解析几何总复习
高考复习中解析几何题型分析及解法梳理

一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
高中数学解析几何复习 题集附答案

高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
中职数学复习——解析几何

二、填空题
14.(2014年)已知点A(1,3)和点B(3,-1),则线段AB的垂直平分
线的方程是
.
【答案】 x 2 y 0 AB的中点为(2,1),法向量n AB (3, 1) (1,3) (2, 4), 由直线的点法式方程得2(x 2) 4( y 1) 0, 整理得x 2 y 0.
心,且与直线x+y=5相切的圆的标准方程是
.
【答案】 (x 2)2 ( y 1)2 8 AB的中点为O(2, 1),
又 直线x y 5与圆相切, 圆心O(2, 1)到直线的距离等于半径,即r | 2 1 5 | 2 2,
12 12 故圆的标准方程为(x 2)2 ( y 1)2 8.
12.(2016年)抛物线x2=4y的准线方程 ( ) A.y=-1 B.y=1 C.x=-1 D.x=1
【答案】A 抛物线的焦点坐标为(0,1), 准线方程为y 1, 故选A.
13.(2017年)抛物线y2= -8x的焦点坐标是 ( ) A.(-2,0) B.(2,0) C.(0,-2) D.(0,2)
三、解答题
19.(2012年)已知椭圆C的焦点F1(1, 0)和F2 (1, 0), P为椭圆C上的点, 且 | F1F2 | 是 | PF1 | 和 | PF2 |的等差中项. (1)求椭圆C的方程;
(2)若P1为椭圆C在第一象限上一点, F1F2P1
2
3
,求
tan
P1F1F2 .
【解】(1)设所求椭圆C的方程为 x2 y2 1, a2 b2
PF1 2
|)2
25 .
22.(2015年)已知中心在坐标原点,两个焦点F1, F2在x轴上的椭圆E
专题七 解析几何专题复习

专题七、解析几何1、解析几何(椭圆、双曲线、抛物线)1、椭圆18y 16x 22=+的离心率为( )A.31 B. 21C. 33D. 222、设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线x =32a上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A. 21B. 32C. 43D. 543、中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点P (4,-2),则它的率心率为( )A.6B.5 C.26 D. 25 4、已知直线l 过抛物线C 的焦点,且与抛物线C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.485、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=34,则C 的实轴长为( ) A.2 B. 22 C.4 D.86、已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A.|FP 1|+|FP 2|=|FP 3|B.|FP 1|2+|FP 2|2=|FP 3|2C.2|FP 2|+|FP 1|=|FP 3|D.|FP 2|2+|FP 1|²|FP 3|7、双曲线221102x y -=的焦距为( ) A . 23 B. 24 C.33 D. 34 8、已知一正方形的两顶点为双曲线C 的两焦点,若另外两个顶点在双曲线上,则双曲线C 的离心率e =( ) A.13+ B.12+ C.215+ D. 2122+9、已知F 1、F 2是椭圆191622=+y x 的两焦点,过点后的直线交椭圆于A ,B 两点,若|AB|=5,则|AF 1|+|BF 1|=( )A.16B.11C.10D.910、设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,P A ⊥l ,点A 为垂足,如果直线AF 的斜率为-3,那么|PF |=A. 34B. 8C. 38D.1611、已知双曲线1366422=+y x 的焦点为F 1,F 2,点P 在双曲线上,且 ∠F 1PF 2=60°,则△F 1PF 2的面积为( )A.18B. 324C. 336D.3212、已知双曲线C :12222=+by a x (a >0,b >0)半焦距为c ,若直线y =2x 与双曲线的一个交点A 横坐标为c ,则双曲线的离心率为( ) A.222+ B. 2122+ C. 13+ D.12+13、双曲线112422=-y x 的焦点到其渐近线的距离是( ) A. 32 B.2 C. 3 D.114、已知椭圆12222=+by a x (a >b >0),左焦点F (-C.0),右顶点B (a.0)与短轴的一个端点C 的连线构成的三角形恰好为直角三角形,则该椭圆的离心率是( ) A.221+- B. 231+- C. 21D.215、已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线 1222=-y ax (a >0)的顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =( )A. 251B. 91C. 51D. 3116、设F 1, F 2分别为双曲线12222=-by a x (a >0,b >0)的左,右焦点,若双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A.3x ±4y =0B.3x ±5y =0C.4x ±3y =0D.5x ±4y =0 17、过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若|AB|=8,则P=( )A.8B.6C.4D.2。
解析几何复习题-数学试题

解析几何复习题-数学试题(一)选择题1、从点P(m, 3)向圆(x + 2)2 + (y +2)2 = 1引切线, 则一条切线长的最小值为A.B.5 C.D.2、若曲线x2-y2 = a2与(x-1)2 + y2 = 1恰有三个不同的公共点, 则a的值为A.-1 B.0 C.1 D.不存在3、曲线有一条准线的方程是x = 9, 则a的值为A.B.C.D.4、参数方程所表示的曲线是A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分, 且过点D.抛物线的一部分, 且过点5、过点(2, 3)作直线l, 使l与双曲线恰有一个公共点, 这样的直线l共有A.一条B.二条C.三条D.四条6、定义离心率为的椭圆为“优美椭圆”, 设(a > b > 0)为“优美椭圆”, F、A分别是它的左焦点和右顶点, B是它的短轴的一个端点, 则ÐABF为A.60° B.75° C.90° D.120°7、在圆x2 + y2 = 5x内, 过点有n条弦的长度成等差数列, 最小弦长为数列的首项a, 最大弦长为an, 若公差, 则n的取值集合为A.B.C.D.8、直线与圆x2 + y2 = 1在第一象限内有两个不同的交点, 则m的取值范围是A.1 < m < 2 B.C.D.9、极坐标方程表示的曲线是A.椭圆B.抛物线C.圆D.双曲线10、设a, b, c是ABC中ÐA, ÐB, ÐC所对边的边长, 则直线sinA·x + ay + c = 0与bx-sinB·y + sinC = 0的位置关系是A.平行B.重合C.垂直D.相交但不垂直(二)填空题11、有下列命题:(1)到两个定点的距离的和等于常数的点的轨迹是椭圆;(2)到两个定点的距离的和等于差的绝对值为常数的点的轨迹为双曲线;(3)到定直线和定点F(-c, 0)的距离之比为(c > a > 0)的点的轨迹为双曲线;(4)到定点。
解析几何总复习(沪教版)

解析几何复习1(直线2014.1)1.(1)经过点)4,3(),2,1(B A -的直线l 的点方向式方程是 (2)已知)4,3(),2,1(B A -,则线段AB 的中垂线的点法向式方程是2.直线2-=x 与直线0533=+-y x 的夹角为3.已知直线30x y +=与直线10kx y -+=的夹角为60 ,则实数k =4.经过点P )1,0(且与直线03=-x y 的夹角为030的直线方程是5.经过点(3,1)A B --和点且与直线032:=-+y x l 垂直的直线方程6.已知直线l 经过点)1,1(,若点)4-3()2,1(,和B A -到l 的距离相等,则l :7. 过点(1,2)且在两坐标轴上的截距相等的直线的方程8.与直线2360x y +-=关于点()1-1,对称的直线是______________9.过点(1,2)且与原点距离最大的直线方程是__________10.过点)3,2(P 的直线l ,且倾斜角的正弦值为53,则直线l 的方程为11.过点)3,2(P 的直线l ,且倾斜角直线x y 2=倾斜角的2倍,则直线l 的方程为12.直线023)2(:1=++-m my x m l ,06:2=++my x l ,若21l l ⊥,则实数=m13.双曲线116922=-y x 的一个焦点到渐近线的距离为14.已知直线l 过点P (1,2),且l 与x 轴正半轴和y 轴的正半轴交点分别是A 、B , (1)若三角形AOB 的面积是4,求直线l 的方程。
(2)求△ABO 的面积的最小值及此时直线l 的方程.15.已知△ABC 的顶点A(0,8),B(0,-1), ∠ACB 的平分线CE 所在直线方程: x+y-2=0, 求(1)AC 边所在直线方程. (2)求C 点的坐标 (3)求ABC ∆面积S复习卷2(圆的方程2014.1)1.已知(3,4)(5,6)P Q -、两点,则以线段PQ 为直径的圆的方程是2.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的 方程是3.圆1C :422=+y x 和2C :0248622=-+-+y x y x 的位置关系是_______4.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的方程是5.斜率为1的直线l 被圆422=+y x 截得的弦长为2,则直线l 的方程为6.过点M (0,4),被圆4)1(22=+-y x 截得的线段长为32的直线方程为7.若(2,1)p -为圆C:22(1)25x y -+=的弦AB 的中点, 则直线AB 的方程为8.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为9.已知方程222(2)20a x a y ax a ++++=表示的曲线是圆,则实数a 的值是 .10.圆220x y Ax By +++=与直线220(0)Ax By A B +=+≠的位置关系是11..圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).A .1个B 。
高中数学一轮总复习解析几何重点知识整理

高中数学一轮总复习解析几何重点知识整理解析几何是高中数学中的一门重要的分支,它通过代数方法研究几何问题,是数学与几何相结合的产物。
在高中数学的学习中,解析几何占据着很重要的地位。
本文将为大家总结解析几何的重点知识,并进行整理。
一、直线与圆的方程在解析几何中,直线和圆是最基本的几何图形。
直线的方程可以通过点斜式、两点式、截距式等不同的表达方式来表示。
其中最常用的是点斜式,表示为 y - y₁ = k(x - x₁)。
其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。
圆的方程有两种形式,一是标准方程:(x - a)² + (y - b)² = r²,其中 (a,b) 是圆心坐标,r 是半径;二是一般方程:x² + y² + Dx + Ey + F= 0。
二、直线与圆的交点直线与圆的交点是解析几何的一个重要概念。
当直线与圆相交时,可以通过解方程的方法求得交点的坐标。
例如,已知直线 L: 2x + y - 3 = 0 和圆 C: x² + y² - 4x - 2y - 8 = 0,求直线 L 与圆 C 的交点坐标。
解:将直线的方程代入圆的方程中,得到 x² + (2x + 3)² - 4x - 2(2x + 3) - 8 = 0。
整理得到 5x² + 10x - 10 = 0,解得 x₁ = 1,x₂ = -2。
将 x 的值代入直线的方程中,得到 y₁ = 1,y₂ = 5。
所以直线 L 和圆 C 的交点坐标为 (1, 1) 和 (-2, 5)。
三、圆与圆的位置关系圆与圆之间的位置关系有三种情况:相离、相切、相交。
当两个圆相离时,它们的半径之和小于两圆之间的距离。
当两个圆相切时,它们的半径之和等于两圆之间的距离。
当两个圆相交时,它们的半径之和大于两圆之间的距离。
四、直线与平面的位置关系直线与平面之间的位置关系有两种情况:平行和相交。
解析几何综合复习题

综合复习题一、填空题1. __只有大小的量______________________________________ 叫做数量 ;2. __既有大小又有方向的量______________________________________ 叫做矢量 ;3. __模等于1的矢量___________________________________ 叫做单位矢量 ;4. 平行于同一直线的一组矢量叫做 _共线_______________ 矢量 ;5. 平行于同一平面的一组矢量叫做 __共面_______________ 矢量 ;6. 两矢量共线的充要条件是它们线性 ___相关________________ ;7. 三矢量不共面的充要条件是它们线性 ______无关___________ ;8. __________方向角的余弦__________________________ 叫做方向余弦 ;9. 两矢量a⊥b充要条件是 ____a_*b=0____________________ ;10. 三矢a,b,c量共面的充要条件是 ______(a×b)*c=0_______________ ;11. 两矢量a∥b的充要条件是 _a×b=0,或对应分量成比例 ;12. 矢量与坐标轴所成的角叫做 _方向角;13. 把平面上的一切单位矢量归结到共同的始点,则它们的终点构成____单位圆 ;14. 把空间中一切单位矢量归结到共同的始点,则它们的终点构成单位球面__ ;15. 方程叫做空间曲线的 ______________ 方程 ;16. 坐标平面yOz的方程是 _____________________________ ;17. 坐标平面xOz的方程是 ______________________________ ;18. 坐标平面xOy的方程是 _____________________________ ;19. 方程叫做曲面的 ______________________ 方程 ;20. 空间直线的标准方程为______________________________ ;21. 两平面A i x+B i y+C i z+D i=0 (i=1, 2)相互垂直的充要条件是___________________ ;22. 点M0(x0, y0, z0)到平面Ax+By+Cz+D=0的距离是 _______ ;23. 平面的一般方程是 _________________________ ;24. 直线的方向余弦cosα, cosβ, cosγ满足的关系式为_________ ;25. 给定直线l:==和平面π:Ax+By+Cz+D=0, 则l与π相交的充要条件是 ________________________ ;26. 直线l与平面π平行的充要条件是 _____________________ ;27. 直线l在平面π上的充要条件是_______________________;28. 给定l i:== (i=1, 2), 则l1与l2异面的充要条件是___________________________ ;29. 直线l1与l2相交的充要条件是 ________________________ ;30. 直线l1与l2平行的充要条件是 _________________________ ;31. 直线l1与l2重合的充要条件是 _________________________ ;32. 空间中通过同一直线的所有平面的集合叫做 ____________ ;33. 空间中平行于同一平面的所有平面的集合叫做 __________ ;34. 在空间, 由平行于定方向且与一条定曲线相交的一族平行直线所产生的曲面叫做____________________;35. 在空间, 过一定点且与定曲线相交的一族直线所产生的曲面叫做___________ ;36. 在空间, 一曲线绕定直线旋转一周所产生的曲面叫做 __________________ ;37. 在直角坐标系下, 椭球面的标准方程是 ________________________ ;38. 在直角坐标系下, 单叶双曲面的标准方程是 ____________________ ;39. 在直角坐标系下, 双叶双曲面的标准方程是 ____________________ ;40. 在直角坐标系下, 椭圆抛物面的标准方程是 ____________________ ;41. 在直角坐标系下, 双曲抛物面的标准方程是 ____________________ ;42. 柱面、锥面、椭球面、单叶(双叶)双曲面、椭圆(双曲)抛物面中是直纹曲面的有 ___________ _____________________;43. 单叶双曲面过一定点的直母线有 ___________ 条;44. 满足条件Φ (X, Y)≠0的方向叫做二次曲线的 ___________ ;45. 没有实渐近方向的二次曲线叫做 __________________ 型曲线;46. 有两个实渐近方向的二次曲线叫做 __________________ 型曲线;47. 只有一个实渐近方向的二次曲线叫做 __________________ 型曲线;48. 有唯一 __________________ 的二次曲线叫做中心二次曲线;49. 没有中心的二次曲线叫做 __________________ 二次曲线;50. 有一条中心直线的二次曲线叫做 __________________ 二次曲线;51. 二次曲线F (x, y)=0的奇点(x0, y0)满足的条件是 ________________ ;52. 二次曲线一族平行弦中点的轨迹叫做二次曲线的 _______________ ;53. ___________ 二次曲线的直径都过二次曲线的中心;54. 无心二次曲线的直径都 ___________ 二次曲线的渐近方向;55. 线心二次曲线的直径只有一条,即二次曲线的 ___________ ;56. 二次曲线垂直于其共轭弦的直径叫做二次曲线的 ______________ ;57. 二次曲线的特征根都是 ____________________________ ;58. 二次曲线特征根不能 ____________________________ ;59. 中心二次曲线至少有 ________________________ 条主直径;60. 非中心二次曲线中只有 ______________________ 条主直径;61. ___________ 二次曲线可分类为椭圆、虚椭圆、双曲线、点、二条相交直线;62. ____________________________ 二次曲线的图像是抛物线;63. ___________ 二次曲线可分类为两平行直线、两平行共轭虚直线、两重合直线;二、判断题(正确的打“√”,错误的打“×”)1. 若, 共线,, 共线,则, 也共线; ()2. 若, , 共面,, , 共面,则, , 共面;()3. , , 中,若, 共线, 则, , 共面; ()4.平行于同一方向的两矢量相等;()5. 位移、力、速度和加速度都是数量; ()6. 所有零矢量都相等; ()7. 自由矢量就是方向和模任意的矢量; ()8. 零矢量的方向一定; ()9.在自由矢量的意义下, 平行于同一平面的一组矢量不能在同一平面上;()10. 彼此平行且有共同始点的一组矢量一定在同一条直线上; ()11. 若≠,则表示与同方向的单位矢量; ()12. 若⊥,则 |+|=|-|; ()13. 若, 同向,则 |+|=||+||; ()14. 若, 反向,则 |-|=||+||; ()15. 若, 反向, 且||≥||,则 |+|=||-||; ()16. 若, 同向, 且||≥||,则 |-|=||-||; ()17. 第I卦限内点 (x, y, z) 的符号为 (+, ―, ―); ()18. 第II卦限内点 (x, y, z) 的符号为 (+, +, ―);()19. 第III卦限内点 (x, y, z) 的符号为 (-, +, ―); ()20. 第IV卦限内点 (x, y, z) 的符号为 (-, ― ,+); ()21. 射影矢量=(射影) ;()22. 射影=|| cos∠(, );()23. 射影(+)=射影+射影;()24. 射影(λ)=λ射影;()25. 在{O;,,,}下, =X+Y+Z, 则射影=Y; ()26. 两坐标面xOy与yOz所成二面角的平分面方程是x+y=0; ()27. 两坐标面xOy与yOz所成二面角的平分面方程是x-z=0; ()28. 两坐标同xOy与xOz所成二面角的平分面方程是x+z=0; ()29. 两坐标面xOy与xOz所成二面角的平分面方程是y-z=0; ( )30. 两坐标面xOz与yOz所成二面角的平分面方程是x-y=0; ( )31. (+)⋅=⋅+⋅; ()32. (λ)⋅=⋅(λ);()33. ⋅=2;()34. -(×)=×;()35. ×+×=(+)×;()36. 平面的矢量式参数方程为=+u+v;()37. 平面的坐标式参数方程为()38. 平面的一般方程为Ax+By+Cz+D=0;()39. 平面的法式方程为x cosα+y cosβ+zcosγ+p=0;()40. 平面的截距式方程为++=0;()41. 空间直线与平面的位置关系有相交和平行两种;()42. 空间两直线的位置关系有平行、重合、相交三种;()43. 两平面的位置关系有平行、相交、重合三种;()44. 点到平面的离差等于点到平面的距离;()45. 平面Ax+By+Cz+D=0通过原点的充要条件是D=0; ()46. 将椭圆绕x轴所得旋转曲面方程为:++=1;()47. 将椭圆绕y轴所得旋转曲面方程为:++=1; ()48. 将双曲线绕z轴所得旋转曲面方程为:+-=1;()49. 将双曲线绕y轴所得旋转曲面方程为:--=1;()50. 将抛物线绕z轴所得旋转曲面方程为:x2+y2=2pz;()51. 二次曲线的中心就是它的奇点;()52. 若M是二次曲线的奇点, 则该二次曲线过M的切线是唯一的; ()53. 二次曲线的一族平行弦中点的轨迹是一条直线;()54. 经过移轴变换可以消去二次曲线方程中的xy 项;()55. 在任意转轴变换下, 二次曲线新旧方程的一次项系数满足;()56. F(x, y)=xF1(x, y)+yF2(x, y) +F3(x, y);()57. F(x, y)=Φ(x, y)+2a13x+2a23y+a33;()58. 在直线方程Ax+By+C=0中, 若A, B, C与三个实数成比例,则该直线为虚直线;()59. 二次曲线的奇点满足F1 (x, y)=F2 (x, y)=F3 (x, y)=0;()60. Φ (x, y)=x (a11x+a12y)+y (a12x+a22y);()三、选择题(从四个备选答案中选出唯一正确的一个)1. 两个矢量是否相等,由它们的()决定.A. 始点;B. 模;C. 方向;D. 模和方向.2. 若, , 共面,, , 共面,则, , ()共面.A. 不一定;B. 一定; B. 一定不; D. 共线.3. 把平行于某一直线的一切矢量归结到共同的始点,则它们的终点构成()A. 一点;B. 线段;C. 直线;D. 射线.4. 下列等式中不成立的是()A.+=+;B. ⋅=⋅;C. ×=×;D. λ (μ)=μ (λ).5. 关于零矢量的描述不正确的是()A. 模不定;B.方向不定;C. 模为0;D.模定方向不定.6. 非零矢量与的下列关系中不正确的是()A. =;B. =;C. ||=;D. ||=1.7. 第VIII卦限的点 (x, y, z) 的符号是()A. (+, +, +);B. (―, ―, ―)C. (+, ―, ―)D. (-, +, +).8. 下列等式中错误的是()A. ⋅=||||cos∠(, );B. ⋅=||射影;C. ⋅=||射影;D. ⋅=||⋅||9. 下列等式错误的是()A. ⋅=||2;B. 2=||2;C. ||=;D. =.10. ×+×+×=()A. 0;B. 3;C. 1;D. .11. ⋅+⋅+⋅=()A. 0;B. 3;C. ;D. 1.12. 若, , 两两相互垂直,且模均为1,则++的模为()A.; B.3; C.0; D. 1.13. 下列运算不满足交换律的是()A. 矢性积;B. 数性积;C. 矢量加法;D. 数量乘法.14. 方程在空间表示()A. yOz面;B. xOy面;C. z轴;D. x轴.15. 在空间,y轴的方程不能写成()A. B. ; C. y=0; D. ==.16. 平面的矢量式参数方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D.=+u+v.17. 平面的法式方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.18. 平面的截距式方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.19. 平面的一般方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.20. 平面的法式方程中的常数项必满足()A. ≤0;B. ≥0;C. <0;D.>0.21. 将平面方程Ax+By+Cz=0化为法式方程时,法式化因子的符号()A. 任选;B. 与B异号;C. 与A异号;D.与C异号.22. 点M0与平面π间的离差δ=-2, 则M0到π的距离d为()A. -2;B. 2;C.-1;D. 1.23. 直线的坐标式参数方程是()A. ==;B.C. D.==.24. 直线的标准方程是()A. ==;B.C. D.==.25. 直线的两点式方程是()A. ==;B.C. D.==.26. 直线的一般方程是()A. ==;B.C. ;D.==.27. 直线通过原点的条件是其一般方程中的常数项D1, D2满足()A. D1=D2=0;B. D1=0, D2≠0;C. D1≠0, D2=0;D. D1≠0, D2≠0.28. 直线的方向角α, β, γ不满足关系式()A. cos2α+cos2β+cos2γ=1;B. sin2α+sin2β+sin2γ=1;C. sin2α+sin2β+sin2γ=2;D. cos2(π-α)+cos2(π-β)+cos2(π-γ)=1.29. 两平面2x+3y+6z+1=0与4x+6y+12z+1=0之间的距离是()A. 0;B.C.D..30. 设直线与此同时三坐标面的夹角为λ, μ, v, 则下列式子中不成立的是()A. sin2λ+sin2μ+sin2ν=1;B. cos2λ+cos2μ+cos2ν=2;C. cos2λ+cos2μ+cos2ν=1;D. sin2(π-λ)+sin2(π-μ)+sin2(π-ν)=1.31. 关于x-x0, y-y0, z-z0的二次齐次方程表示()A. 柱面;B. 顶点在(x0, y0, z0)的锥面;C. 旋转曲面;D.平面.32. 将曲线Γ: 绕y轴旋转一周所得旋转曲面的方程为()A. F=0;B. F=0;C. F=0;D. F=0.33. 将曲线Γ:绕x轴旋转一周所得旋转曲面的方程为()A. F;B. F=0;C. F=0;D. F=0.34. 将曲线Γ:绕z轴旋转一周所得旋转曲面的方程为()A. F;B. F=0;C. F=0;D. F=0.35. 将曲线Γ:绕z轴旋转一周所得旋转曲面的方程为()A. x2+y2=2z;B. x2+z2=2y;C. y2+z2=2x;D. y2=.36. 下列方程中表示单叶双曲面的是()A. ++=1;B. +-=1;C. +-=-1;D. --=1.37. 椭球面++=1与xOy坐标面的交线方程为()A. +=1;B.;C. z=0;D. .38. 下列方程中表示双叶双曲面的是()A. --=-1;B. -+=1;C. --+=1;D. +-=1.39. 下列方程中表示双曲抛物面的是()A. x2+y2=2z;B. 3x2-2y2=z;C. x2-y2=z2;D. x2+y2=z2.40. 二次曲线方程通过移轴变换后不变的是()A. 二次项系数;B. 一次项系数;C. 常数项;D. 都不变.41. 二次曲线方程通过转轴变换后不变的是()A. 二次项系数;B. 一次项系数;C. 常数项;D. 都不变.42. 下列曲面中是直纹曲面的是()A. 椭球面;B. 柱面;C. 球面;D. 双叶双曲面.43.已知二次曲线方程中Φ(x,y)=x2+2x y+y2,则I2=()A. 1;B. 0;C. -1;D. 2.44.已知二次曲线方程中Φ(x,y)=x2+2x y+y2,则I1=()A. 1;B. 0;C. -1;D. 2.45. 中心二次曲线至少有()条主直径.A. 1;B. 2;C. 3;D. 4.46. 二次曲线的奇点()是它的中心.A. 不一定;B. 一定不;C. 一定;D. 以上都不对.47. 有奇点的二次曲线一定是()A. 中心曲线;B. 无心曲线;C. 线心曲线;D.圆.48. 二次曲线的特征根()A不全为0; B. 全不为0; C.全为0; D. ≥0.49. 二次曲线的特征根()A. 都是虚数;B. 都是实数;C. 一实一虚;D. 全为0.50. 椭圆+=1的一对共轭直径的斜率k与k'满足()A. kk'=;B. kk'=-;C. kk'=-;D. kk'=.51. 二次曲线在直角坐标变换下的半不变量为()A. I1;B. I2;C. I3;D. K1.52. 简化方程为I1 y2+=0的二次曲线是()A. 中心曲线;B. 无心曲线;C. 线心曲线;D. 圆.53. 二次曲线表示两条直线(实的或虚的,不同的或重合的)的充要条件是()A. I1=0;B. I2=0;C.I3=0;D. K1=0.四、计算题1. 求通过点P (1, 1, 1)且与直线l1:==, l2: ==都相交的直线方程.2. 求异面直线l1:==与l2: ==的公垂线方程.3. 求通过直线且与平面x-4y-8z+12=0垂直的平面方程.4. 求通过点A (-3, 0, 1)和B (2, -5, 1)的直线方程.5. 求平行于平面3x+2y+z=0且在x轴上截距等于-2的平面.6. 已知一平面过M0(x0, y0, z0) (z0≠0), 且在x轴、y轴上的截距分别为a, b(ab≠0), 求其方程.7. 求二次曲线x2-2xy+y2-1=0 的渐近方向,并指出其类型.8. 求二次曲线2x2+xy-y2-x+y-1=0的渐近线.9. 如图,求直角△ABC的斜边AC绕直角边AB旋转所得圆锥面的方程(∠BAC=α).10. 求二次曲线F (x, y) ≡x2-2xy+y2-4x=0 的主方向与主直径.11. 求椭圆+=1 的主方向与主直径.12. 求双曲线-=1的主方向与主直径.13. 在双曲抛物面-=z上求平行于平面3x+2y-4z=0的直母线.14. 求二次曲面F(x, y, z)≡2xy+2xz+2yz+9=0 的主方向与主径面.15. 求二次曲面F(x, y, z)≡5x2+2y2+2z2-2xy+2xz-4yz-4y-4z+4=0的奇向.16. 求以直线==为轴, 半径为r的圆柱面方程.17. 求二次曲面-+=1 与三坐标面的交线方程,并指出其名称.18. 已知各锥面的顶点在原点,准线为,求锥面的方程.19. 求二次曲线x2-xy-y2-x-y=0 与x2+2xy+y2-x+y=0的公共直径.五、证明题1. ⊥的充要条件是⋅=0.2. //的充要条件是×=.3. (⋅)2+(×)2=22.4. 若×+×+×=, 则, , 共面.5. 若二次曲线的I1=0, 则I2<0.6. 二次曲线的特征根不全为0.7. 二次曲线的特征根全是实数.8. 由二次曲线的特征根λ≠0确定的主方向X:Y是二次曲线的非渐近方向.9. 由二次曲线的特征根λ=0确定的主方向X:Y是二次曲线的渐近方向.10. 在任意转轴变换下, 二次曲线新旧方程的一次项系数满足.11. 二次曲线x2+2xy+ay2+x+by-4=0有一条中心直线的充要条件是a=b=1.12. 两条二次曲线x2-xy+y2+2x-4y=0与 5x2+4xy+2y2-24x-12y+18=0 的中心在直线x+2y-4=0上.13. 两条二次曲线x2-2xy+y2+4x-4y-3=0 与x2-xy+y2+2x-4y=0的公共直径为x-y+2=0.14. 中心二次曲线ax2+2hxy+ay2=d 的两条主直径为x2-y2=0.15. 二次曲线两不同特征根确定的主方向相互垂直.16. 已知直线l:与π:4x-3y+7z-7=0, 试证直线l在平面π上.17. 试证两直线==与==为异面直线.六、化简二次曲线方程,并作出图形.1. x2-3xy+y2+10x-10y+21=0.2. 2xy-4x-2y+3=0.3. x2-xy+y2+2x-4y=0.4. x2+6xy+y2+6x+2y-1=0.5. 5x2+8xy+5y2-18x-18y+9=0.6. x2-2xy+y2+2x-2y-3=0.7.x2+2xy+y2+2x+y=0.综合复习题答案一、1. 只有大小的量;2. 既有大小、又有方向的量;3. 模等于1的矢量;4. 共线矢量;5. 共面矢量;6. 相关;7. 无关;8. 方向角的余弦;9. =0;10. ()=0, 或线性相关;11. ×=,或对应分量成比例;12. 方向角;13. 单位圆;14. 单位球面;15. 一般;16. x=0;17. y=0;18. z=0;19. 参数;20. ==;21. A1A2+B1B2+C1C2=0;22. d=;23.Ax+By+Cz+D=0 (A, B, C不全为0);24. cos2α+cos2β+cos2γ=1;25.AX+BY+CZ≠0;26. AX+BY+CZ=0, Ax0+By0+Cz0+D≠0;27. AX+BY+C=0, Ax0+By0+Cz0+D=0;28. ∆=≠0;29. ∆=0, X1:Y1:Z1≠X2:Y2:Z2;30. ∆=0, X1:Y1:Z1=X2:Y2:Z2 ≠ (x2-x1):(y2-y1):(z2-z1);31. ∆=0, X1:Y1:Z1 = X2:Y2:Z2=(x2-x1):(y2-y1):(z2-z1);32. 有轴平面束;33.平行平面束;34. 柱面;35. 锥面;36. 旋转曲面;37. ++=1 (a≥b≥c>0);38. +-=1 (a>0, b>0, c>0);39. +-=-1 (a>0, b>0, c>0);40. +=2z (a>0, b>0);41. -=2z (a>0, b>0);42. 柱面,锥面,单叶双曲面,双曲抛物面;43. 两条;44. 非渐近方向;45. 椭圆;46. 双曲;47. 抛物;48. 中心;49. 无心;50. 线心;51. F1 (x0, y0)=F2 (x0, y0)=F3 (x0, y0)=0;52. 直径;53. 中心;54. 平行于;55. 中心直线;56. 主直径;57. 实数;58. 全为零;59. 两;60. 一;61. 中心;62. 无心;63. 线心;二、1. √;2. ×;3. √;4. ×;5. ×;6. √;7. ×;8. ×;9. ×; 10. √;11. √; 12. √; 13. √; 14. √; 15. √; 16. √; 17. ×; 18. ×; 19. ×; 20. ×;21. √; 22. √; 23. √; 24. √; 25. √; 26. ×; 27. √; 28. ×; 29. √; 30. √;31. √; 32. √; 33. √; 34. √; 35. √; 36. √; 37. √; 38. √; 39. ×; 40. ×;41. ×; 42. ×; 43. √; 44. ×; 45. √; 46. √; 47. √; 48. √; 49. √; 50. √;51. ×; 52. ×; 53. √; 54. ×; 55. √; 56. √; 57. √; 58. ×; 59. √; 60. √.三、1. D;2. A;3. C;4. C;5. A;6. B;7. C;8. D;9. D; 10. D; 11.B; 12. A; 13. A; 14. C; 15. C; 16. D; 17. C; 18. A; 19. B; 20. A;21. A; 22. B; 23. B; 24. A; 25. D; 26. C; 27. A; 28. B; 29. D; 30. C;31. B; 32. D; 33.A; 34. B; 35.A; 36.B; 37.D; 38. C; 39. B; 40. A;41. C; 42. B; 43. B; 44. D; 45. B; 46. C; 47. C; 48. A; 49. B; 50. C;51. D; 52. C; 53. C.四、1. ==;2.(z轴);3. 4x+5y-2z+12=0;4. ==;5. 3x+2y+z+6=0;6.设所求平面在z轴上的截距为c≠0,则所求平面方程为++=1, 因平面过M0 (x0, y0, z0),于是++=1, = (1--), 故所求平面为++ (1--)=1;7. (-1):1, 抛物型;8. 3x+3y-2=0, 6x-3y-1=0;9. 提示:取A为原点,AB为z轴, ABC所在平面为yOz面建立坐标系, 设B的坐标为(0, 0,a), 则AC的方程为, 从而得锥面方程为ctg2α (x2+y2)-z2=0 (0≤z≤a);10. (-1):1(非渐近主方向), 1:1(渐近主方向), x-y-1=0;11. 1:0, 0:1, x=0, y=0;12. 1:0, 0:1, x=0, y=0;13. 与;14. 1:1:1及与平面x+y+z=0平行的一切方向;x+y+z=0及过中心(0, 0, 0)且垂直于x+y+z =0 的一切平面;15. 0:1:1;16. (ny-mz)2+(lz-nx)2+(mx-ly)2=r2 (l2+m2+n2);17. (双曲线); (椭圆); (双曲线);18. --=0;19. 5x+5y+2=0;20. 2x+3y+z+4=0.五、略.六、1. 由坐标变换公式得:-=1(双曲线).2. 由坐标变换公式得:x'2-y'2=1 (双曲线).3. 由坐标变换公式得:+=1 (椭圆).4. 由坐标变换公式得:-=1 (双曲线).5. 由坐标变换公式得:x'2+=1 (椭圆).6. 由坐标变换公式得:y'2=2 (一对平行直线).7. 由坐标变换公式得:y'2=-x (抛物线).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间曲线:
x x( t ) L : y y( t ) z z(t )
曲线
x x( t ) L : y y( t ) z z(t )
在xoy坐标面上的投影曲线为
x x(t ) y y( t ) z 0
x x(t ) y y( t ) z v
6
0 y 6 1 2 2 y x 4 y 3 3 0 z 6 x y
0
.
6
y
4 x 6
例3: 曲面 x 2 y 2 a 2,x 2 z 2 a 2 , x 0, y 0, z 0所围成 的区域
1.
b
ab
ab
a
a
b
a
b
a b
定比分点向量表示
AT TB, 则 OT
O
OA OB 1
A
2.
T
B
(
)
夹角
ab cos(a , b) | a || b |
常用公式: Lagrange恒等式: (a b) (c d ) (a c )(b d ) (a d )(b c )
l1 v1 v2 l2
| ( P1 P2 , v1 , v 2 ) | | v1 v 2 |
v1 v2
P2
( P P , v v , v ) 0 1 2 1 异面直线的公垂线: l : 1 ( P2 P , v1 v 2 , v 2 ) 0
l
直线的一般方程:
(2).参数方程:
z M
x f (t ) 曲线 C z g (t )
绕 z轴旋转一周
( f (t ) 0)
P
i
o
得旋转曲面
i
x
x f (t ) cos S : y f (t ) sin z g (t )
其 : (i, ) 中 PM
~
设:
A (aij ) (i , j 1,2,3), X ( x
y z)
坐标变换: ( x
y z ) ( x
y z)
(1) 求A的单位正交特征向量为行向量组成正交矩阵 (2)通过转轴变换消去交叉项 (3)通过配方作移轴变换消一次项
T SO(3)
y z)
X XT
X ( x
A SO(3)
用不等式表示空间区域
例1 曲面 x 2 y 2 z 2 4与 z x 2 y 2 围成的区域 由
z 2 x 2 y 2 z x 2 y 2
得交线L:
x2 y2 1 z 1
.
z 2 x2 y2 与z x 2 y 2
x2 y2 1 围成的区域 x2 y2 z 2 x2 y2
z L
1
x2 y2 1 L: z 0
.
x2 y2 1
. .
o
. .
x
z =0
2
y
例2 平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6 所围成的区域 z
新原点旧坐标:
O ( x0 , y0 , z0 )
*
x* * y z*
* x0 x * A y y0 z z* 0
x * x0 x * T y A y y0 z* z z 0
消去z
f ( x, y) 0 F2 ( x , y .z ) 0
则 f ( x, y ) 0 是曲线 L 在xoy坐标面上的投影柱面
f ( x, y ) 0 是曲线 L 在xoy坐标面上的投影曲线 z0
参数方程:
空间曲面:
x x( u, v ) : y y( u, v ) z z( u, v )
P0 ( x0 , y0 , z0 )
定义 设n 是实数,函数F (x, y, z) 满足F(tx,ty,tz)= t F (x, y, z) , 则称 F (x, y, z ) 为关于x, y, z 的n 次齐次函数,F (x, y, z)= 0 称为关于x, y, z 的n 次齐次方程. 定理 关于x, y, z 的n 次齐次方程表示以坐标原点为顶点的锥面.
l:
A1 x B1 y C1 z D1 0 A2 x B2 y C 2 z D2 0
n1 r D1 0 n2 r D2 0
其方向向量:
v n1 n2
过直线 l 的平面束方程:
( A1 x B1 y C1 z D1 ) ( A2 x B2 y C2 z D2 ) 0
o
y
x
双曲面的渐进锥面
z
x2 y 2 z 2 双叶: 2 2 2 1 a b c x2 y2 z2 渐进锥面: 2 2 2 0 a b c
o
y
x2 y2 z2 单叶: 2 2 2 1 a b c
x
椭圆抛物面
x y 2 z 2 a b
内部
2
2
z
x y 2 z 2 a b
X X X0
X 0 ( x0
y0
z0 )
O* ( x0 , y0 , z0 ) 取若已知三个过新原点
且互相垂直的平面为新的坐标面
Z*
y*
0* 0
x* P(x*,y*,z*)
z*
Y*
x*
.
.
a1 x b1 y c1 z d1 * x 坐标变换: a12 b12 c12 旧原点新坐标: * a 2 x b2 y c2 z d 2 y 2 2 2 * * * a 2 b2 c2 O( x0 , y0 , z0 ) z * a3 x b3 y c3 z d 3 2 2 a3 b32 c3
四. 二次曲面
1.球面
( x a)2 ( y b)2 ( z c)2 r 2
球面方程一般形式:
Ax 2 Ay 2 Az 2 2Bx 2Cy 2Dz E 0
(1)没有交叉项 (2)平方项系数相等且非零
椭球面
z
2 2
x y z 2 2 1 2 a b c
绕 直线 l: x x0 y y0 z z0
X
l
Y
Z
旋转
MN l | P0 M || P0 N |
.
N ( x1 , y1, z1 )
M
且有
F1 ( x1 , y1 , z1 ) 0 F2 ( x1 , y1 , z1 ) 0
C
.
S
椭球面内部
2
c
o
2
b
y
x y z 2 2 1 2 a b c
x
2
2
a
单叶双曲面
z
x y z 2 2 1 2 a b c
内部
o
2
2
2
y
x2 y2 z2 2 2 1 2 a b c
x
单叶双曲面是直纹面
x2 y2 z2 2 2 1 2 a b c
含两个直母线系
.
F1 ( x , y .z ) 0 L: F2 ( x , y .z ) 0
空间曲线:
F1 ( x , y .z ) 0 L: F2 ( x , y .z ) 0
L
v
P1 ( x1 , y1 , z1 )
v ( X ,Y , Z )
P ( x, y, z )
3.旋转面:
F1 ( x, y, z ) 0 F2 ( x, y, z ) 0
l
母线 C:
x x0 y y0 z z0 旋转轴 l: X Y Z
C
曲线
F1 ( x , y , z ) 0 C: F2 ( x , y , z ) 0
v
r r0
a
r0
O
r
r ( x, y, z ), v ( X ,Y , Z ), r0 ( x0 y0 z0 )
平面:
n ( A, B,C)
nr D 0
Ax By Cz D 0
点 P* ( x* y* z* ) ,直线 l : r tv r0,平面 : nr D 0 之间 的相关位置:
平行于平面 Ax By Cz D 0 的平面束方程:
Ax By Cz 0
, 不全为零
三. 空间曲线和曲面
空间曲面: : F ( x, y, z ) 0 1.柱面 准线: 母线方向:
P1 P // v
x x1 y y1 z z1 t X Y Z
P0
消去 x1 , y1 , z1 即得旋转曲面 S的方程.
以坐标轴为旋转轴的旋转面: (1)一般方程: 曲线 C f ( y, z ) 0 x 0 得旋转曲面 绕 z轴旋转一周
z
C
2 2
S:f ( x y , z ) 0
o
y
坐标面上曲线绕该坐标面内坐标轴旋转所得旋转曲面方程 可通过在母线方程中保留与坐标轴同名的坐标不变,将另 一个用其他两个坐标的平方和的平方根代替而获得
在xoy坐标面上的投影柱面为