2019版高考数学二轮复习第1篇专题7解析几何学案
高考数学二轮复习第2部分专题7第2讲不等式选讲教案文选修4_5

第2讲 选修4-5 不等式选讲[做小题——激活思维]1.已知正实数a ,b ,c 满足a +b +c =1,则a 2+b 2+c 2的最小值为________. [答案] 132.不等式|3x -1|≤2的解集为________.[答案] ⎣⎢⎡⎦⎥⎤-13,1 3.若关于x 的不等式|x -3|+|x -4|<a 的解集不是空集,则参数a 的取值范围是________.[答案] (1,+∞) 4.已知a >b >c ,若1a -b +1b -c +n c -a≥0恒成立,则n 的取值范围是________. [答案] (-∞,4]5.函数y =5x -1+10-2x 的最大值为________. [答案] 63[扣要点——查缺补漏]1.|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 (1)利用绝对值不等式的几何意义求解,体现了数形结合的思想.如T 2. (2)利用“零点分区间法”求解,体现了分类讨论的思想.(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.不等式的证明 (1)绝对值三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |.如T 3. (2)算术—几何平均不等式 如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.如T 1,T 4.(3)证明不等式的基本方法有比较法、综合法、分析法和反证法,其中比较法和综合法是基础,综合法证明的关键是找到证明的切入点.含绝对值不等式的解法(5年8考)[高考解读] 绝对值不等式的解法是每年高考的热点内容,主要为含两个绝对值的不等式的求解,难度适中.[一题多解](2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 切入点:将g (x )=|x +1|+|x -1|的解析式化为分段函数的形式. 关键点:正确求出f (x )≥g (x )的解集,然后利用集合间的包含关系求解.[解] (1)法一:当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.① 当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. 法二:g (x )=⎩⎪⎨⎪⎧2x ,x ≥1,2,-1≤x <1,-2x ,x <-1,当a =1时,f (x )=-x 2+x +4,在同一平面直角坐标系中,画出g (x )与f (x )的图象如图,易求得A (-1,2),B ⎝⎛⎭⎪⎫-1+172,-1+17,所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172.(2)法一:当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].法二:当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时f (x )≥2,即-x 2+ax +4≥2.当x =0时,-x 2+ax +4≥2成立.当x ∈(0,1]时,-x 2+ax +4≥2化为a ≥x -2x.而y =x -2x在(0,1]上单调递增,所以最大值为-1,所以a ≥-1.当x ∈[-1,0)时,-x 2+ax +4≥2化为a ≤x -2x.而y =x -2x在[-1,0)上单调递增,所以最小值为1,所以a ≤1.综上,a 的取值范围为[-1,1]. [教师备选题]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.[解] (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞). 2.(2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|. (1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5.|x -a |+|x -b |≥c 或≤cc ,|x -a |-|x -b |≥c 或≤c c 型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.零点分区间法的一般步骤①令每个绝对值符号内的代数式为零,并求出相应的根; ②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集; ④取各个不等式解集的并集就是原不等式的解集.利用绝对值的几何意义解题由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |≤c c 或|x -a |-|x -b |≥c c的不等式,用绝对值的几何意义求解更直观.1.(绝对值不等式的解法、恒成立问题)已知函数f (x )=|x -1|-|x +2|. (1)若不等式f (x )≤|a +1|恒成立,求a 的取值范围; (2)求不等式|f (x )-|x +2||>3的解集.[解] (1)f (x )=|x -1|-|x +2|≤|(x -1)-(x +2)|=3,由f (x )≤|a +1|恒成立得|a +1|≥3,即a +1≥3或a +1≤-3,得a ≥2或a ≤-4. ∴a 的取值范围是(-∞,-4]∪[2,+∞).(2)不等式|f (x )-|x +2||=||x -1|-2|x +2||>3等价于|x -1|-2|x +2|>3或|x -1|-2|x +2|<-3,令g (x )=|x -1|-2|x +2|=⎩⎪⎨⎪⎧-x -5,x ≥1,-3x -3,-2≤x <1,x +5,x <-2,由x +5=-3得x =-8, 由-3x -3=-3得x =0, 作出g (x )的图象如图所示,由图可得原不等式的解集为{x |x <-8或x >0}.2.(绝对值不等式的解法、有解问题)已知函数f (x )=|a -3x |,若不等式f (x )<2的解集为⎝ ⎛⎭⎪⎫-43,0.(1)解不等式f (x )≤|x -2|+4;(2)若不等式f (x )+3|2+x |≤t -4有解,求实数t 的取值范围. [解] (1)f (x )<2即|a -3x |<2,解得a -23<x <a +23,则由题意得⎩⎪⎨⎪⎧a -23=-43,a +23=0,得a =-2.∴f (x )≤|x -2|+4可化为|3x +2|-|x -2|≤4, ∴⎩⎪⎨⎪⎧x <-23,-x ++x -或⎩⎪⎨⎪⎧-23≤x ≤2,x ++x -或⎩⎪⎨⎪⎧x >2,x +-x -,解得-4≤x ≤1,∴不等式f (x )≤|x -2|+4的解集为{x |-4≤x ≤1}.(2)不等式f (x )+3|2+x |≤t -4等价于|3x +2|+|3x +6|≤t -4. ∵|3x +2|+|3x +6|≥|(3x +2)-(3x +6)|=4, ∴由题意,知t -4≥4,解得t ≥8, 故实数t 的取值范围是[8,+∞).不等式的证明(5年5考)[高考解读] 不等式的证明也是高考考查的重点,主要考查作差法和基本不等式法的应用,难度适中,考查学生的逻辑推理核心素养.1.(2019·全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24. 切入点:abc =1.关键点:①“1”的代换;②将(a +b )3+(b +c )3+(c +a )3改编为3(a +b )(b +c )(c +a ). [证明] (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +caabc=1a +1b +1c.当且仅当a =b =c =1时,等号成立. 所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有 (a +b )3+(b +c )3+(c +a )3≥33a +b3b +c3a +c3=3(a +b )(b +c )(a +c )≥3×(2ab )×(2bc )×(2ac ) =24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |. 切入点:M 为不等式f (x )<2的解集. 关键点:平方后作差比较.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |. [教师备选题]1.(2014·全国卷Ⅱ)设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.[解] (1)证明:由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a-x -a =1a +a ≥2.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.2.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. [证明] (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2, 即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.证明不等式的方法和技巧如果已知条件与待证明的结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出,或是否定性命题、唯一性命题,则考虑用反证法.在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法和证明,其简化的基本思路是化去绝对值符号,转化为常见的不等式组求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.1.(利用基本不等式证明)已知函数f (x )=|x -1|. (1)求不等式f (x )≥3-2|x |的解集;(2)若函数g (x )=f (x )+|x +3|的最小值为m ,正数a ,b 满足a +b =m ,求证:a 2b +b 2a≥4.[解] (1)当x ≥1时,x -1≥3-2x ,解得x ≥43,∴x ≥43;当0<x <1时,1-x ≥3-2x ,解得x ≥2,无解; 当x ≤0时,1-x ≥3+2x ,解得x ≤-23,∴x ≤-23.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥43或x ≤-23. (2)∵g (x )=|x -1|+|x +3|≥|(x -1)-(x +3)|=4, ∴m =4,即a +b =4.又a 2b +b ≥2a , b 2a+a ≥2b , ∴两式相加得⎝ ⎛⎭⎪⎫a 2b +b +⎝ ⎛⎭⎪⎫b 2a +a ≥2a +2b , ∴a 2b +b 2a≥a +b =4. 当且仅当a =b =2时等号成立.2.(作差法和分析法证明不等式)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).[解] (1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |. 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |,即证|ab+1|2>|a+b|2,即证a2b2+2ab+1>a2+2ab+b2,即证a2b2-a2-b2+1>0,即证(a2-1)(b2-1)>0.因为a,b∈M,所以a2>1,b2>1.所以(a2-1)(b2-1)>0成立,所以原不等式成立.含绝对值不等式的恒成立问题(5年4考)[高考解读]与绝对值不等式有关的恒成立问题也是每年高考的热点,其实质还是考查绝对值不等式的解法,难度适中.(2019·全国卷Ⅱ)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.切入点:去绝对值号.关键点:正确确立f(x)的值域.[解](1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0,所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).[教师备选题](2018·全国卷Ⅲ)设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.[解] (1)f (x )=⎩⎪⎨⎪⎧ -3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)上成立,因此a +b 的最小值为5.解决含绝对值不等式的恒成立问题,用等价转化思想利用三角不等式求出最值进行转化;利用分类讨论思想,转化成求函数值域;数形结合转化.1.(2019·贵阳模拟)已知f (x )=|x +1|-|2x -1|.(1)求不等式f (x )>0的解集;(2)若x ∈R 时,不等式f (x )≤a +x 恒成立,求实数a 的取值范围.[解] (1)f (x )=|x +1|-|2x -1|=⎩⎪⎨⎪⎧ x -2,x <-1,3x ,-1≤x ≤12,-x +2,x >12. 当x <-1时,由x -2>0得x >2,即解集为∅;当-1≤x ≤12时,由3x >0得x >0,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x ≤12; 当x >12时,由-x +2>0得x <2,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <2. 综上所述,f (x )>0的解集为{x |0<x <2}.(2)不等式f (x )≤a +x 恒成立等价于f (x )-x ≤a 恒成立,则a ≥[f (x )-x ]max ,令g (x )=f (x )-x =⎩⎪⎨⎪⎧-2,x <-1,2x ,-1≤x ≤12,-2x +2,x >12,则g (x )max =1, 所以实数a 的取值范围是[1,+∞). 2.[一题多解](2019·福州模拟)已知函数f (x )=|2x +a |+3a ,a ∈R . (1)若对于任意x ∈R ,总有f (x )=f (4-x )成立,求a 的值; (2)若存在x ∈R ,使得f (x )≤-|2x -1|+a 成立,求a 的取值范围. [解] (1)法一:因为f (x )=f (4-x ),x ∈R , 所以f (x )的图象关于直线x =2对称. 又f (x )=2⎪⎪⎪⎪⎪⎪x +a 2+3a 的图象关于直线x =-a 2对称, 所以-a 2=2,所以a =-4. 法二:因为f (x )=f (4-x ),x ∈R ,所以|2x +a |+3a =|2(4-x )+a |+3a ,所以|2x +a |=|8-2x +a |,即2x +a =-(8-2x +a )或2x +a =8-2x +a (舍去), 所以a =-4.(2)法一:存在x ∈R ,使得f (x )≤-|2x -1|+a 成立,等价于存在x ∈R , 使得|2x +a |+|2x -1|+2a ≤0成立,等价于(|2x +a |+|2x -1|+2a )min ≤0.令g (x )=|2x +a |+|2x -1|+2a ,则g (x )min =|(2x +a )-(2x -1)|+2a =|a +1|+2a . 所以|a +1|+2a ≤0.当a ≥-1时,a +1+2a ≤0,a ≤-13,所以-1≤a ≤-13; 当a <-1时,-a -1+2a ≤0,a ≤1,所以a <-1.综上,a ≤-13. 法二:由f (x )≤-|2x -1|+a 得,|2x +a |+|2x -1|≤-2a , 而|2x +a |+|2x -1|≥|a +1|,由题意知,只需满足|a +1|≤-2a ,即2a ≤a +1≤-2a , 即⎩⎪⎨⎪⎧ 2a ≤a +1,a +1≤-2a ,所以a ≤-13.。
高三数学二轮复习专题突破课件:解析几何

A.[1,+∞) B.[-1,- )
3
C.( ,1]
4
4
D.(-∞,-1]
答案:B
解析:∵y=kx+4+2k=k(x+2)+4,所以直线过定点(-2,4),曲线y=
4 − x 2 变形为x2+y2=4(y≥0),表示圆的上半部分,当直线与半圆相切时直线斜
3
率为k=- ,当直线过点(2,0)时斜率为-1,结合图象可知实数k的取值范围是
a=2
所以 ሺ2 − 3 − ሻ2 + 2 = 2 ,解得 b = 1 .
r=2
2 + ሺ1 − ሻ2 = 2
所以圆的方程为(x-2)2+(y-1)2=4.
4.[2023·广东深圳二模]过点(1,1)且被圆x2 +y2 -4x-4y+4=0所
x+y-2=0
截得的弦长为2 2的直线的方程为___________.
-2)的距离为 2 − 0 2 + 0 + 2 2 =2 2,由于圆心
α
2
5
=
2 2 2 2
α
αபைடு நூலகம்
α = 2sin cos =
2
2
与点(0,-2)的连线平分角α,所以sin =
10
α
6
, 所 以 cos = , 所 以 sin
4
2
4
10
6
15
2×
× = .故选B.
4
4
4
r
=
(2)[2023·河南郑州二模]若圆C1:x2+y2=1与圆C2:(x-a)2+(y-b)2
解析:圆x2+y2-4x-4y+4=0,即(x-2)2+(y-2)2=4,
圆心为(2,2),半径r=2,
高考高三二轮复习计划策略模板(7篇)

高考高三二轮复习计划策略模板(7篇)高考高三二轮复习计划策略模板篇1一二轮复习指导思想:高三第一轮复习一般以知识技能方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
而第二轮复习承上启下,是知识系统化条理化,促进灵活运用的关键时期,是促进学生素质能力发展的关键时期,因而对讲练检测等要求较高。
二二轮复习形式内容:以专题的形式,分类进行。
具体而言有以下几大专题。
(1)集合函数与导数。
此专题函数和导数应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。
(预计5课时)(2)三角函数平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。
平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数解析几何都可以整合。
(预计2课时)(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
例如,主要是数列与方程函数不等式的结合,概率向量解析几何为点缀。
数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。
(预计2课时)(4)立体几何。
此专题注重几何体的三视图空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。
(预计3课时)(5)解析几何。
此专题中解析几何是重点,以基本性质基本运算为目标。
直线与圆锥曲线的位置关系轨迹方程的探求以及最值范围定点定值对称问题是命题的主旋律。
2019届高考数学(文)二轮复习课件:第2部分 专题7 解析几何 7.3.1

������0 = 3������, ������0 = 2������. ∵点 A(x0,y0)为圆 C1 上的动点,
-3-
解题策略一
解题策略二
解题策略三
(1)解 设点 C 坐标为(x,y),则圆心坐标为 所以点 B 坐标为 因此������������ ·������������ =
������ ,0 2
������ 2+������ , 2 2
,
. ·
������ ,������ 2 ������2 =0,故有一 4 +2y=0,即 x2=8y.
1 ������������ + 2 3 1 3 2
������������,设动点 N 的轨迹为曲线 C.
(1)求曲线C的方程; (2)若动直线l2:y=kx+m与曲线C有且仅有一个公共点,过F1(-1,0), F2(1,0)两点分别作F1P⊥l2,F2Q⊥l2,垂足分别为P,Q,且记d1为点F1 到直线l2的距离,d2为点F2到直线l2的距离,d3为点P到点Q的距离,试 探索(d1+d2)· d3是否存在最值?若存在,请求出最值.
7.3.1
直线与圆及圆锥曲线
-2-
解题策略一
解题策略二
解题策略三
求轨迹方程 解题策略一 直接法 例1已知过点A(0,2)的动圆恒与x轴相切,设切点为B,AC是该圆的 直径. (1)求点C轨迹E的方程; (2)当AC不在坐标轴上时,设直线AC与曲线E交于另一点P,该曲线 在P处的切线与直线BC交于点Q,求证:△PQC恒为直角三角形. 难点突破 (1)利用AC是直径,所以BA⊥BC,或C,B均在坐标原点,由 此求点C轨迹E的方程; ������ = ������������ + 2, (2)设直线AC的方程为y=kx+2,由 2 得x2-8kx-16=0,利 ������ = 8������, 用根与系数的关系及导数的几何意义,证明QC⊥PQ,即可证明结论.
2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。
2019高考数学理科二轮复习第一篇微型专题练习:微专题21 坐标系与参数方程 Word版含解析

21 坐标系与参数方程1.已知动点P ,Q 都在曲线C :(t 为参数)上,对应参数分别{x =2cos t,y =2sin t 为t=α与t=2α(0<α<2π),M 为PQ 的中点.(1)求点M 的轨迹的参数方程;(2)将点M 到坐标原点的距离d 表示为α的函数,并判断点M 的轨迹是否过坐标原点.解析▶ (1)由题意得P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α),故点M 的轨迹的参数方程为(α为参数,0<α<2π).{x =cos α+cos2α,y =sin α+sin2α(2)点M 到坐标原点的距离d==(0<α<2π),x 2+y 22+2cos α当α=π时,d=0,故点M 的轨迹过坐标原点.2.已知圆O 1,圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)求经过圆O 1与圆O 2的两个交点的直线的直角坐标方程,并将其化为极坐标方程.解析▶ (1)由ρ=4cos θ得ρ2=4ρcos θ,将ρcosθ=x ,ρ2=x 2+y 2代入上式,可得x 2+y 2=4x ,所以圆O 1的直角坐标方程为x 2+y 2-4x=0.由ρ=-sin θ得ρ2=-ρsin θ,将ρ2=x 2+y 2,ρsin θ=y 代入上式,可得x 2+y 2=-y ,所以圆O 2的直角坐标方程为x 2+y 2+y=0.(2)由x 2+y 2-4x=0及x 2+y 2+y=0,两式相减得4x+y=0,所以经过圆O 1与圆O 2的两个交点的直线的直角坐标方程为4x+y=0.将4x+y=0化为极坐标方程为4ρcos θ+ρsin θ=0,即tan θ=-4.3.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的参数方程为(t 为参数),曲{x =255t ,y =2+55t线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求|MN|.解析▶ (1)因为cosρ2θ=8sin θ,所以cos θ=8ρsin θ,ρ22即x 2=8y ,所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线.(2)易知直线l 过抛物线的焦点(0,2),且参数方程为{x =255t ,y =2+55t(t 为参数),代入曲线C 的直角坐标方程,得t 2-2t-20=0,设M ,N 对应的参5数分别为t 1,t 2,所以t 1+t 2=2,t 1t 2=-20.5所以|MN|=|t 1-t 2=10.(t 1+t 2)2-4t 1t 24.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为ρsin =,曲线C 2的极坐标(θ-π4)2方程为ρ=2cos .(θ-π4)(1)写出曲线C 1的直角坐标方程和曲线C 2的参数方程;(2)设M ,N 分别是曲线C 1,C 2上的两个动点,求|MN|的最小值.解析▶ (1)依题意得,ρsin =ρsin θ-ρcos θ=(θ-π4)2222,2所以曲线C 1的直角坐标方程为x-y+2=0.由曲线C 2的极坐标方程得ρ2=2ρcos =ρcos θ+(θ-π4)22ρsin θ,所以曲线C 2的直角坐标方程为x 2+y 2-x-y=0,即+22(x -22)2=1, (y -22)2所以曲线C 2的参数方程为(θ为参数). {x =22+cos θ,y =22+sin θ(2)由(1)知,圆C 2的圆心到直线x-y+2=0的距离d=(22,22)=.|22-22+2|22又半径r=1,所以|MN|min =d-r=-1.2能力1▶ 能用曲线极坐标方程解决问题 【例1】 在平面直角坐标系xOy 中,圆C 的圆心为,半径为(0,12),现以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.12(1)求圆C 的极坐标方程;(2)设M ,N 是圆C 上两个动点,且满足∠MON=,求+的最2π3|OM ||ON |小值.解析▶ (1)由题意得圆C 的直角坐标方程为x 2+=,即(y -12)214x 2+y 2-y=0,化为极坐标方程为ρ2-ρsin θ=0,整理可得ρ=sin θ.(2)设M ,N, 则|OM|+=ρ1+ρ2=sin θ+sin(ρ1,θ)(ρ2,θ+2π3)|ON | =sin θ+cos θ=sin .(θ+2π3)1232(θ+π3)由得0≤θ≤,所以≤θ+≤,故≤sin{0≤θ≤π,0≤θ+2π3≤π,π3π3π32π332≤1,(θ+π3)即+的最小值为.|OM ||ON |32 由极坐标方程求与曲线有关的交点、距离等几何问题时,若能用极坐标系求解,可直接用极坐标求解;若不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.已知曲线C :ρ=-2sin θ.(1)求曲线C 的直角坐标方程;(2)若曲线C 与直线x+y+a=0有公共点,求实数a 的取值范围.解析▶ (1)由ρ=-2sin θ可得 ρ2=-2ρsin θ,即x 2+y 2=-2y ,∴曲线C 的直角坐标方程为x 2+(y+1)2=1.(2)由圆C 与直线有公共点,得圆心C 到直线的距离d=|0-1+a |2≤1,解得1-≤a ≤1+.22∴实数a 的取值范围为[1-,1+].22能力2▶ 会用参数方程解决问题 【例2】 在平面直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t 为参{x =2cos θ,y =4sin θ{x =1+t cos α,y =2+t sin α数).(1)求曲线C 和直线l 的普通方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解析▶ (1)曲线C的普通方程为+=1.x 24y 216当cos α≠0时,l 的普通方程为y=x tan α+2-tan α;当cos α=0时,l 的普通方程为x=1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程,即(1+3cos 2α)t 2+4(2cos α+sin α)t-8=0. ①因为曲线C 截直线l 所得线段的中点坐标(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-,故2cos α+sin α=0,于是直线l4(2cos α+sin α)1+3cos 2α的斜率k=tan α=-2. 过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是(t 是参数).注意以下结论的应用:{x =x 0+tcos α,y =y 0+tsin α(1)|M 1M 2|=|t 1-t 2|;(2)若线段M 1M 2的中点M 所对应的参数为t ,则t=,中点M 到t 1+t 22定点M 0的距离|MM 0|=|t|=;|t 1+t 22|(3)若M 0为线段M 1M 2的中点,则t 1+t 2=0.在平面直角坐标系xOy 中,曲线M 的参数方程为{x =2+r cos θ,y =1+r sin θ(θ为参数,r>0),曲线N 的参数方程为(t 为参数,且{x =255t ,y =1+55tt ≠0).(1)以曲线N 上的点与原点O 连线的斜率k 为参数,写出曲线N 的参数方程;(2)若曲线M 与N 的两个交点为A ,B ,直线OA 与直线OB 的斜率之积为,求r 的值.43解析▶ (1)将消去参数t ,得x-2y+2=0(x ≠0),由题{x =255t ,y =1+55t意可知k ≠.12由得.{x -2y +2=0,y =kx (k ≠12),{x =22k -1,y =2k 2k -1(k ≠12)故曲线N 的参数方程为k 为参数,{x =22k-1,y =2k2k-1.且k ≠12)(2)由曲线M 的参数方程得其普通方程为(x-2)2+(y-1)2=r 2,将代入上式,{x =22k-1,y =2k2k-1整理得(16-4r 2)k 2+(4r 2-32)k+17-r 2=0.因为直线OA 与直线OB 的斜率之积为,所以=,解得r 2=1.4317-r 216-4r 243又r>0,所以r=1.将r=1代入(16-4r 2)k 2+(4r 2-32)k+17-r 2=0,得12k 2-28k+16=0,满足Δ>0,故r=1.能力3▶ 会解极坐标与参数方程的综合问题 【例3】 在平面直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a ∈R),以坐标原点为极点,x 轴正半轴为极轴{x =a -22t ,y =1+22t建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+2cos θ-ρ=0.(1)写出曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知点P (a ,1),曲线C 1和曲线C 2交于A ,B 两点,且|PA|·|PB|=4,求实数a 的值.解析▶ (1)由C 1的参数方程消去t 得其普通方程为x+y-a-1=0.由C 2的极坐标方程得ρ2cos 2θ+2ρcos θ-ρ2=0,所以C 2的直角坐标方程为y 2=2x.(2)将曲线C 1的参数方程代入曲线C 2:y 2=2x ,得t 2+4t+2(1-22a )=0,由Δ>0得a>-.32设A ,B 对应的参数分别为t 1,t 2,则t 1t 2=2(1-2a ).由题意得|PA|·|PB|=|t 1t 2|=|2(1-2a )|=4,解得a=-或a=,满足Δ>0,1232所以实数a的值为-或.1232 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程方便.在平面直角坐标系xOy 中,曲线C 1的参数方程为(α为参数),以坐标原点O 为极点,x 轴的正半轴为{x =2+25cos α,y =4+25sin α极轴建立极坐标系,直线C 2的极坐标方程为θ=(ρ∈R).π3(1)求C 1的极坐标方程和C 2的直角坐标方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R),设C 2与C 1的交点为π6O ,M ,C 3与C 1的交点为O ,N ,求△OMN 的面积.解析▶ (1)将曲线C 1的参数方程消去参数α,得其普通方程为(x-2)2+(y-4)2=20,即x 2+y 2-4x-8y=0.把x=ρcos θ,y=ρsin θ代入方程得ρ2-4ρcos θ-8ρsin θ=0,所以C 1的极坐标方程为ρ=4cos θ+8sin θ.由直线C 2的极坐标方程得其直角坐标方程为y=x.3(2)设M (ρ1,θ1),N (ρ2,θ2),分别将θ1=,θ2=代入ρ=4cosπ3π6θ+8sin θ,得ρ1=2+4,ρ2=4+2.33则△OMN 的面积S=ρ1ρ2sin(θ1-θ2)12=×(2+4)×(4+2)×sin =8+5.1233π631.在极坐标系中,极点为O ,已知曲线C 1:ρ=2,曲线C 2:ρsin =(θ-π4).2(1)试判断曲线C 1与曲线C 2的位置关系;(2)若曲线C 1与曲线C 2交于A ,B 两点,求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程.解析▶ (1)∵ρ=2,∴x 2+y 2=4.由ρsin =,可得ρsin θ-ρcos θ=2,即x-y+2=0.(θ-π4)2圆心(0,0)到直线x-y+2=0的距离d==<2,∴曲线C 1与曲线C 2222相交.(2)∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y=x-1,∴直线l 的极坐标方程为ρsin θ=ρcos θ-1,即ρcos (θ+π4)=.222.已知曲线C 的参数方程为(θ为参数),在同一平面直角{x =3cos θ,y =2sin θ坐标系中,将曲线C 经过伸缩变换后得到曲线C'.{x '=13x ,y '=12y(1)求曲线C'的普通方程;(2)若点A 在曲线C'上,点B (3,0),当点A 在曲线C'上运动时,求AB 中点P 的轨迹方程.解析▶ (1)将代入得C'的参数方程为{x =3cos θ,y =2sin θ{x '=13x ,y '=12y ,{x '=cos θ,y '=sin θ,所以曲线C'的普通方程为x 2+y 2=1.(2)设P (x ,y ),A (x 0,y 0),因为点B (3,0),且AB 的中点为P ,所以{x 0=2x -3,y 0=2y .又点A 在曲线C'上,代入C'的普通方程x 2+y 2=1,得(2x-3)2+(2y )2=1,所以动点P 的轨迹方程为+y 2=. (x -32)2143.已知直线l 的参数方程为(t 为参数),以坐标原点O{x =1+12t ,y =3+3t为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为sinθ-ρcos 2θ=0.3(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)写出直线l 与曲线C 交点的一个极坐标.解析▶ (1)由消去参数t ,得y=2x-,即直线l{x =1+12t ,y =3+3t33的普通方程为y=2x-.33∵sin θ-ρcos 2θ=0,∴ρsin θ-ρ2cos 2θ=0,得y-333x 2=0,即曲线C 的直角坐标方程为y=x 2.3(2)将代入y=x 2,得+t-=0,解得{x =1+12t ,y =3+3t3333(1+12t )2t=0,∴交点坐标为(1,),3∴交点的一个极坐标为.(2,π3)4.在平面直角坐标系xOy 中,直线l 的参数方程为(t{x =-1+22t ,y =1+22t为参数),圆C 的直角坐标方程为(x-2)2+(y-1)2=5.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 及圆C 的极坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求cos∠AOB 的值.解析▶ (1)由直线l 的参数方程得其普通方程{x =-1+22t ,y =1+22t为y=x+2,∴直线l 的极坐标方程为ρsin θ=ρcos θ+2,即ρsin θ-ρcos θ=2.又∵圆C 的方程为(x-2)2+(y-1)2=5,将代入并化简得ρ=4cos θ+2sin θ,{x =ρcos θ,y =ρsin θ∴圆C 的极坐标方程为ρ=4cos θ+2sin θ. (2)将ρsin θ-ρcos θ=2与ρ=4cos θ+2sin θ联立,得(4cos θ+2sin θ)(sin θ-cos θ)=2,整理得sin θcos θ=3cos 2θ,∴θ=或tan θ=3.π2不妨记点A对应的极角为,点B 对应的极角为θ,且tan θ=3.π2∴cos∠AOB=cos=sin θ=.(π2-θ)310105.在平面直角坐标系xOy 中,圆C 1的参数方程为(α{x =2+2cos α,y =2sin α为参数).以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin θ=.3(1)求圆C 1圆心的极坐标;(2)设C 1与C 2的交点为A ,B ,求△AOB 的面积.解析▶ (1)由曲线C 1的参数方程(α为参数),消{x =2+2cos α,y =2sin α去参数,得C 1的直角坐标方程为x 2-4x+y 2=0,∴C 1的圆心坐标(2,0)在x 轴的正半轴上,∴圆心的极坐标为(2,0).(2)由C 1的直角坐标方程得其极坐标方程为ρ=4cos θ(ρ>0).由方程组得4sin θcos θ=,解得sin 2θ=.{ρ=4cos θ,ρsin θ=3332∴θ=k π+(k ∈Z)或θ=k π+(k ∈Z),π6π3∴ρ=2或ρ=2.3∴C 1和C 2交点的极坐标为A ,B 2,k π+(k ∈Z).(23,kπ+π6)π3∴S △AOB =|AO||BO|sin∠AOB=×2×2×sin =.12123π636.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+2cos α,y =1+2sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.在极坐标系中有射线l :θ=(ρ≥0)和曲线C 2:ρ(sin θ+2cosπ4θ)=ρ2cos 2θ+m.(1)判断射线l 和曲线C 1公共点的个数;(2)若射线l 与曲线C 2 交于A ,B 两点,且满足|OA|=|AB|,求实数m 的值.解析▶ (1)由题意得射线l 的直角坐标方程为y=x (x ≥0),曲线C 1是以(3,1)为圆心,为半径的圆,其直角坐标方程为(x-3)2+(y-21)2=2.联立解得{y =x (x ≥0),(x -3)2+(y -1)2=2,{x =2,y =2,故射线l 与曲线C 1有一个公共点(2,2). (2)将θ=代入曲线C 2的方程,π4得ρ=ρ2cos 2+m ,(sin π4+2cos π4)π4即ρ2-3ρ+2m=0.2由题知解得0<m<.{Δ=(32)2-8m >0,m >0,94设方程的两个根分别为ρ1,ρ2(0<ρ1<ρ2),由韦达定理知 ρ1+ρ2=3,ρ1ρ2=2m.2由|OA|=|AB|,得|OB|=2|OA|,即ρ2=2ρ1,∴ρ1=,ρ2=2,m=2.22。
高中数学第7章解析几何初步7.2.2两条直线的位置关系学案湘教版必修3

7.2.2 两条直线的位置关系[学习目标]1.能用解方程组的方法求两条相交直线的交点坐标.2.理解直线相交、平行、重合、垂直的意义,会利用直线的几何特征判定直线相交、平行、重合、垂直.3.会由两条直线的法向量来判定两条直线相交、平行、重合、垂直. [预习导引]1.利用法向量确定两直线的位置关系 (1)两条直线平行或重合⇔它们的法向量平行. (2)两条直线相交⇔它们的法向量不平行. (3)两条直线垂直⇔它们的法向量垂直. 2.两直线的夹角两直线的夹角α的大小规定在0≤α≤π2的范围内,当法向量的夹角满足0≤θ≤π2时,α=θ;当法向量的夹角θ>π2时,α=π-θ. 3.定理2设直线l 1,l 2的方程分别为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则 l 1与l 2重合⇔存在实数λ≠0,使⎩⎪⎨⎪⎧A 2=λA 1,B 2=λB 1,C 2=λC 1;l 1与l 2平行⇔存在实数λ≠0,使⎩⎪⎨⎪⎧A 2=λA 1,B 2=λB 1,C 2≠λC 1;l 1与l 2相交⇔A 1B 2-A 2B 1≠0; l 1与l 2垂直⇔A 1A 2+B 1B 2=0; l 1与l 2夹角θ的余弦cos θ=|A 1A 2+B 1B 2|A 21+B 21·A 22+B 22.要点一 判断两直线是否相交例1 分别判断下列直线是否相交,若相交,求出它们的交点. (1)l 1:2x -y =7和l 2:3x +2y -7=0; (2)l 1:2x -6y +4=0和l 2:4x -12y +8=0; (3)l 1:4x +2y +4=0和l 2:y =-2x +3.解 (1)方程组⎩⎪⎨⎪⎧2x -y -7=0,3x +2y -7=0的解为⎩⎪⎨⎪⎧x =3,y =-1,因此直线l 1和l 2相交,交点坐标为(3,-1).(2)方程组⎩⎪⎨⎪⎧2x -6y +4=0,4x -12y +8=0有无数组解,表明直线l 1和l 2重合.(3)方程组⎩⎪⎨⎪⎧4x +2y +4=0,2x +y -3=0,无解,表明直线l 1和l 2没有公共点,故l 1∥l 2.规律方法 方程组有一解,说明两直线相交;方程组没有解说明两直线没有公共点,即两直线平行;方程组有无数个解说明两直线重合.跟踪演练1 判断下列各组直线的位置关系,如果相交,求出相应的交点坐标.(1)⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0;(2)⎩⎪⎨⎪⎧2x -6y +3=0,y =13x +12.解 (1)解方程组⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0,得该方程组有唯一解⎩⎪⎨⎪⎧x =-103,y =143.所以两直线相交,且交点坐标为(-103,143).(2)解方程组 ⎩⎪⎨⎪⎧2x -6y +3=0,y =13x +12,①②②×6得2x -6y +3=0,因此,①和②可以化成同一个方程,即①和②有无数组解,所以两直线重合. 要点二 判断两条直线的位置关系例2 判断下列各组直线的位置关系. (1)l 1:2x +y +1=0,l 2:x -3y -5=0; (2)l 1:x -y +2=0,l 2:2x -2y +3=0; (3)l 1:3x -4y -1=0,l 2:6x -8y -2=0; (4)l 1:x -y +1=0,l 2:x +y +3=0.解 (1)对l 1,l 2,由21≠1-3,知l 1与l 2相交.(2)对l 1,l 2,由12=-1-2≠23,知l 1与l 2平行.(3)对l 1,l 2,由36=-4-8=-1-2,知l 1与l 2重合.(4)对l 1,l 2,由A 1A 2+B 1B 2=1×1+(-1)×1=0,知l 1⊥l 2. 规律方法 利用法向量判断.跟踪演练2 根据下列条件,判断直线l 1与直线l 2的位置关系. (1)l 1:y =-3x +1,l 2:x +13y -6=0;(2)l 1:(lg 2)x -y +5=0,l 2:(log 210)x +y -6=0;(3)l 1经过点A (1,2 009),B (1,2 010),l 2经过点P (0,-2),Q (0,5). 解 (1)l 1的一般式方程为3x +y -1=0, 由31=113≠-1-6,知l 1∥l 2. (2)对于l 1,l 2由A 1A 2+B 1B 2=lg2·log 210+(-1)·1=0知l 1⊥l 2. (3)因为l 1过点A (1,2 009),B (1,2 010), 所以方程为x =1,与x 轴垂直. 因为l 2过点P (0,-2),Q (0,5), 所以方程为x =0,即y 轴,所以l 1∥l 2. 要点三 应用位置关系求参数值例3 已知直线l 1:ax -y +a +2=0,l 2:ax +(a 2-2)y +1=0.问当a 为何值时,直线l 1与l 2:(1)相交;(2)平行;(3)重合? 解 若A 1,A 2,B 1,B 2全不为0时,联立方程组⎩⎪⎨⎪⎧ax -y +a +2=0ax +(a 2-2)y +1=0,得A 1A 2=a a =1,B 1B 2=-1a 2-2,C 1C 2=a +21,由A 1A 2=B 1B 2得a =-1或a =1,由A 1A 2=C 1C 2得a =-1, 所以,当a ≠±1时,A 1A 2≠B 1B 2,l 1与l 2相交; 当a =1时,A 1A 2=B 1B 2≠C 1C 2,l 1与l 2平行; 当a =-1时,A 1A 2=B 1B 2=C 1C 2,l 1与l 2重合. 若A 1,A 2,B 1,B 2中有为0的值时,当a =0时,方程组化为⎩⎪⎨⎪⎧-y +2=0-2y +1=0,这时l 1与l 2平行;当a 2-2=0即a =±2时,方程组化为⎩⎨⎧2x -y +2+2=0,2x +1=0,或⎩⎨⎧-2x -y +2-2=0,-2x +1=0,此时两直线相交. 综上所述,(1)当a ≠±1且a ≠0时l 1与l 2相交; (2)当a =0或a =1时,l 1与l 2平行; (3)当a =-1时,l 1与l 2重合. 规律方法 两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.(1)l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0;(2)也可利用法向量来直接求解.跟踪演练3 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,直线l 1与l 2:(1)相交;(2)平行;(3)重合?解 当m =0时,则l 1:x +6=0,l 2:2x -3y =0, ∴l 1与l 2相交,当m =2时,则l 1:x +2y +6=0,l 2:3y +4=0, ∴l 1与l 2相交.当m ≠0,m ≠2时,A 1A 2=1m -2,B 1B 2=m 3,C 1C 2=62m.当A 1A 2=B 1B 2时,1m -2=m3,解得m =-1或m =3. 当A 1A 2=C 1C 2时,1m -2=62m,解得m =3. 综上所述,(1)当m ≠-1且m ≠3时,(A 1A 2≠B 1B 2),l 1与l 2相交;(2)当m =-1时,(A 1A 2=B 1B 2,A 1A 2≠C 1C 2),l 1与l 2平行;(3)当m =3时,(A 1A 2=B 1B 2=C 1C 2),l 1与l 2重合.1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0 D .2x -3y +8=0答案 A解析 ∵直线2x -3y +4=0的法向量为(2,-3), ∴l 的法向量为(3,2),∴l 的方程为3x +2y +C =0,将(-1,2)代入得C =-1, ∴l 的方程为3x +2y -1=0.2.直线x +2y +1=0与2x +ay -1=0平行,则a =( ) A .1 B .2 C .3 D .4答案 D解析 两条直线的法向量分别为n 1=(1,2),n 2=(2,a ),∵两直线平行,∴1×a -2×2=0,即a =4.3.两直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的条件是( ) A .A 1A 2+B 1B 2=0 B .A 1A 2-B 1B 2=0 C.A 1A 2B 1B 2=-1 D.B 1B 2A 1A 2=1 答案 A解析 两直线的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),两直线垂直的条件是n 1⊥n 2,即n 1·n 2=0,∴A 1A 2+B 1B 2=0.4.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.答案 1解析∵直线x-2y+5=0与直线2x+my-6=0互相垂直,∴1×2+(-2)×m=0,∴m=1.5.已知直线ax+4y-2=0和2x-5y+b=0垂直,交于点A(1,m),则a=________,b=________,m=________.答案10 -12 -2解析两直线垂直,则2a+4×(-5)=0,∴a=10.∵(1,m)为两直线的交点,∴10×1+4m-2=0,∴m=-2.又点(1,-2)在直线2x-5y+b=0上,∴2×1+2×5+b=0,∴b=-12.1.利用法向量判定两直线的位置关系时,如果两直线的法向量平行,一定要验证,因为可能出现平行或重合两种情况.2.与直线Ax+By+C=0平行的直线系方程为Ax+By+λ=0(λ≠C);与直线Ax+By+C =0垂直的直线系方程为Bx-Ay+m=0.利用此结论解平行、垂直问题可以简化解题过程.3.平行与垂直是两直线间最重要的位置关系,利用平行和垂直的条件判断多边形的形状是常见的基本应用,要考虑各种情况.一、基础达标1.过点(-3,2)且与直线2x-y+5=0垂直的直线方程为( )A.x+2y+1=0 B.x+2y-1=0C.x-2y+1=0 D.-2y-1=0答案 B解析直线与2x-y+5=0垂直,所以所求直线的法向量为(1,2),其方程可设为x+2y+C =0,将(-3,2)代入得-3+4+C =0,C =-1,即所求方程为x +2y -1=0.2.已知直线(a -2)x +ay -1=0与直线2x +3y +5=0平行,则a 的值为( ) A .-6 B .6 C .-45D.45答案 B解析 若两直线平行,则a -22=a3≠-15.解得a =6. 3.直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直,则a 为( ) A .-1 B .1 C .±1 D .-32答案 C解析 若两直线互相垂直,则 (a +2)(a -1)+(1-a )(2a +3)=0, ∴(a -1)(-a -1)=0, ∴a =±1.4.若直线ax +by -11=0与3x +4y -2=0平行,并过直线2x +3y -8=0和x -2y +3=0的交点,则a ,b 的值分别为( ) A .-3,-4 B .3,4 C .4,3 D .-4,-3答案 B解析 由方程组⎩⎪⎨⎪⎧2x +3y -8=0x -2y +3=0,得交点B (1,2),代入方程ax +by -11=0中,有a +2b-11=0 ①,又直线ax +by -11=0平行于直线3x +4y -2=0,所以-a b =-34 ②,11b ≠12③.由①②③,得a =3,b =4.5.两直线2x +3y -k =0和x -ky +12=0互相垂直,则k =________. 答案 23解析 两直线的法向量分别为n 1=(2,3),n 2=(1,-k ), 若两直线垂直,则n 1·n 2=2-3k =0,∴k =23.6.若直线l 1:3x +y =0与直线l 2:ax -y +1=0的夹角为60°,则a =________. 答案 0或 3解析 两直线的法向量分别为n 1=(3,1),n 2=(a ,-1), 则由已知得|3·a -1|2·a 2+1=cos 60°=12. 解得a =0或a =3.7.求经过直线x +2y -1=0和x +y +2=0的交点且与直线2x -y +3=0平行的直线l 的方程.解 由方程组⎩⎪⎨⎪⎧x +2y -1=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-5,y =3. ∵直线l 与直线2x -y +3=0平行, ∴可设l 为2x -y +C =0.∵l 过点(-5,3),∴2×(-5)-3+C =0,解得C =13. ∴直线l 的方程为2x -y +13=0. 二、能力提升8.已知直线l 1:3x +4y -5=0与l 2:3x +5y -6=0相交,则它们夹角的余弦值为( ) A.2917034 B .-2917034C.92534 D.2915034 答案 A解析 两直线的法向量分别为n 1=(3,4),n 2=(3,5), 则cos θ=|cos 〈n 1,n 2〉| =|3×3+4×5|32+42·32+52=2934170. 9.已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,则a =________. 答案 -6或5解析 直线l 1的方向向量n 1=(a -5,-3-a ), 直线l 2的方向向量n 2=(-3,a -5).若l 1⊥l 2,则n 1·n 2=0, 即-3(a -5)-(3+a )(a -5)=0, ∴a =5或a =-6.10.若三条直线x +y +1=0,2x -y +8=0和ax +3y -5=0共有三个不同的交点,则实数a 应满足的条件是________.答案 a ∈R 且a ≠13且a ≠3且a ≠-6解析 解方程组⎩⎪⎨⎪⎧x +y +1=0,2x -y +8=0,得⎩⎪⎨⎪⎧x =-3,y =2,即两直线的交点坐标为(-3,2),依题意知,实数a 满足的条件为⎩⎪⎨⎪⎧a ·(-3)+3×2-5≠0,-a 3≠-1,-a 3≠2,解得⎩⎪⎨⎪⎧a ≠13,a ≠3,a ≠-6,即实数a 满足的条件为a ∈R ,且a ≠13且a ≠3且a ≠-6.11.已知两直线l 1:x +(1+m )y =m -2,l 2:2mx +4y =16,求当m 为何值时,l 1与l 2:(1)相交;(2)平行;(3)重合;(4)垂直?解 直线l 1和l 2的法向量分别为n 1=(1,1+m ),n 2=(2m ,4). (1)若两直线相交,则n 1与n 2不平行, ∴4-2m (1+m )≠0,解得,m ≠-2且m ≠1. (2)若两直线平行,则12m =1+m 4≠m -216,解得m =1.(3)若两直线重合,则12m =1+m 4=m -216,解得m =-2.(4)若两直线垂直,则n 1⊥n 2, ∴2m +4(1+m )=0,∴m =-23.综上所述,当m ≠-2且m ≠1时,l 1与l 2相交; 当m =1时,l 1与l 2平行; 当m =-2时,l 1与l 2重合;当m =-23时,l 1与l 2垂直.三、探究与提高12.是否存在实数a ,使三条直线l 1:ax +y +1=0,l 2:x +ay +1=0,l 3:x +y +a =0能围成一个三角形?请说明理由.解 (1)当l 1∥l 2时,-a =-1a,即a =±1;(2)当l 1∥l 3时,-a =-1,即a =1; (3)当l 2∥l 3时,-1a=-1,a =1.(4)当l 1与l 2,l 3相交于同一点时,由⎩⎪⎨⎪⎧x +ay +1=0,x +y +a =0得交点(-1-a ,1),将其代入ax +y+1=0中,得a =-2或a =1.故当a ≠1且a ≠-1且a ≠-2时,这三条直线能围成一个三角形.13.如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD =5 m ,宽AB =3 m ,其中一条小路定为AC ,另一条小路过点D ,问如何在BC 上找到一点M ,使得两条小路AC 与DM 相互垂直?解 如图以点B 为坐标原点,BC ,BA 所在直线分别为x 轴、y 轴建立平面直角坐标系.由AD =5,AB =3,可得C (5,0),D (5,3),A (0,3).设点M (x ,0),则AC →=(5,-3),DM →=(x -5,-3). 因为AC ⊥DM ,则AC →·DM →=0,即(5,-3)·(x -5,-3)=0,5(x -5)+9=0, 解得x =165,即BM =165m.故当BM =165m 时,两条小路AC 与DM 相互垂直.。
高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七解析几何
解析几何问题重在“设”——设点、设线
解析几何部分知识点多,运算量大,能力要求高,综合性强,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.因此,在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.
【典例】 已知抛物线C :y 2
=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.
(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;
(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.
[解题示范] 由题设F ⎝ ⎛⎭
⎪⎫12,0.
设l 1:y =a ,l 2:y =b ,则ab ≠0❶
,
且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 2
2,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12
,a +b 2. 记过A ,B 两点的直线为l , 则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 设AR 的斜率为k 1,FQ 的斜率为k 2,则
k 1=
a -
b 1+a 2=a -b a 2
-ab =1a =-ab a =-b =b -0
-12-
1
2
=k 2. 所以AR ∥FQ .
(2)解:设l 与x 轴的交点为D (x 1,0)❷
, 则S △ABF =12|b -a ||FD |=12|b -a ||x 1-1
2
|,
S △PQF =
|a -b |
2
. 由题设可得2×12|b -a ||x 1-12|=|a -b |
2,
所以x 1=0(舍去),x 1=1.
设满足条件的AB 的中点为E (x ,y )❸
. 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =y
x -1
(x ≠1). 而
a +b
2
=y ,所以y 2
=x -1(x ≠1).
当AB 与x 轴垂直时,E 与D 重合,此时E (1,0)满足方程y 2
=x -1. 所以所求轨迹方程为y 2
=x -1.
❶设线:设出直线l 1,l 2可表示出点A ,B ,P ,Q ,R 的坐标,进而可表示过A ,B 两点的直线方程
❷设点:设出直线l 与x 轴交点,可表示出|DF |,进而表示出S △ABF ,根据面积关系,可求得此点坐标
❸设点:要求此点的轨迹方程,先设出此点,根据题目条件得出此点坐标的关系式,即轨迹方程
解决解析几何问题的关键在于:通观全局,局部入手,整体思维,反映在解题上,就是把曲线的几何特征准确地转换为代数形式,根据方程画出图形,研究几何性质.。