】判断一个函数是不是反比例函数例1、下列函数表达式中,y 是关于x 的反比例函数的有( )①y=21x -;③ y=x -;④ y=13x -;⑤ y=1x ;⑥ y=23x +;⑦ y=32x -;⑧ -2xy=1A .2个B .3个C .4个D .5个 补充一下:对于是反比例函数的,写出其反比例系数 例2、关于函数y=12x -,以下说法正确的是( ) A .y 是x 的反比例函数 B .y 是x 的正比例函数 C .y 是x-2的反比例函数 D .以上都不对 【题型二】求反比例函数表达式例1、已知y=y 1-y 2,y 1与x 成反比例,y 2与x 2成正比例,且当x=﹣1时,y=﹣5;当x=1时,y=1,求y 与x 之间的函数表达式。

例2、已知一面积为20的梯形,其上、下底长度之比为1:3,试写出梯形的高线h 和上底长a 之间的函数表达式,并说明你所写的函数是什么函数。

例3、(2013安顺)若y=(a+1)22a x-是反比例函数,则a 的值是 ,该反比例函数为例4、如图,点P (3a ,a )是反比例函y = kx (k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )A .y =3xB .y =5xC .y =10xD .y =12x【题型三】应用反比例函数解决实际生活问题例1、近视眼镜的镜片度数(y 度)与镜片焦距x (米)成反比例,已知﹣400度近视眼镜镜片的焦距为﹣0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为例2、某地去年电价0.8元/千瓦时,年用量为1亿千瓦时,本年度计划将电价调至0.55至0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y 亿千瓦时与(x-0.4)元成反比例,且当x=0.65,y=0.8 (1)求y 与x 之间的函数解析式(2)若每千瓦时电的成本价是0.3元,则电价调至多少元时,今年电力部门的收益将比去年增加20%?【收益=用电量×(实际电价-成本价)】例3、某地计划用120~180天(含120与180天)建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?【课本相关知识点】1、画反比例函数图象的一般步骤为:列表、描点、连线2、图象特征:反比例函数y=kx(k ≠0)的图象是由两个分支组成的 。

八下第6章反比例函数6-2反比例函数的图象和性质2新版浙教版

八下第6章反比例函数6-2反比例函数的图象和性质2新版浙教版

3 ≤t≤ 6
4
5
可得144≤v≤160.
也就是说,如果火车要在50分钟内到达B市,那么它 行驶的速度必须不小于144千米/时.
但根据题设,也不能超过160千米/时,因此行驶的速 度应在144千米/时到160千米/时之间.
1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数 y=4x的图象上的三个点,且 x1<x2<0,x3>0,
个交点.
(1)求此反比例函数和一次函数的解析式; (2)根据图象写出使一次函数值小于反比例
函数值的取值范围.
解:(1)∵点 A(-4,2)和点 B(n,-4)都在反比例函数 y=m的图象上, x

2=-m4, -4=mn ,解得
m=-8, n=2.
又∵点 A(-4,2)和点 B(2,-4)都在一次函数 y=kx+b 的图象上,
解:(1)从A市到B市列车的行驶里程为120千米,
所以所求的函数表达式为
v
=
120 t
.
∵v随t的增大而减小,∴ 由v≤160得
t≥ 3
4
自变量t的取值范围是 t ≥ 3
4
(2)画出所求函数的图象; 列函数 v = 12t0(t ≥ 34) 与自变量t的对应值表
用描点法画出函数
v = 120(t ≥ 3)
系数的值.而求x的取值范围,利用图象的直观性是
最佳方法.
1.反比例函数的性质 性质:反比例函数y=(k为常数,k≠0)的图象,当k> 0时,在图象所在的每一象限内,函数值y随自变量x的 增大而__减__小___;当k<0时,在图象所在的每一象限内, 函数值y随自变量x的增大而__增__大___.
k的符号作用:反比例函数中的k的符号决定函数图象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版 八下 数学 第六章 反比例函数【知识要点】 1、一般地,函数ky x=或()10y kx k -=≠叫做反比例函数. 2、反比例函数图象的特点:3、反比例函数的应用就是指运用反比例函数的概念、性质去解决实际问题,因此必须要通过对题目的阅读理解抽象出实际问题的函数关系,再利用反比例函数的思想去解决.4、应注意以下几个问题:⑴在反比例函数关系中,xy k =(定值);⑵在实际问题中:0x >. 【典型例题】例1:已知()2212,mm y m m x ++=+⑴如果y 是x 的正比例函数,求m 的值; ⑵如果y 是x 的反比例函数,求m 的值.例2:已知一次函数(),0y kx b k =+≠的图象与x 轴,y 轴分别交于A 、B 两点,且与反比例函数(),0my m x=≠的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若 1.OA OB OD ===⑴求点,,A B C 的坐标; ⑵求一次函数和反比例函数的解析式.例3:一定质量的氧气,它的密度()3/kg m ρ是它的体积()3V m 的反比例函数,当310V m =时,31.43/.kg m ρ=:⑴ 求ρ与V 的函数关系式; ⑵求当32V m =时,氧气的密度ρ.单元巩固一、选择题1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.(2012·哈尔滨中考)如果反比例函数的图象经过点(-1,-2),则k 的值是( ) A.2B.-2C.-3D.33.在同一坐标系中,函数xky =和3+=kx y 的图象大致是( )4.当>0,<0时,反比例函数的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限5.购买只茶杯需15元,则购买一只茶杯的单价与的关系式为( ) A.x y 15= (取实数) B. xy 15= (取整数) C. x y 15=(取自然数) D. xy 15= (取正整数) 6.若反比例函数的图象位于第二、四象限,则的值是( )A. 0B.0或1C.0或2D.47.如图,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴B 点,若S △AOB =3,则k 的值为 ( ) A.6 B.3C.23D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.(2012·福州中考)如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线k x xk y =1232)12(---=k kx k y ky =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知与成反比例,且当时,,那么当时,.12.(2012·山东潍坊中考)点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数x m y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.(2012·河南中考)如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、 N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积 为6,则k 的值为 . 17.已知反比例函数,则当函数值 时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函 数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;4y x=(2)正比例函数与反比例函数的图象的另一个交点的坐标.20.(6分)如图,正比例函数12y x=的图象与反比例函数kyx=(0)k≠在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA PB+最小.21.(6分)如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.23.(7分)(2012·天津中考)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x=(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .第6章 反比例函数 参考答案1.D2. D3.A4. C C.5.D6.A7.A8.D9.C 10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A. 11.6 解析:因为 与成反比例,所以设,将,代入得,所以,再将代入得. 12. y =- 解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P (-2,4),∴ k=xy=-2×4=-8.∴ y=-. 13. 14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4. 15. 反比例 16. 4解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4 17. 或 18.> 19.解:(1)因为反比例函数xy 3=的图象经过点A (m ,1),所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1).将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3xy =.(2)由方程组⎪⎩⎪⎨⎧==,3,3xy x y 解得所以正比例函数与反比例函数的图象的另 一个交点的坐标为(-3, -1). 20. 解:(1) 设A 点的坐标为(a ,b ),则k b a =.∴ ab k =.∵ 112ab =,∴ 112k =.∴ 2k =. ∴ 反比例函数的解析式为2y x =. (2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为.如要在x 轴上求一点P ,使PA+PB 最小,即最小,则P 点应为BC 和x 轴的交点,如图所示.令直线BC 的解析式为y mx n =+.∵ B 为(1,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+. 当0y =时,53x =.∴ P点坐标为.21. 解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水将要9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为xky =的图象过点A (3,2),所以,所以xy 6=.(2) 求反比例函数xy 6=与一次函数42-=x y 的图象的交点坐标,得到方程:xx 642=-,解得.所以另外一个交点是(-1,-6)画出图象,可知当或时,426->x x .23. 分析:(1)显然P 的坐标为(2,2),将P (2,2)代入y =即可.(2)由k -1>0得k >1.(3)利用反比例函数的增减性求解.解:(1)由题意,设点P 的坐标为(m ,2),∵ 点P 在正比例函数y =x 的图象上,∴ 2=m ,即m =2.∴ 点P 的坐标为(2,2). ∵ 点P 在反比例函数 y =的图象上,∴ 2=,解得k =5.(2)∵ 在反比例函数y =图象的每一支上,y 随x 的增大而减小,∴ k -1>0,解得k >1.(3)∵ 反比例函数y =图象的一支位于第二象限,∴ 在该函数图象的每一支上,y 随x 的增大而增大.∵ 点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2,∴ x 1>x 2.点拨:反比例函数的图象和性质是解反比例函数题目的基础. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+,得,所以13y x =+;将C 点坐标(1-,2)代入2k y x=,得.所以22y x=-.(2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方,此时x 的取值范围是21x -<<-.。

相关文档
最新文档