专题七 解析几何专题复习
高考数学二轮复习课件:专题七 解析几何 7.3

全国 求直线方程,
Ⅰ 证明角相等
抛物线、直 线、斜率、垂 抛物线 直平分线
分类讨论思 想,方程思想
全国
2018 Ⅱ
求直线方程, 求圆的方程
抛物线、直 线、根与系数 抛物线 的关系、圆
方程思想
全国
Ⅲ
证明不等式 成立,证明等 式成立
椭圆、斜率、 向量的模、向 椭圆 量相等
点差法,方程 思想
-6-
1.椭圆、双曲线中a,b,c,e之间的关系
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/12
最新中小学教学课件
12
谢谢欣赏!
2019/7/12
最新中小学教学课件
13
方程思想
否有公共点 判别
2016 全国
Ⅱ
求三角形面 积,证明斜率 的取值范围
椭圆、直线、
三角形面积、 函数零点及
椭圆
存在性定理
方程思想,函 数思想
全国 证明平行,求
Ⅲ 轨迹方程
抛物线、直 线、斜率、三 抛物线 角形面积
方程思想,解 析法
-4-
年份 卷别 设问特点 涉及知识点 曲线模型 解题思想方法
A(x1,y1),B(x2,y2),x1≠x2,弦的中点 M(x0,y0),则
������12 ������22
= =
2������������1,两式相减得 2������������2,
������12 − ������22=2p(x1-x2),
∴(y1+y2)(y1-y2)=2p(x1-x2),
四、听方法。
2023年高考数学二轮复习第二部分方法探究考点七 解析几何

七解析几何『必记知识』1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y 轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y 轴的直线).(3)两点式:y−y1y2−y1=x−x1x2−x1(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:xa +yb=1(a,b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax+By+C=0(其中A,B不同时为0).2.直线的两种位置关系当不重合的两条直线l1和l2的斜率存在时:(1)两直线平行l1∥l2⇔k1=k2.(2)两直线垂直l1⊥l2⇔k1·k2=-1.3.三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离|AB|=√(x2−x1)2+(y2−y1)2.(2)点到直线的距离d=00√A2+B2(其中点P(x0,y0),直线方程为Ax+By+C=0).(3)两平行线间的距离d=21√A2+B2(其中两平行线方程分别为l1:Ax+By+C1=0,l2:Ax +By+C2=0且C1≠C2).4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.-a≤x≤a,-b≤y≤b-b≤x≤b,-a≤y≤a|x|≥a,y∈R|y|≥a,x∈Ry=2px(p>0)y=-2px(p>0)x=2py(p>0)x=-2py(p>0) x轴y轴(1)若双曲线的方程为x2a2−y2b2=1(a>0,b>0),则渐近线的方程为x2a2−y2b2=0,即y=±bax.(2)若渐近线的方程为y=±ba x(a>0,b>0),即xa±yb=0,则双曲线的方程可设为x2a2−y2b2=λ(λ≠0).(3)若所求双曲线与双曲线x2a2−y2b2=1(a>0,b>0)有公共渐近线,其方程可设为x2a2−y2b2=λ(λ>0,焦点在x轴上;λ<0,焦点在y轴上).10.抛物线焦点弦的相关结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α为直线AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以弦AB为直径的圆与准线相切.【易错剖析】易错点1遗漏方程表示圆的充要条件【突破点】二元二次方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0,在此条件下,再根据其他条件求解.易错点2解决截距问题忽略“0”的情形【突破点】解决直线在两坐标轴上的截距或截距具有某种倍数关系的问题时,需注意两点:(1)截距不是距离,直线在坐标轴上的截距可正、可负、也可为0.(2)明确直线方程的截距式不能表示过原点或与坐标轴垂直的直线.因此解题时应该从截距是否为0进行分类讨论.易错点3 忽视斜率不存在的情况【突破点】 (1)在解决两直线平行的相关问题时,若利用l 1∥l 2⇔k 1=k 2求解,忽略k 1,k 2不存在的情况,就会导致漏解.(2)对于解决两直线垂直的相关问题时,若利用l 1⊥l 2⇔k 1·k 2=-1求解,要注意其前提条件是k 1与k 2必须同时存在.易错点4 忽略直线与圆锥曲线相交问题中的判别式【突破点】 凡是涉及直线与圆锥曲线位置关系的问题,一定不能忘记对判别式的讨论. 易错点5 忽视双曲线定义中的条件【突破点】 双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.易错点6 忽视圆锥曲线定义中的焦点位置【突破点】 椭圆的焦点位置由分母的大小确定,双曲线则是根据二次项系数的符号来确定的.解决此类问题时,一定要将方程化为曲线的标准形式.【易 错 快 攻】易错快攻一 遗漏直线的斜率不存在的情况[典例2] [2022·全国乙卷]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗ .证明:直线HN 过定点. 听课笔记:易错快攻二 忽视双曲线定义中的限制条件[典例2] 点P 到曲线E 上所有点的距离的最小值称为点P 到曲线E 的距离,那么平面内到定圆C 的距离与到圆C 外的定点A 的距离相等的点P 的轨迹是( )A .射线B .椭圆C .双曲线的一支D .双曲线 听课笔记:七 解析几何[典例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E 的方程为x 23+y 24=1.(2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2). 联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0, 所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′).由MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1), 所以x ′=3y 1+6-x 1,y ′=y 1,所以直线HN 的斜率k =y 2−y ′x2−x ′=y 2−y 1x2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4, 所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1. 将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63, 则直线HN 过定点(0,-2).b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4,且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y1+6−x 1−x 2(x -x 2).将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.② 将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立. 综上可得,直线HN 过定点(0,-2).[典例2] 解析:设圆C 的半径为r ,依据题意可知,|PC |=|P A |+r ,即|PC |-|P A |=r ,且r<|AC|,故所求点P的轨迹为以A,C为焦点的双曲线靠近A点的一支,故选C.答案:C。
【导与练】高考数学二轮复习 高校信息化课堂 专题七 解析几何 第3讲 圆锥曲线中的定点、定值与最值问题 文

第3讲圆锥曲线中的定点、定值与最值问题基础把关1.设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( C )(A)(0,2) (B)[0,2](C)(2,+∞) (D)[2,+∞)解析:设圆的半径为r,因为F(0,2)是圆心,抛物线C的准线方程为y=-2.圆与准线相切时半径为4.若圆与准线相交则r>4.又因为点M(x0,y0)为抛物线x2=8y上一点,所以有=8y0.又点M(x0,y0)在圆x2+(y-2)2=r2上.所以+(y0-2)2=r2>16,所以8y0+(y0-2)2>16,即有+4y0-12>0,解得y0>2或y0<-6(舍),∴y0>2.故选C.2.椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为( A )(A)6 (B)3-(C)9 (D)12-6解析:设P(x0,y0),则+=1,=(x0-3,y0),又=-,∴·=·(-)=-·==(x0-3)2+=(x0-3)2+9-=-6x0+18,=(x0-4)2+6,又x0∈[-6,6],∴当x0=4时,·取到最小值6.3.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为( C )(A)2 (B)3 (C)6 (D)8解析:设P(x,y),由+=1,得y2=3-x2.∵O(0,0),F(-1,0),∴·=(x,y)·(x+1,y)=x2+x+y2=x2+x+3=(x+2)2+2.∵x∈[-2,2],∴当x=2时,·有最大值6.4.(2014浙江杭州模拟)设双曲线-=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A、B两点,则|BF2|+|AF2|的最小值为( B )(A)(B)11 (C)12 (D)16解析:由-=1知a2=4,b2=3,∴c2=7,c=,∴F1(-,0),F2(,0),又点A、B在双曲线左支上,∴|AF2|-|AF1|=4,|BF2|-|BF1|=4,∴|AF2|=4+|AF1|,|BF2|=4+|BF1|,∴|AF2|+|BF2|=8+|AF1|+|BF1|.要求|AF2|+|BF2|的最小值,只要求|AF1|+|BF1|的最小值即可,而|AF1|+|BF1|最小为2×=3.∴(|AF2|+|BF2|)min=8+3=11.故选B.5.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( A )(A)2 (B)3 (C)(D)解析:如图所示,动点P到l2:x=-1的距离可转化为点P到点F的距离.由图可知,距离和的最小值即F到直线l1的距离d==2.故选A.6.(2014河南郑州高三模拟)已知抛物线x2=4y上有一条长为6的动弦AB,则AB中点到x轴的最短距离为( D )(A)(B)(C)1 (D)2解析:易知,AB的斜率存在,设AB方程为y=kx+b.由得x2-4kx-4b=0.设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个根,∴x1+x2=4k,x1·x2=-4b,又|AB|=6,∴=6,化简得b=-k2,设AB中点为M(x0,y0),则y0===+b=2k2+-k2=k2+=(k2+1)+-1≥2×-1=2.当且仅当k2+1=,即k2=时,y0取到最小值2.故选D.7.(2014浙江调研)若点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是.解析:依题意得,点F1(-5,0),F2(5,0)分别为双曲线C1的左右焦点,因此有|PQ|-|PR|≤|(|PF2|+1)-(|PF1|-1)|≤||PF2|-|PF1||+2=2×4+2=10,故|PQ|-|PR|的最大值为10.答案:108.已知F1,F2是椭圆的两个焦点,椭圆上存在一点P,使∠F1PF2=60°,则椭圆离心率的取值范围是.解析:法一设|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos 60°,∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn,即3mn=4a2-4c2.又mn≤()2=a2(当且仅当m=n时取等号),∴4a2-4c2≤3a2,∴≥,即e≥,又0<e<1,∴e的取值范围是[,1].法二如图所示,设O是椭圆的中心,A是椭圆短轴上的一个顶点,由于∠F1PF2=60°,则只需满足60°≤∠F1AF2即可,又△F1AF2是等腰三角形,且|AF1|=|AF2|,所以0°<∠F1F2A≤60°,所以≤cos∠F1F2A<1,又e=cos∠F1F2A,所以e的取值范围是[,1].答案:[,1]9.若椭圆+=1(a>b>0)上存在点P,使得·=0,则椭圆离心率的取值范围是.解析:因为·=0,所以∠F1PF2=90°.则以原点为圆心,c为半径的圆与椭圆有公共点,则c≥b,即a2-c2≤c2,得e2≥,即e≥,又在椭圆中0<e<1,故椭圆离心率的取值范围是[,1].答案:[,1]10.若抛物线y2=4x的焦点为F,过F且斜率为1的直线交抛物线于A,B两点,动点P在曲线y2=-4x(y≥0)上,则△PAB的面积的最小值为.解析:由题意得F(1,0),直线AB的方程为y=x-1.由得x2-6x+1=0.设A(x1,y1),B(x2,y2),则x1+x2=6,∴|AB|=x1+x2+p=8.设P(-,y0)(y0≥0),则点P到直线AB的距离d=,∴△PAB的面积S=|AB|·d==≥2,即△PAB的面积的最小值是2.答案:211.(2014北京海淀高三模拟)已知点F1、F2分别是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,则|+|的最小值是.解析:设P(x,y),则x2+2y2=2,由椭圆方程+y2=1可知,a=,b=1,c=1,∴F1(-1,0),F2(1,0).∴=(-1-x,-y),=(1-x,-y),∴+=(-2x,-2y).∴|+|==2=2=2.∵y2≤1,∴|+|的最小值是2.答案:212.(2012高考福建卷)如图,椭圆E:+=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.解:(1)因为|AB|+|AF2|+|BF2|=8,即|AF1|+|F1B|+|AF2|+|BF2|=8,又|AF1|+|AF2|=|BF1|+|BF2|=2a,所以4a=8,a=2.又因为e=,即=,所以c=1,所以b==.故椭圆E的方程是+=1.(2)法一由得(4k2+3)x2+8kmx+4m2-12=0.因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m≠0且Δ=0,即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)此时x0=-=-,y0=kx0+m=,所以P(-,).由得Q(4,4k+m).假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上.设M(x1,0),则·=0对满足(*)式的m,k恒成立.因为=(--x1,),=(4-x1,4k+m),则由·=0,得-+-4x1+++3=0,整理得(4x1-4)+-4x1+3=0.(**)由于(**)式对满足(*)式的m,k恒成立,所以解得x1=1.故存在定点M(1,0),使得以PQ为直径的圆恒过点M.法二由得(4k2+3)x2+8kmx+4m2-12=0.因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m≠0且Δ=0,即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)此时x0=-=-,y0=kx0+m=,所以P(-,).由得Q(4,4k+m).假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上.取k=0,m=,此时P(0,),Q(4,),以PQ为直径的圆为(x-2)2+(y-)2=4,交x轴于点M1(1,0),M2(3,0);取k=-,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x-)2+(y-)2=,交x轴于点M3(1,0),M4(4,0).所以若符合条件的点M存在,则M的坐标必为(1,0).以下证明M(1,0)就是满足条件的点:因为M的坐标为(1,0),所以=(--1,),=(3,4k+m),从而·=--3++3=0,故恒有⊥,即存在定点M(1,0),使得以PQ为直径的圆恒过点M.能力提升13.已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为( B )(A)18 (B)9 (C)21 (D)3解析:如图所示,该双曲线的右焦点为E,则E(4,0),由双曲线的定义及标准方程得|PF|-|PE|=4,则|PF|+|PA|=4+|PE|+|PA|,由图可得,当A,P,E三点共线时,(|PE|+|PA|)min=|AE|=5,从而|PF|+|PA|的最小值为9.故选B.14.设点P在双曲线-=1(a>0,b>0)的右支上,双曲线的左、右焦点分别为F1,F2,若|PF1|=4|PF2|,则双曲线离心率的取值范围是.解析:由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以4|PF2|-|PF2|=2a,所以|PF2|=a,|PF1|=a,所以整理得a≥c,所以≤,即e≤,又e>1,所以1<e≤.答案:(1,]15.(2014高考湖南卷)如图,O为坐标原点,双曲线C1:-=1(a1>0,b1>0)和椭圆C2:+=1(a2>b2>0)均过点P(,1),且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C1,C2的方程;(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|+|=||?证明你的结论.解:(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1.因为点P(,1)在双曲线x2-=1上,所以()2-=1.故=3.由椭圆的定义知2a2=+=2.于是a2=,=-=2.故C1,C2的方程分别为x2-=1,+=1.(2)不存在符合题设条件的直线.①若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.当x=时,易知A(,),B(,-),所以|+|=2,||=2.此时,|+|≠||.当x=-时,同理可知,|+|≠||.②若直线l不垂直于x轴,设l的方程为y=kx+m.由得(3-k2)x2-2kmx-m2-3=0.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2), 则x1,x2是上述方程的两个实根,从而x1+x2=,x1x2=.于是y1y2=k2x1x2+km(x1+x2)+m2=.由得(2k2+3)x2+4kmx+2m2-6=0.因为直线l与C2只有一个公共点,所以上述方程的判别式Δ=16k2m2-8(2k2+3)(m2-3)=0.化简,得m2=2k2+3.因此·=x1x2+y1y2=+=≠0,于是++2·≠+-2·,即|+|2≠|-|2.故|+|≠||.综合①,②可知,不存在符合题设条件的直线.16.(2012高考福建卷)如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y 轴上某定点.(1)解:由题意知|OB|=8,∠BOy=30°,设B(x,y),则x=|OB|sin 30°=4,y=|OB|cos 30°=12,∵B(4,12)在x2=2py上,∴(4)2=2×12p解得p=2,∴抛物线E的方程为x2=4y.(2)证明:由(1)知y=x2,y'=x,设P(x0,y0),则x0≠0,y0=.l的方程为:y-y0=x0(x-x0),即y=x0x-,由得∴Q(,-1).设M(0,y1),令·=0对满足y0=(x0≠0)的x0,y0恒成立, 由于=(x0,y0-y1),=(,-1-y1),由·=0得-y0-y0y1+y1+=0,即(+y1-2)+(1-y1)y0=0对满足y0=(x0≠0)的y0恒成立, ∴,∴y1=1,∴以PQ为直径的圆经过y轴上的定点(0,1).。
高考数学二轮复习专题七 解析几何

高考数学二轮复习专题七解析几何【重点知识回顾】解析几何是高中数学的重要内容之一,各地区在这一部分的出题情况较为相似,一般两道小题一道大题,分值约占15%,即22分左右.具体分配为:直线和圆以及圆锥曲线的基础知识两个容易或中档小题,机动灵活,考查双基;解答题难度设置在中等或以上,一般都有较高的区分度,主要考查解析几何的本质——“几何图形代数化与代数结果几何化”以及分析问题解决问题的能力.解析几何的主要内容是高二中的直线与方程,圆与方程,圆锥曲线与方程考查的重点:直线的倾斜角与斜率、点到直线的距离、两条直线平行与垂直关系的判定、直线和圆的方程、直线与圆、圆与圆的位置关系;圆锥曲线的定义、标准方程、简单的几何性质、直线与圆锥曲线的位置关系、曲线与方程、圆锥曲线的简单应用等,其中以直线与圆锥曲线的位置关系最为重要。
圆锥曲线方程这章扩展开的内容比较多,比较繁杂,对学生来说不一定要把所有的结论一一记住,关键是掌握圆锥曲线的概念实质以及直线和圆锥曲线的关系.因此,在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键,同时勿忘用定义解题.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程. 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置;定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m >0,n >0);定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义.(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用.(6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等.解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围.【典型例题】1.直线的基本问题:直线的方程几种形式、直线的斜率、两条直线平行与垂直的条件、两直线交点、点到直线的距离。
解析几何知识点复习

1、直线的倾斜角是直线向上方向与x 轴正方向所成的角,当直线是x 轴或与x 轴平行时,直线的倾斜角是0°,直线倾斜角的范围是),0[π.当直线与x 轴不垂直时,倾斜角的正切值称为直线的斜率. [举例]已知直线1l 的斜率是33,直线2l 过坐标原点且倾斜角是1l 倾斜角的两倍,求直线2l 的方程.2、若直线的倾斜角为α,直线的斜率为k ,则α与k 的关系是:tan ,[0,)(,)222k ππααππα⎧∈⎪⎪=⎨⎪⎪⎩ 不存在,=; arctan ,0arctan ,0k k k k απ≥⎧⎨+<⎩=. [举例]已知直线l 的方程为)0(,0≠=++ab c by ax 且l 不经过第二象限,求直线l 的倾斜角的大小 (用含,a b 的反三角形式表示)*截距式1=+ba ,在x 轴y 轴上的截距分别为b a ,与坐标轴不平行且不过坐标原点.这种形式虽不是最主要的,但特别注意的是当直线过坐标原点(不是坐标轴)时,直线在两坐标轴上的截距也相等,直线在两坐标轴上的截距相等,则此直线的斜率为-1,或此直线过原点.[举例]与圆1)2()1(22=-+-y x 相切,且在两坐标轴上截距相等的直线有――( )A 、2条;B 、3条;C 、4条;D 、5条.4、求直线的方程时要特别注意直线的斜率是否存在的情况,不确定时要注意分类讨论,漏解肯定是斜率不存在的情况.要明确解析几何是“用代数方法解决几何问题”的道理,所以做解析几何问题不要“忘形”. [举例]过点)3,2(P 与坐标原点距离为2的直线方程是___________.5、两直线位置关系讨论的主要依据是两直线的斜率,要注意斜率不存在时的情况.掌握点到直线的距离公式、两平行直线之间的距离公式、两直线的夹角公式.由一般式方程判断两直线之间的关系:直线1l :11111,(,0B A C y B x A =++不全为0)、2l :0222=++C y B x A ,(22,B A 不全为0).则21//l l 的充要条件是01221=-B A B A 且1221C A C A -与-21C B 12C B 至少有一个不为零;21l l ⊥的充要条件是02121=+B B A A ;1l 与2l 相交的充要条件是01221≠-B A B A .[举例1]直线21,l l 斜率相等是21//l l 的――――――――――――――――――( ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件.[举例2]直线l 过点)3,2(P 与以)3,1(),2,3(--B A 为端点的线段AB 有公共点,则直线l 倾斜角的取值范围是_________.6、点A 、B 关于直线l 对称即l 是线段AB 的垂直平分线,垂直是斜率关系,平分说明AB 的中点在l 上.特别注意:当对称轴所在直线的斜率为1或-1时,对称点的坐标可用代入的方法求得.即点),(00y x 关于直线0=++c y x 的对称点是),(00c x c y ----;点),(00y x 关于直线0=+-c y x 的对称点是),(00c x c y +-.[举例1]将一张画有直角坐标系的图纸折叠使点)0,2(A 与点(0,6)B 重合,若点)0,3(C 与点D 重合,则点D 的坐标为_____;[举例2]抛物线C 1:x y 22=关于直线02=+-y x 对称的抛物线为C 2,则C 2的焦点坐标为______.7、直线与圆的位置关系的判断主要是利用点(圆心)到直线的距离来判断.设圆C 的半径是r ,圆心到直线L 的距离是d ,当r d >时,直线L 与圆C 相离;当r d =时,直线L 与圆C 相切;当r d <时,直线L 与圆C 相交.求直线被圆所截的弦长可用圆半径、弦心距、弦长一半组成直角三角形来求解. [举例1]已知点),(b a 是圆222r y x =+外的一点,则直线2r by ax =+与圆的位置关系是[举例2]若圆O :222r y x =+上有且只有两点到直线01543:=-+y x l 的距离为2,则圆的半径r 的取值范围是__________.8、确定圆的方程可以利用圆的标准方程222)()(r b y a x =-+-,即确定圆心坐标与半径;也可以利用圆的一般方程022=++++F Ey Dx y x ,即确定系数D 、E 、F.要注意的是方程022=++++F Ey Dx y x 表示圆的充要条件是0422>-+F E D .确定一个圆的方程需要三个互相独立的条件(因为标准方程与一般方程中都三个待定的系数).[举例1]二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是_____;[举例2]圆C 被y 轴截得的弦长是2,被x 轴分成的两段弧长之比为3:1,求圆心C 的轨迹方程.9、掌握圆的基本特征:圆上任意两点的垂直平分线是圆的直径所在的直线;直线平分圆的充要条件是此直线一定过该圆的圆心;与两定点连线所成角为直角的动点的轨迹是以定线段为直径的圆(或圆弧)等. [举例1]直线l 过定点)0,4(M 与圆422=+y x 交于A 、B 两点,则弦AB 中点N 的轨迹方程为_____________;[举例2]直线l 过定点)0,4(M 与圆422=+y x 交于A 、B 两点,O 是坐标原点,则△AOB 面积的 最大值为_______;[举例3]已知A 是圆064222=-+-+y ax y x 上任意一点,点A 关于直线012=++y x 的对称点也在圆上,那么实数a 的值为_____.10、两圆之间的位置关系的判断主要是利用两圆的半径的差或和与两圆的圆心距之间的大小关系.设圆A 的半径为1r ,圆B 的半径为2r (不妨设21r r >),则有:(1)21||r r AB +>,两圆外离;(2)21||r r AB +=,则两圆外切;(3)2121||r r AB r r +<<-,则两圆相交;(4)21||r r AB -=,则两圆内切;(5)21||r r AB -<,则两圆内含.关注:两圆的位置关系也可以由两圆的公切线的条数上来分.[举例1]已知动圆C 与定圆M :1)2(22=+-y x 相切,且与y 轴相切,求圆心C 的轨迹方程;[举例2]已知)3,0(M ,一动圆I 过点M 与圆N :16)3(22=++y x 内切. (1)求动圆圆心I 的轨迹C 的方程;(2)经过点(2,0)Q 作直线l 交曲线C 于A 、B 两点,设+=,当四边形OAPB 的面积 最大时,求直线l 的方程. 11、椭圆的定义中要注意隐含的条件:定值大于两定点之间的距离.掌握椭圆基本量之间的关系,分清长轴、短轴、焦距、半长轴、半短轴、半焦距.椭圆最基本的几何性质是定义的逆用:“椭圆上任意一点到两焦点的距离之和等于长轴的长”.[举例1]已知复数z 满足4|2||2|=++-i z i z ,则z 对应点的轨迹是_______;[举例2]设P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上的一点,若点P 满足:121210,tan 2PF PF PF F ⋅=∠= ,则椭圆的焦距与长轴的比值为―――――――――( )A 、21;B 、32;C 、31;D 、35.12、椭圆中一些常见的结论要记住,这对解决选择填空等客观性问题时比较方便,如:椭圆的基本量c b a ,,蕴含在焦点、中心、短轴端点所构成的直角三角形中;椭圆的短轴的端点对两焦点的张角是椭圆上点与两焦点张角(与两焦点连线夹角)的最大值;短半轴、长半轴的几何意义是椭圆上点与中心距离的最小值与最大值;焦点到椭圆上点的距离的最大值与最小值分别是c a +与c a -;过椭圆焦点的弦长最大值是长轴长,最小值是垂直于长轴所在直线的弦(有时称为通径,其长为ab 22).[举例1]一直线l 过椭圆12422=+y x 的左焦点,被椭圆截得的弦长为2,则直线l 的方程为_____;[举例2]椭圆13422=+y x 上有2012个不同的点122012,,,P P P ,椭圆的右焦点为F ,数列{||}(1,2,3,,201n FP n = 是公差为d 的等差数列,则d 的取值范围是_____.13、椭圆)0(12222>>=+b a by a x 上任意一点P 与两焦点21,F F 构成的三角形可称为椭圆的焦点三角形.焦点三角形的周长为定值)22(c a +,利用解三角形的方法可以得出:当21PF F ∠=θ时,此三角形的面积为2tan2b θ(引起注意的是此结论的推导过程要掌握).[举例]已知点)0,2(),0,2(B A -,点C 在直线1=y 上满足BC AC ⊥,则以A 、B 为焦点过点C 的椭圆方程为____________.14、双曲线的定义中的隐含条件是“两焦点之间的距离大于定值(实轴长)”,双曲线基本量之间的关系要与椭圆基本量的关系区分开来,从定义上来说椭圆与双曲线的定义是一字之差,方程是一符号之差,但两者之间的几何性质完全不同.[举例]一双曲线C 以椭圆12422=+x x 的焦点为顶点,长轴顶点为焦点,则此双曲线的方程为____.15、渐近线是双曲线特有的几何性质,要特别注意双曲线的渐近线方程,理解“渐近”的意义.双曲线12222=-b y a x 的渐近线的方程为02222=-b y a x ,与双曲线12222=-b y a x 共渐近线的双曲线可以设成λ=-2222by a x (其中0≠λ是待定的系数),双曲线的焦点到双曲线的渐近线的距离是虚半轴长b . [举例1]一双曲线与1322=-y x 有共同渐近线且与椭圆1322=+y x 有共同焦点,则此双曲线的方程为________;[举例2]若关于x 的方程)2(12+=-x k x 有两个不等的实数根,则实数k 的取值范围是___.16、记住双曲线中常见的结论:(1)过双曲线焦点的直线被双曲线同支截得的弦长的最小值是通径(垂直于实轴的弦长),被两支截得的弦长的最小值是实轴的长;(2)双曲线焦点到同侧一支上的点的距离最小值是a c -,到异侧一支上点的距离最小值是a c +;(3)双曲线12222=-b y a x 的焦点为21,F F ,P 是双曲线上的一点,若θ=∠21PF F ,则△21PF F 的面积为22b cot θ(仿椭圆焦点三角形面积推导).[举例1]已知双曲线的方程为116922=-y x ,P 是双曲线上的一点,F 1、F 2分别是它的两个焦点,若7||1=PF ,则=||2PF ______;[举例2]椭圆12622=+y x 和双曲线221x y a -=的公共焦点为21,F F ,P 是它们的一个公共点,则=∠21cos PF F _____;[举例3]双曲线)1(122>=-n y nx 的两焦点为P F F ,,21是此双曲线上的一点,且满足||||21PF PF +=22+n ,则△21F PF 的面积为________.17、抛物线是高考命题中出现频率最高的圆锥曲线.仅从标准方程上,抛物线就有四种不同的形式,要注意开口方向与标准方程的关系.不要将抛物线的标准方程与二次函数的表达式相混淆. [举例]抛物线24x y =的焦点坐标是_____;准线方程是_____.18、记住抛物线的常见性质:(1)抛物线上任意一点到焦点距离等于它到准线的距离;(2)过抛物线的焦点与顶点的直线是抛物线的对称轴;(3)顶点、焦点、准线之间的关系;(4)过焦点与对称轴垂直的弦称为抛物线的通径,抛物线)0(22>=p px y 的通径长为p 2;(5)通径是过抛物线焦点的弦中长度最小的一条.[举例1]已知抛物线的焦点为)1,1(F ,对称轴为x y =,且过M (3,2),则此抛物线的准线方程为__;[举例2]直线l 过抛物线y x 42=的焦点与抛物线交于A 、B 两点,若A 、B 两点到x 轴的距离之和等于3,则这样的直线l 有―――――――――――――――――( )A 、1条;B 、2条;C 、3条;D 、不存在.19、过抛物线的焦点的直线被抛物线截得的弦称为抛物线的焦点弦.以抛物线)0(22>=p px y 为例,焦点弦有下列常用性质:设抛物线)0(22>=p px y 的焦点为F ,),(),,(2211y x B y x A 是抛物线上的两点.(1)A 、B 、F 三点共线的充分必要条件是)4(221221p x x p y y =-=;(2)p x x AB ++=21||;(3)若AB 过焦点,则以AB 为直径的圆与抛物线的准线相切;(4)AB 过焦点,则⋅为定值;(5)AB 过焦点,211=+[举例1]直线l 过抛物线的焦点与抛物线交于A 、B 两点,O 是抛物线的顶点,则△ABO 的形状是――――――――――――――――――――――――――――――――( )A 、 直角三角形;B 、锐角三角形;C 、钝角三角形;D 、不确定与抛物线的开口大小有关.[举例2]求证:过抛物线)0(22>=p px y 焦点的所有弦长的最小值是p 2.20、“点差法”是解决直线与圆锥曲线位置关系中与弦的中点有关问题的常用方法.“点”是指弦端点、弦中点;“差”是指将弦端点坐标代入曲线方程作差.由点差法可以利用弦中点的坐标表示出弦所在直线的斜率.[举例]已知点M 是椭圆12222=+by a x 的一条不垂直于对称轴的弦AB 的中点,O 是坐标原点,设OM 、AB 的斜率分别为21,k k ,则21k k ⋅=―――――――――――――( )A 、22b a ;B 、22a b ;C 、22a b -;D 、22ba -.21、当直线过x 轴上的定点)0,(a A 时,若直线不是x 轴,则此直线方程可以设成a my x +=.这样可以避免讨论直线斜率是否存在.[举例]设直线l 过椭圆1422=+y x 的右焦点,与椭圆相交于A 、B 两点,O 是坐标原点,当△OAB 的面积最大时,求直线l 的方程.22、求动点的轨迹方程要能充分地将“动”与“定”有机的联系起来,以“定”制“动”.也可以先由动点定轨迹后方程.常见动点的轨迹要熟记.[举例1]设点P 为双曲线1422=-y x 上的动点,F 是它的左焦点,M 是线段PF 的中点,则点M 的轨迹方程是_____;[举例2]已知椭圆的焦点是21,F F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是―――――――――――――――――――( )A 、圆;B 、椭圆;C 、双曲线的一支;D 、抛物线.23、直线与圆锥曲线之间的位置关系的讨论主要是转化为方程根的个数的讨论,联立直线与圆锥曲线方程得方程组,消去其中一个量得到关于另一个变量的一元二次方程,利用根的判别式进行讨论,但要注意二方面:一是直线的斜率是否存在,二是所得方程是否为一元二次方程.直线与非封闭曲线(双曲线、抛物[举例]已知直线l 过点)1,1(M ,双曲线C :1322=-y x .(1)若直线l 与双曲线有且仅有一个公共点,求直线l 的方程;(2)若直线与双曲线的右支有两个不同的交点,求直线l 斜率的取值范围;(3)是否存在直线l 使其与双曲线的有两个不同的交点A 、B ,且以AB 为直径的圆过坐标原点?若存在求出此直线的斜率,不存在说明理由.24、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线的性质。
二轮专题复习第7讲解析几何(学生版)

2023年高考数学二轮复习专题解析几何1.直线的倾斜角与斜率的关系(1)倾斜角α的取值范围: .倾斜角为α(α≠90°)的直线的斜率k = ,当倾斜角为=α90°的直线斜率 .当∈α 时,k >0且k 随倾斜角α的增大而增大.当∈α 时时,k <0且k 随倾斜角α的增大而增大.(1)两点P 1(x 1,y 1),P (x 2,y 2)间的距离:|P 1P 2|= . (2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d = . (3)两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d = . 二.圆的方程 1.圆的方程形式:(1)标准方程: ,圆心坐标为 ,半径为 .(2)一般方程: ( ),圆心坐标为 ,半径r = . 2.点与圆的位置关系(1)几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.(2)代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r2(或0)时,点在圆外;等于r2(或0)时,点在圆上;小于r2(或0)时,点在圆内.3.直线与圆的位置关系直线l :Ax+By +C=0(A2+B2≠0)与圆:(x-a)2+(y-b)2=r2(r>0)的位置关系如下表.位置关系几何法:根据d=与r的大小关系代数法:联立消元得一元二次方程,根据判别式Δ的符号相交d<r Δ>0相切d=r Δ=0相离d>r Δ<0 4.圆与圆的位置关系表现形式位置关系几何表现:圆心距d与r1、r2的关系代数表现:两圆方程联立组成的方程组的解的情况相离d>无解外切d=一组实数解相交<d<两组不同实数解内切d=(r1≠r2)一组实数解内含≤d<(r1≠r2)无解三.椭圆、双曲线、抛物线的定义及几何性质椭圆双曲线抛物线定义在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫.||P F1|+|P F2|=2a(2a>|F1F2|=2c)在平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(0<2a<2c),则点P的轨迹叫.||P F1|-|PF2||=2a(2a<|F1F2|)在平面内定点F和定直线l,(点F直线l上),P到l距离为d,|PF|=d标准方程焦点在x轴上焦点在x轴上焦点在x轴正半轴上图象几何性质范围|x|≤,|y|≤|x|≥,y∈R x≥,y∈R 顶点,对称性关于、和对称关于对称例1:(1)经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =(2)直线x sin α-y +1=0的倾斜角的变化范围是 (3)经过点P (3,2)且在两坐标轴上的截距相等;(4)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.【变式训练1】(1)若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________.(2)直线l 过点M (-1,2)且与以点P (-2,-3)、Q (4,0)为端点的线段恒相交,则l 的斜率范围是(3)△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: ①BC 所在直线的方程;②BC 边上中线AD 所在直线的方程;③BC 边的垂直平分线DE 所在直线的方程.考向2:两条直线的位置关系及距离公式例2:(1)若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为(2)已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a = (3)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.(4)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【变式训练2】 (1)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的 条件。
高考专题复习—解析几何的题型与方法(精髓版)

2015届高三数学题型与方法专题七:解析几何1【基础知识梳理】班级: 姓名:[例1]已知直线1l 的斜率是33,直线2l 过坐标原点且倾斜角是1l 倾斜角的两倍,则直线2l 的方程为___x y 3=.[例2]已知直线l 的方程为)0(,0≠=++ab c by ax 且l 不经过第二象限,则直线l 的倾斜角大小为( B )A 、arctana b ; B 、arctan(-a b ); C 、p +arctan a b ; D 、p -arctan a b. [例3]与圆1)2()1(22=-+-y x 相切,且在两坐标轴上截距相等的直线有――( B )A 、2条;B 、3条;C 、4条;D 、5条. [例4]过点)3,2(P 与坐标原点距离为2的直线方程是___026125=+-y x 与2=x.[例5]直线21,l l 斜率相等是21//l l 的――――――――――――――――――( D ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件.[例6]直线l 过点)3,2(P 与以)3,1(),2,3(--B A 为端点的线段AB 有公共点,则直线l 倾斜角的取值范围是______.]43,2[πarctg . [例7]将一张画有直角坐标系的图纸折叠使点)0,2(A 与点(0,6)B 重合,若点)0,3(C 与点D 重合,则点D 的坐标为 _;)528,51(D . [例8]抛物线C 1:x y 22=关于直线02=+-y x 对称的抛物线为C 2,则C 2的焦点坐标为____.)25,2(-. [例9]已知点),(b a 是圆222r yx =+外的一点,则直线2r by ax =+与圆的位置关系是( C )A 、相离;B 、相切;C 、相交且不过圆心;D 、相交且过圆心. [例10]若圆O :222r y x =+上有且只有两点到直线01543:=-+y x l 的距离为2,则圆的半径r 的取值范围是____.51<<r.[例11]二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是_____;04,0,022>-+=≠=AF E D B C A .[例12]已知圆C 被y 轴截得的弦长是2,被x 轴分成的两段弧长之比为3:1,求圆心C 的轨迹方程.1222=-x y . [例13]直线l 过定点)0,4(M 与圆422=+yx 交于A 、B 两点,则弦AB 中点N 的轨迹方程为_____;4)2(22=+-y x ()10<≤x .[例14]直线l 过定点)0,4(M 与圆422=+y x 交于A 、B 两点,O 是坐标原点,则△AOB 面积的最大值为_______;2.[例15]已知A 是圆064222=-+-+y ax y x 上任意一点,点A 关于直线012=++y x 的对称点也在圆上,那么实数a 的值为___3__.[例16]已知动圆C 与定圆M :1)2(22=+-y x 相切,且与y 轴相切,则圆心C 的轨迹方程是__;)21(62-=x y 与232()2y x =-.[例17]已知)3,0(M ,一动圆I 过点M 与圆N :16)3(22=++y x 内切.(1)求动圆圆心I 的轨迹C 的方程;(2)经过点(2,0)Q 作直线l 交曲线C 于A 、B 两点,设+=,当四边形OAPB 的面积最大时,求直线l 的方程.(1)1422=+y x . (2)由OB OA OP +=知,四边形OAPB 是平行四边形.要使得四边形OAPB 面积最大,则△OAB 的面积最大,注意变化中的定值条件.△OAB 的面积是△AOQ 的面积与△BOQ 的面积之差.设A ),(),,(2211y x B y x ,则12||||||AOB S y y ∆=-.可在联立方程组时,消去变量x ,保留y .设直线l 的方程为2x my =+,由22221(41)1612042y x m y my x my ⎧+=⎪⇒+++=⎨⎪=+⎩.由△=22(16)412(41)0m m -⨯⨯+>,得2430m ->. 由韦达定理得:1212221612,4141m y y y y m m +=-=++知021>y y .则12||||||AOBS y y ∆=-=||21y y-==.令243(0)m t t -=>,那么:2S ==≤=,当16tt =时等号成立.此时274m =,即所求的直线方程为42x y =±+. [例18]已知复数z 满足4|2||2|=++-i z i z ,则z 对应点的轨迹是_______;以i 2与i 2-对应点为端点的线段.[例19]设P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上的一点,若点P 满足:21,02121=∠=⋅F PF tg PF PF ,则椭圆的焦距与长轴的比值为―――――――――( D )A 、21; B 、32; C 、31; D 、35.[例20]一直线l 过椭圆12422=+y x 的左焦点,被椭圆截得的弦长为2,则直线l 的方程2-=x . [例21]椭圆13422=+y x 上有2007个不同的点200721,,,P P P ,椭圆的右焦点为F ,数列)2007,,3,2,1|}({| =n FP n 是公差为d 的等差数列,则d 的取值范围是_____.]10031,0()0,10031[ -∈d . [例22]已知点)0,2(),0,2(B A -,点C 在直线1=y 上满足BC AC ⊥,则以A 、B 为焦点过点C 的椭圆方程为___.12622=+y x . [例23]一双曲线C 以椭圆12422=+x x 的焦点为顶点,长轴顶点为焦点,则此双曲线的方程为___.12222=-y x .[例24]一双曲线与1322=-y x 有共同渐近线且与椭圆1322=+y x 有共同焦点,则此双曲线的方程为________;21322=-y x . [例25]若关于x 的方程)2(12+=-x k x 有两个不等的实数根,则实数k 的取值范围是___.10<≤k .[例26]已知双曲线的方程为116922=-y x ,P 是双曲线上的一点,F 1、F 2分别是它的两个焦点,若7||1=PF ,则=||2PF _13;[例27]椭圆12622=+y x 和双曲线221x y a-=的公共焦点为21,F F ,P 是它们的一个公共点,则=∠21cos PF F _____;31cos 21=∠PF F .[例28]双曲线)1(122>=-n y nx 的两焦点为P F F ,,21是此双曲线上的一点,且满足||||21PF PF +=22+n ,则△21F PF 的面积为___1_____.[例29]抛物线24x y =的焦点坐标是__)161,0(___;准线方程是__161-=y __[例30]已知抛物线的焦点为)1,1(F ,对称轴为x y =,且过M (3,2),则此抛物线的准线方程为__0105=±-+y x _; [例31]直线l 过抛物线y x 42=的焦点与抛物线交于A 、B 两点,若A 、B 两点到x 轴的距离之和等于3,则这样的直线l 有( B )A 、1条;B 、2条;C 、3条;D 、不存在.[例32]直线l 过抛物线的焦点与抛物线交于A 、B 两点,O 是抛物线的顶点,则△ABO 的形状是( C ) A 、直角三角形;B 、锐角三角形;C 、钝角三角形;D 、不确定与抛物线的开口大小有关. [例33]求证:过抛物线)0(22>=p px y 焦点的所有弦长的最小值是p 2.分析:本例的证明方法很多.设其焦点弦为AB ,),(),,(2211y x B y x A ,则由抛物线的定义知12||2AB x x p p p p =++≥==.当且仅当21x x =时等号成立.此时直线AB 与对称轴垂直.[例34]已知点M 是椭圆12222=+by a x 的一条不垂直于对称轴的弦AB 的中点,O 是坐标原点,设OM 、AB 的斜率分别为21,k k ,则21k k ⋅=―――――――――――――( C )A 、22b a ;B 、22a b ;C 、22a b -;D 、22ba -.[例35]设直线l 过椭圆1422=+y x 的右焦点,与椭圆相交于A 、B 两点,O 是坐标原点,当△OAB 的面积最大时,求直线l 的方程.分析:由题可设直线l :3+=my x 代入椭圆方程中得:0132)4(22=-++my y m ,设),(),,(2211y x B y x A ,可得△OAB 的面积S=||23|)||(|232121y y y y -=+,可得:619)1(132)4(13244)4(1223222222222++++=++=+++=m m m m m m m S ,则当312=+m 时,S 有最大值为1.此时直线l 方程为:32+±=y x .[例36]设点P 为双曲线1422=-y x 上的动点,F 是它的左焦点,M 是线段PF 的中点,则点M 的轨迹方程是_____;14)25(22=--y x [例37]已知椭圆的焦点是21,F F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是( A )A 、圆;B 、椭圆;C 、双曲线的一支;D 、抛物线.[例38]已知直线l 过点)1,1(M ,双曲线C :1322=-y x .(1)若直线l 与双曲线有且仅有一个公共点,求直线l 的方程;(2)若直线与双曲线的右支有两个不同的交点,求直线l 斜率的取值范围; (3)是否存在直线l 使其与双曲线的有两个不同的交点A 、B ,且以AB 为直径的圆过坐标原点?若存在求出此直线的斜率,不存在说明理由.分析:(1)当直线l 与x 轴垂直时,直线1=x 满足题义.当直线l 与x 轴不垂直时,设直线方程为)1(1-=-x k y ,联立得方程:0)42()1(2)3(222=+-----k k x k k x k ---(*) 当032=-k时,方程(*)是一次方程,直线l 与双曲线有一个公共点,此时直线l 方程为)1(31-±=-x y .当032≠-k 时,由△02448=-=k ,得2=k ,所以满足题义的直线l 为:)1(31,012,1-±=-=--=x y y x x . (2)直线l 与双曲线的右支有两个不同的交点,则方程(*)有两不等的正根.由△k2448-=0>,知2<k 且⎪⎪⎩⎪⎪⎨⎧>-+-=⋅>--=+034203)1(22221221k k k x x k k k x x ,得23<<k 或3-<k . (3)若以AB 为直径的圆过坐标原点,则0=⋅,设),(),,(2211y x B y x A ,即02121=+y y x x .0)1())(1()1(221212=-++-++k x x k k x x k , 0142=++k k ,32±-=k (满足)2<k[例39]倾角为3π的直线l 过抛物线x y 42=的焦点F 与抛物线交于A 、B 两点,点C 是抛物线准线上的动点.(1)△ABC 能否为正三角形? (2)若△ABC 是钝角三角形,求点C 纵坐标的取值范围.分析:(1)直线l 方程为)1(3-=x y ,由x y 42=可得)332,31(),32,3(-B A .若△ABC 为正三角形,则3π=∠CAB ,由3π=∠AFx ,那么CA 与x 轴平行,此时4||=AC ,又3162313||=++=AB .与|AC|=|AB|矛盾,所以△ABC 不可能是下正三角形.(2)设),1(m C -,则}332,34{},32,4{m m --=-=,2)332(-=⋅m 不可以为负,所以ACB ∠不为钝角.若CAB ∠为钝角,则0<⋅,}338,38{=,则0)32(338332<-+m ,得3310>m.若角ABC ∠为钝角,则0<⋅且C 、B 、A 不共线.可得332-<m 且36-≠m . 综上知,C 点纵坐标的取值范围是),3310()332,36()36,(+∞----∞ . 2015届高三数学题型与方法专题七:解析几何2【典型题型方法】班级: 姓名:一、轨迹问题例1、如图,已知圆C :2)1(-x +2y =2r (r >1),设M 为圆C 与x 轴左半轴的交点,过M 作圆C 的弦MN ,并使它的中点P 恰好落在y 轴上.(1)当r =2时,求满足条件的P 点的坐标; (2)当r ∈(1,+∞)时,求N 的轨迹G 方程;(3)过点Q (0,2)的直线l 与(2)中轨迹G 相交于两个不同的点A ,B ,若CA --→CB --→⋅>0,求直线l 的斜率的取值范围.解:(1)由已知得,当r =2时,可求得M 点的坐标为(-1,0).设P (0,b ),则由MP CP k k ⋅=-1,得:2b =1,所以b =±1,即点P 坐标为(0,±1).(2)设N (x ,y ),由已知得,在圆方程中令y =0,得M 点的坐标为(1-r ,0).由MP CP k k ⋅=-1,得:r =2b +1.因为点P 为线段MN 的中点,所以x =r -1=2b ,y =2b ,又x >1, 所以点N 的轨迹方程为:2y =4x (x >0). (3)设直线l 的方程为:y =kx +2,M (1x ,1y ),N (2x ,2y ),⎩⎨⎧=+=xy kx y 422,消去y ,得:22x k +x k )44(-+4=0. ∵直线l 与抛物线2y =4x (x >0)相交于两个不同的点A ,B , ∴△=-32k +16>0,得:k <21. 又因为CA --→CB --→⋅>0,∴)1)(1(21--x x +21y y >0,⇒212)1(x x k ++))(12(21x x k +-+5>0,2k +12k >0,∴k >0或k <-12. 综上可得:0<k <21或k <-12.例2、如图,已知椭圆2222:1(0)x y C a b a b+=>>的焦点和上顶点分别为1F 、2F 、B ,我们称12F BF ∆为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为 椭圆的相似比.(1)已知椭圆221:14x C y +=和222:1164x y C +=,判断2C 与1C 是否相似,如果相似则求出2C 与1C 的相似比,若不相似请说明理由; (2)已知直线:1l y x =+,与椭圆1C 相似且半短轴长为b 的椭圆b C 的方程,在椭圆b C 上是否存在两点M 、N 关于直线l 对称,若存在,则求出函数()f b MN =的解析式.(3)根据与椭圆1C 相似且半短轴长为b 的椭圆b C 的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);解:(1)椭圆2C 与1C 相似. 因为2C 的特征三角形是腰长为4,底边长为32的等腰三角形,而椭圆1C 的特征三角形是腰长为2,底边长为3的等腰三角形,因此两个等腰三角形相似,且相似比为2:1(2)椭圆b C 的方程为:)0(142222>=+b by b x . 假定存在,则设M 、N 所在直线为y x t =-+,MN 中点为()00,x y .则⎪⎩⎪⎨⎧=++-=142222b y bx tx y 0)(485222=-+-⇒b t xt x . 所以5,5420210t y t x x x ==+=.中点在直线1y x =+上,所以有35-=t .(3)椭圆b C 的方程为:)0(142222>=+b by b x . 两个相似椭圆之间的性质有:(1)两个相似椭圆的面积之比为相似比的平方;(2)分别以两个相似椭圆的顶点为顶点的四边形也相似,相似比即为椭圆的相似比;(3)两个相似椭圆被同一条直线所截得的线段中点重合; (4)过原点的直线截相似椭圆所得线段长度之比恰为椭圆的相似比.二、最值问题例3、已知椭圆,1ny m x 22=+常数m 、n +∈R 且m>n (1) 当m=25,n=21时,过椭圆左焦点F 的直线交椭圆于点P,与y 轴交于点Q, 若FP 2QF =,求直线PQ 的斜率;(2)过原点且斜率分别为k 和k -(1k ≥)的两条直线与椭圆,1ny m x 22=+的交点A 、B 、C 、D (按逆时针顺序排列,A 位于第一象限内),试用k 表示四边形ABCD 的面积S (3)求S 的最大值。
【课堂新坐标】2015届高考数学(文、理)新一轮专题复习:专题七 平面解析几何

专题七 平面解析几何1.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.452.已知双曲线C 1:x 2a 2-y2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y3.直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ) A .2 5 B .2 3 C. 3 D .14.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2 C. 3 D. 25.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-86.椭圆x 2a 2+y2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2 7.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.8.过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.9.已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝⎛⎭⎫5a 5,22a 在椭圆上. (Ⅰ)求椭圆的离心率;(Ⅱ)设A 为椭圆的左顶点,O 为坐标原点,若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.10.(2012·高考江苏卷)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120²(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.11.如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△AF 1B 的面积为403,求a ,b 的值.12.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(Ⅰ)求椭圆C 2的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.13.在平面直角坐标系xOy中,已知双曲线C:2x2-y2=1.(1)设F是C的左焦点,M是C右支上一点,若|MF|=22,求点M的坐标;(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k(|k|<2)的直线l交C于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ.14.如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.专题七 平面解析几何1.C 由题意可知∠PF 2x =60°,|PF 2|=(3a2-c )cos60°=3a -2c ,由|PF 2|=|F 1F 2|,得3a -2c =2c ,∴e =34,故选C.2.D ⎩⎪⎨⎪⎧c a=2a ·p 2a 2+b 2=2,可得p =8,故选D.3.B 圆心到直线的距离d =|0+0-2|2=1,∴|AB |=2r 2-d 2=24-1=2 3.4.B 设椭圆、双曲线的长轴和实轴分别为2a 1,2a 2,则易得a 1=2a 2,又∵焦距相等, ∴e 2∶e 1=2.5.C P A 方程为:y -8=4(x -4),即y =4x -8, 同理QA 为:y =-2x -2, 解得x =1,∴y =-4.6.B 如图|AF 1|=a -c , |F 1F 2|=2c ,|F 1B |=a +c , ∴4c 2=a 2-c 2,∴e =c a =55.7.43根据题意,x 2+y 2-8x +15=0,将此化成标准形式为(x -4)2+y 2=1,得到该圆的圆心为M (4,0),半径为1,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需要圆心M (4,0)到直线y =kx -2的距离d ≤1+1=2即可,所以有d :|4k -2|k 2+1≤2,化简得k (3k -4)≤0,解得0≤k ≤43,所以k 的最大值为43.8.(2,2) 设P (x 0,y 0)如图 |PO |=2.∴⎩⎨⎧x 20+y 20=4x 0+y 0-22=0. 则x 20+(x 0-22)2=4, ∴x 20-22x 0+2=0.∴(x 0-2)2=0,∴x 0=2,y 0= 2.9.解:(Ⅰ)因为点P ⎝⎛⎭⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58. 于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(Ⅱ)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1. 消去y 0并整理得x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a ,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2²a 2b2+4.由(Ⅰ)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =±5.10.解:(1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6.所以当a 不超过6(千米)时,可击中目标.11.解:(Ⅰ)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(Ⅱ)法一:因为a 2=4c 2,b 2=3c 2,所以bc=3,直线AB 的方程可为:y =-3(x -c ), 将其代入椭圆方程3x 2+4y 2=12c 2,得B (85c ,-335c ),所以|AB |=1+3²⎪⎪⎪⎪85c -0=165c . 由S △AF 1B =12|AF 1|²|AB |sin ∠F 1AB =12a ²165c ²32=235a 2=403,解得a =10,b =5 3. 法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a ,由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t , 再由余弦定理(3a -t )2=a 2+t 2-2at cos60°可得,t =85a , 由S △AF 1B =12a ²85a ²32=235a 2=403知,a =10,b =5 3.12.解:(Ⅰ)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2).其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x24=1.(Ⅱ)法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(Ⅰ)知,O 、A 、B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2, 又由OB →=2OA →得x 2B =4x 2A ,即164+k 2=161+4k 2, 解得k =±1,故直线AB 的方程为y =x 或y =-x . 法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(Ⅰ)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2, 由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k 2=1,即4+k 2=1+4k 2,解得k =±1, 故直线AB 的方程为y =x 或y =-x .13.解:(1)双曲线C :x 212-y 2=1,左焦点F ⎝⎛⎭⎫-62,0.设M (x ,y ),则|MF |2=⎝⎛⎭⎫x +622+y 2=⎝⎛⎭⎫3x +222,由M 点是右支上一点,知x ≥22,所以|MF |=3x +22=22,得x =62.所以点M 的坐标为⎝⎛⎭⎫62,±2.(2)由(1)知,左顶点A ⎝⎛⎭⎫-22,0,渐近线方程:y =±2x .过点A 与渐近线y =2x 平行的直线方程为:y =2⎝⎛⎭⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2xy =2x +1,得⎩⎨⎧x =-24,y =12.所求平行四边形的面积为S =|OA ||y |=24. (3)设直线PQ 的方程是y =kx +b ,因直线PQ 与已知圆相切,故|b |k 2+1=1,即b 2=k 2+1(*).由⎩⎪⎨⎪⎧y =kx +b2x 2-y 2=1,得(2-k 2)x 2-2kbx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2kb2-k 2,x 1x 2=-1-b 22-k 2.又y 1y 2=(kx 1+b )(kx 2+b ),所以OP →²OQ →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+kb (x 1+x 2)+b 2 =(1+k 2)(-1-b 2)2-k 2+2k 2b 22-k 2+b 2 =-1+b 2-k 22-k 2.由(*)知,OP →²OQ →=0,所以OP ⊥OQ .14.解:(Ⅰ)如图,设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c ,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|,故∠B 1AB 2为直角,从而|OA |=|OB 2|,即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12²|B 1B 2|²|OA |=|OB 2|²|OA |=c2²b =b 2,由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1.(Ⅱ)由(Ⅰ)知B 1(-2,0)、B 2(2,0).由题意,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为:x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. (*) 设P (x 1,y 1)、Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此y 1+y 2=4mm 2+5,y 1²y 2=-16m 2+5.又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →²B 2Q →=(x 1-2)(x 2-2)+y 1y 2 =(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,知B 2P →²B 2Q →=0,即16m 2-64=0, 解得m =±2.当m =2时,方程(*)化为:9y 2-8y -16=0,故y 1=4+4109,y 2=4-4109, |y 1-y 2|=8910,△PB 2Q 的面积S =12|B 1B 2|²|y 1-y 2|=16910.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16910,综上所述,△PB 2Q 的面积为16910.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七、解析几何
1、解析几何(椭圆、双曲线、抛物线)
1、椭圆18
y 16x 2
2=+的离心率为( )
A.
31 B. 2
1
C. 33
D. 22
2、设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线x =32
a
上
一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )
A. 21
B. 32
C. 43
D. 5
4
3、中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点P (4,-2),则它的率心率为( )
A.6
B.
5 C.
26 D. 2
5 4、已知直线l 过抛物线C 的焦点,且与抛物线C 的对称轴垂直,l 与C 交于A ,
B 两点,|AB |=12,P 为
C 的准线上的一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.48
5、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=34,则C 的实轴长为( ) A.
2 B. 22 C.4 D.8
6、已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )
A.|FP 1|+|FP 2|=|FP 3|
B.|FP 1|2+|FP 2|2=|FP 3|2
C.2|FP 2|+|FP 1|=|FP 3|
D.|FP 2|2+|FP 1|²|FP 3|
7、双曲线22
1102
x y -
=的焦距为( ) A . 23 B. 24 C.33 D. 34 8、已知一正方形的两顶点为双曲线C 的两焦点,若另外两个顶点在双曲线上,
则双曲线C 的离心率e =( ) A.
13+ B.
12+ C.
2
15+ D. 21
22+
9、已知F 1、F 2是椭圆19
162
2=+y x 的两焦点,过点后的直线交椭圆于A ,B 两点,
若|AB|=5,则|AF 1|+|BF 1|=( )
A.16
B.11
C.10
D.9
10、设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,P A ⊥l ,点A 为垂足,如果直线AF 的斜率为-3,那么|PF |=
A. 34
B. 8
C. 38
D.16
11、已知双曲线136
642
2=+y x 的焦点为F 1,F 2,点P 在双曲线上,且 ∠
F 1PF 2=60°,则△F 1PF 2的面积为( )
A.18
B. 324
C. 336
D.32
12、已知双曲线C :122
22=+b
y a x (a >0,b >0)半焦距为c ,若直线y =2x 与双曲线
的一个交点A 横坐标为c ,则双曲线的离心率为( ) A.
222+ B. 2
122+ C. 13+ D.
12+
13、双曲线112
42
2=-
y x 的焦点到其渐近线的距离是( ) A. 32 B.2 C. 3 D.1
14、已知椭圆122
22=+b
y a x (a >b >0),左焦点F (-C.0),右顶点B (a.0)与短轴
的一个端点C 的连线构成的三角形恰好为直角三角形,则该椭圆的离心率是
( ) A.
221+- B. 231+- C. 2
1
D.2
15、已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,
双曲线 1222
=-y a
x (a >0)的顶点为A ,若双曲线的一条渐近线与直线AM 平
行,则实数a =( )
A. 251
B. 91
C. 51
D. 3
1
16、设F 1, F 2分别为双曲线122
22=-b
y a x (a >0,b >0)的左,右焦点,若双曲线右
支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则
该双曲线的渐近线方程为( )
A.3x ±4y =0
B.3x ±5y =0
C.4x ±3y =0
D.5x ±4y =0 17、过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若|AB|=8,则P=( )
A.8
B.6
C.4
D.2。