反比例函数面积问题模型八年级数学
反比例函数求面积公式大全

反比例函数求面积公式大全《反比例函数求面积公式大全》引言:反比例函数是数学中的一种特殊函数,其特点是当自变量x增加时,因变量y会以相反的趋势减小。
在数学和实际应用中,使用反比例函数可以描述许多重要的关系,尤其是与面积相关的问题。
本文将为读者提供一份反比例函数求面积的公式大全,帮助读者更好地理解和应用反比例函数。
一、长方形1. 长方形的面积与其长度(l)和宽度(w)成反比例关系,即S = k/(l×w),其中k为常数。
二、正方形1. 正方形的面积与其边长(s)的平方成反比例关系,即S = k/s²,其中k为常数。
三、圆1. 圆的面积与其半径(r)的平方成反比例关系,即S = πr²,其中π为圆周率,约等于3.14159。
四、椭圆1. 椭圆的面积与其长轴(2a)和短轴(2b)的乘积成反比例关系,即S = πab,其中a和b分别为长轴和短轴的半长。
五、三角形1. 三角形的面积与其底(b)和高(h)的乘积成反比例关系,即S = (1/2)bh。
六、平行四边形1. 平行四边形的面积与其底(b)和高(h)的乘积成反比例关系,即S = bh。
七、等腰梯形1. 等腰梯形的面积与其上底(a)、下底(b)和高(h)的关系为S = (a + b)h/2。
八、圆环1. 圆环的面积与其外半径(R)、内半径(r)和π的关系为S = π(R² - r²)。
结论:通过反比例函数求面积的公式大全,读者可以更加方便地计算各种几何形状的面积。
这些公式对于数学学习、几何推导以及实际生活中的建模和计算都具有重要意义。
希望读者能够掌握这些公式,并在实际中运用自如,提高数学应用的能力和解决问题的水平。
反比例函数19种模型

反比例函数19种模型反比例函数是数学中常见的函数类型之一,用来表示两个变量之间的反比关系。
以下是反比例函数的一些常见模型:1.直线模型:y = k/x,其中k为常数。
2.比例关系模型:y = (kx)/(ax + b),其中k、a、b为常数。
3.反比例关系模型:y = (k/x) + a,其中k、a为常数。
4.工作时间模型:y = k/t,其中k为常数,t表示时间。
5.人口密度模型:y = k/A,其中k为常数,A表示面积。
6.速度和时间模型:y = k/t,其中k为常数,t表示时间。
7.飞行时间和飞行距离模型:y = k/(x^2),其中k为常数,x表示距离。
8.投资收益模型:y = k/(x+a),其中k和a为常数,x表示投资金额。
9.流量与管道直径模型:y = k/(x^2),其中k为常数,x表示管道直径。
10.压力和体积模型:y = k/x,其中k为常数,x表示体积。
11.购买力和价格模型:y = k/x,其中k为常数,x表示价格。
12.照明强度和距离模型:y = k/(x^2),其中k为常数,x表示距离。
13.土地价格和面积模型:y = k/A,其中k为常数,A表示面积。
14.音量和距离模型:y = k/(x^2),其中k为常数,x表示距离。
15.饼干消耗和人数模型:y = k/n,其中k为常数,n表示人数。
16.温度和容器大小模型:y = k/V,其中k为常数,V表示容器大小。
17.实验结果和样本数量模型:y = k/n,其中k为常数,n表示样本数量。
18.电阻和电流模型:y = k/I,其中k为常数,I表示电流。
19.体积和浓度模型:y = k/C,其中k为常数,C表示浓度。
这些模型仅是反比例函数在不同应用领域中的一些示例。
实际上,反比例函数可以描述的反比关系很多,取决于具体应用的背景和需求。
对于不同的问题和场景,可以选择适合的反比例模型来建模和分析。
中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)
反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”
【初中数学】反比例函数策略三——面积问题与面积法

【初中数学】反比例函数策略三——面积问题与面积法反比例函数策略(三)——面积问题与面积法王桥这一篇文章早都该写了。
因忙于修订《春季攻势》,今天略得小闲,续写《反比例函数策略(三)——面积问题与面积法。
在《沙场秋点兵》曾经有专门一讲,是讲述“反比例函数中的面积问题”的。
而对于“面积法”,更绝非一篇文章能够阐述得了的,只能是“后悔”“有期”了。
今天只谈与反比例函数“自带”的“面积模型”和与反比例函数相关的“面积法”。
一、反比例函数中的“面积模型”反比例函数是“自带”“面积模型”的!常言:“龙生龙,凤生凤”,发比例函数一旦诞生,就“自带”贵族气质——“自带”“面积模型”。
反比例函数就是这么“任性”!(一)反比例函数图像上的坐标矩形与坐标三角形的面积(以下部分内容选自《沙场秋点兵》)1、如图1,若反比例函数解析式为y=x/k,则;S矩形OBAC=|k|;2、如图2,若反比例函数解析式为y=x/k,则;S△OAB=1/2·|k|。
关于这两个结论的证明,自然不用赘述,关于这两个结论的灵活应用,则更是仪态万千,手头有《沙场秋点兵》的话,上面有许多练习,自己练练。
也可从本公众号找到去年推送的文章——反比例函数中的面积问题》自己打印练习......(二)反比例函数中的三角形与等积梯形1、如图3,若反比例函数解析式为y=k/x,则;S△OAB=S梯形BCDA;2、如图4,若反比例函数解析式为y=k/x,则(1)S△OAB=S梯形CDEA;(2)CD2=EB·EA;这两个结论,其实是前面结论的更进一步,但是,已经有些同学不太好理解了。
其证明如下:1、如图3,易知S△BOC=S△AOD=1/2·|k|,∴S△AOM=S梯形ADCM,∴S△BOM+S△ABM=S梯形ADCM+S△ABM,即S△AOB=S梯形BCDA;2、如图4,易知S△COD=S△BOE=1/2·|k|,∴S△COM=S梯形BEDM,则(1)S△COM+S△梯形ABMC=S梯形BEDM+S梯形ABMC,即S△AOB=S梯形BEDM;(2)易知CD·OD=BE·OE,∴BE:CD=OD:OE=CD:AE,即CD2=EB·EA。
【初中数学知识点解析】反比例函数的面积问题

2
2
∴S△AOB=S△AOG+S△ABG=
1 2
×3×3=
9 2
.
解:由题意,易得出S△ODB=S△AOC=
1 2
×|-4|=2.
因为OC=OD,AC=BD(易求得),
所以S△AOC=S△ODA=S△ODB=S△OBC=2. 所以四边形ACBD的面积为
S△AOC+S△ODA+S△ODB+S△OBC=2×4=8.
类型2 已知面积求反比例函数解析式
4. 如在图第,一直象线限y的=图k1象x+交7于(kC1<,0D)与两x点轴,交点于O点为A坐,标与原y轴点交,于△点AOBB,的与面反积比为例4函29 ,数点yC=的kx横2 坐(k2标>为0)1. (1)求反比例函数的解析式; (2)如果一个点的横、纵坐标都是整数, 那么我们就称这个点为“整点”, 请求出图中阴影部分(不含边界)所包 含的所有整点的坐标.
钢条一共花多少钱?
解:由反比例函数图象的对称性可知,两条坐标轴将矩
形ABCD分成四个全等的小矩形. 因为点A为y= 6 的图象上的一点,
x
所以S矩形AEOH=6,从而S矩形ABCD=4×6=24. 所以总费用为25×24=600(元).
答:所需钢条一共花600元.
题型3:利用点的坐标及面积公式求面积
∵x1<x2,y1<y2,
∴M(x1,y1),N(x2,y2)不在同一个象限.
∴点M在第三象限,点N在第一象限.
题型2:利用对称性求面积
7.如图是由四条曲线围成的广告标志,建立平面直角坐标系,双曲线对应的函数
解析式分别为y=-
6 x
,y=
6 x
. 现用四根钢条固定这四条曲线,这种钢条加工
成矩形产品按面积计算,每单位面积25元,请你帮助工人师傅计算一下,所需
专题:反比例函数中的面积问题

微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE
或
BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB
=
1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO
=
1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作
反比例函数与面积问题

课堂小结
反比例函数与 面积问题
根据反比例函 数求图形面积
根据面积求反 比例函数
y P(m,n)
oAx
y
B P(m,n) oAx
y o P(m,n) P/ A x
典例精讲
例:在平面直角坐标系中,若一条平行于x轴的
直线l分别交双曲线������
=
−
������ ������
和
������
=
������������于A,
B两点,P是x轴上的任意一点,则△ABP
的面积等于 .
典例精讲
S矩形ACBD
典例精讲
类型二: 根据图形面积求反比例函数解析式
例: 如图,双曲线������ = ������
点,QB垂直于y轴,垂足为B,直线MO上是否存
在这样的点Q,使得△OBQ的面积是△OPA的面
积的2倍?如果存在,请求出点Q的坐标,如果不
存在,请说明理由.
典例精讲
解:(1)∵y=kx过(﹣1,2)点,∴k=﹣2, ∴y=﹣2x.∵y=������������ 过(﹣1,2)点,∴m=﹣2 .∴y=﹣������������ ; (2)∵△OPA的面积是������������ m=1,Q点的坐标为 (x,﹣2x),∴������������ •|x|•|﹣2x|=2,x=± ������ , 因为在第二象限所以Q点的坐标为(﹣ ������ , 2 ������ ),或( ������,﹣2 ������).
初中数学知识点精讲课程
反比例函数与面积问题
反比例函数面积问题的几种形式:
图示一:
y
P(m,n) oA x
y A P(m,n)
o
x