数字信号处理试题--清华大学

合集下载

数字信号处理试卷及详细答案1

数字信号处理试卷及详细答案1

数字信号处理试卷及详细答案1数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是连续(连续还是离散?)。

2、某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。

3、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。

4、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2TΩ=ω。

7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ωωj j e H eH =,则其对应的相位函数为ωω?21)(--=N 。

8、请写出三种常用低通原型模拟滤波器巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器。

二、判断题(每题2分,共10分)1、一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。

(╳)2、用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非线性畸变。

(√)3、阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。

(╳)五、(12分)已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a 试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=crad ,写出数字滤波器的系统函数。

《数字信号处理》试题答案

《数字信号处理》试题答案

一、填空题(本大题共7小题,每小题1分,共7分)1. 序列x (n) = sin(0.3πn + 0.25π),该序列的周期N 为 20 。

2. 序列x (n)存在傅里叶变换的充分条件是∑∞-∞=∞<n n x )( 。

3. 用DFT 对序列进行谱分析时,对序列截断引起主谱线向附近展宽的现象称为 频谱泄露 。

4. 全通滤波器的极点和零点是互为 共轭倒易 关系。

5. 对12点长序列x(n)做DIF-基2FFT 计算,其运算流图中每级的蝶形个数是 8个 。

6. 设计IIR 滤波器的脉冲响应不变法,不适合设计 高通、带阻 滤波器。

7. 用频率采样法设计FIR 数字滤波器,为了提高阻带衰减,可在频响间断点处内插一个或几个 采样点 。

二、判断改错题,正确打“✓”,错误打“✗”,并改错。

(本大题共4小题,每小题2分,共8分)8. 周期序列的傅里叶级数仍是周期离散的。

( ✓ )9.DIT-基2FFT 分解的基本方法是将序列x(n)按n 值前后对半分为2个序列。

( ✗ ) 修改替换:“的奇偶”10. 序列x(n)的N 点DFT 为X(k),则序列x *(n)的DFT 变换为X *(N -k)。

( ✗ ) 句尾插入:“,且X(N)=X(0)”11. 因果稳定的LTI 时域离散系统,其系统函数所有零点都必须在单位圆内。

( ✗ )修改插入:“极点”三、计算题(本大题共6小题,共42分)12.已知序列()(1)2(3),()2()(2)x n n n h n n n δδδδ=-+-=--,试计算循环卷积()()()y n x n h n =⊗,且循环卷积区间长度L=4。

(6分)解:求x(n)和h(n)的DFT :∑==34)()(n kn W n x k X k k W W 3442+=∑==34)()(n kn Wn h k H k W 24-2=求X(k)与H(k)的乘积:)()()(k X k H k Y =()k W 24-2=()k k W W 3442+k k k k W W W W 54343442--42+= k k k k W W W W 4343442--42+=k W 343=求Y(k)的反变换得: ())3(3-=n n y δ13. 若序列x (n )波形如下,且x (n )的FT 变换为X(e j ω),不直接求X(e j ω),完成下列运算:求 (1) X(e j π) = ? (2)2()?j X e d πωπω-=⎰(8分)解:(1)∵∑∑∑∞-∞=∞-∞=∞-∞=-=-==n n n nj j n x n j n n x en x e X )(]sin )[cos ()()(ππππ∴3121111)()(42=++-++-==∑-=n j n x e X π(2)由帕斯维尔定理,有∑⎰∞-∞=-=n j n x d e X 22)(2)(πωππω∴ππππωππω18)141111(2)(2)(2)(42222=+++++===∑∑⎰-=∞-∞=-n n j n x n x d e X14. 用微处理机对实序列作谱分析,要求谱分辨率F ≤100Hz ,信号最高频率为4kHz ,试确定以下各参数:(1)最小记录时间T Pmin ;(2)最大取样间隔T max ;(3)最少采样点数N min ;(4)若信号频带不变,采用基2FFT 做谱分析,求使谱分辨率提高1倍的N 值。

数字信号处理答案(第三版)清华大学

数字信号处理答案(第三版)清华大学

数字信号处理教程课后习题答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。

分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。

)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。

分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。

数字信号处理习题集(附答案解析)

数字信号处理习题集(附答案解析)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理 计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理(清华大学 第二版)第七章 FIR数字滤波器的设计方法 习题

数字信号处理(清华大学 第二版)第七章 FIR数字滤波器的设计方法 习题

则FIR滤波器的频率响应:
H
e j
e j25
12
sin
2
51
k
1
2
sin 512
51
k
1
2
k0
51sin
2
51
k
1 2
51sin
2
51
k
1 2
6
7
9.已知图P7-9-1中的 h1 n 是偶对称序列N 8 ,
图P7-9-2中的 后的序列。设
h2 n是h1 n圆周移位(移
则FIR滤波器的频率响应:
H
e j
e
j 25
sin
51
2
51sin
2
12 k 1
sin
51
51sin
2
2
k
51
k
51
sin 51
55sin
2
2
k
51
k
51
5
按第二种频率抽样,得
H
k
1,
0
k
Int
N
2
c
N
12
0,
13 k N 1 25 2
n
hd
n
c
sin c n c n
N 43
21
c 0.5
线性相位FIR低通滤波器:
h n hd n wn
0.54
0.46
cos
n
21
sin
0.5n 21 n 21
0
n
其他n
13
用海明窗设计得到FIR滤波器的幅频响应:
14
2
10
,
0

《数字信号处理》作业程佩青(第2版)清华大学出版社课后答案

《数字信号处理》作业程佩青(第2版)清华大学出版社课后答案

0.588
0.5
0
0
0
0
-0.5 -0.588
-1 -0.951
-0.588
-0.951
-1.5 0 1 2 3 4 5 6 7 8 9 10
绘图程序如下: n = 0:10; % 定义时间长度 xa = cos(40*pi*n*0.02 + pi/2); stem(n,xa,'filled'),title('cos(40*\pi*n*0.02 + \pi/2)') axis([-1,n(end)+1,-1.5,1.5]) for i = 1:11
N −1
∑ X (k) = −
[ x(( N
−1−
n))N
RN
(n)WN−
k
(
N
W −1−n) k N
(
N
−1)
]
n=0
N −1
∑ = − [x(n)N WN−kn ]WNk (N −1) n=0
N −1
∑ = − [x(n)N WN(−k )n ] •WNk (N −1) n=0
N −1
∑ = − [x(n)N WN(−k )n ] •WNk (N −1) n=0
课后答案网
2.8 P140 题 10
12 3 4 0 00 -1 -1 -1 -1 -1 1 1 1 2 3 40 00 1 2 3 4 00 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -3 -6 -10 -10 -8 -4 1 7 4 0 0 0 -1 -3 -6 -10 -10 -8 -4 17 40 0 0 0 4 -2 -10 -10 -8 -4

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。

A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。

A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。

答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。

答案:DFT三、简答题1. 简述数字滤波器的基本原理。

答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。

它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。

2. 解释什么是窗函数,并说明其在信号处理中的作用。

答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。

在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。

四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。

答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。

2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。

答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。

答案:数字信号处理在现代通信系统中扮演着至关重要的角色。

数字信号处理教程试题及答案

数字信号处理教程试题及答案

数字信号处理教程试题及答案一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2) 3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N) 4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型B.级联型C.并联型D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称8.适合带阻滤波器设计的是:( )A )n N (h )n (h ---=1 N 为偶数B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

清华大学数字信号处理试卷
数字信号处理
一、填空题(每空1分, 共10分)
1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)
1.δ(n)的Z 变换是 ( )
A.1
B.δ(ω)
C.2πδ(ω)
D.2π
2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )
A. 3
B. 4
C. 6
D. 7
3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )
A. y (n-2)
B.3y (n-2)
C.3y (n )
D.y (n )
4.下面描述中最适合离散傅立叶变换DFT 的是 ( )
A.时域为离散序列,频域为连续信号
B.时域为离散周期序列,频域也为离散周期序列
C.时域为离散无限长序列,频域为连续周期信号
D.时域为离散有限长序列,频域也为离散有限长序列
5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完
全不失真恢复原信号 ( )
A.理想低通滤波器
B.理想高通滤波器
C.理想带通滤波器
D.理想带阻滤波器
6.下列哪一个系统是因果系统 ( )
A.y(n)=x (n+2)
B. y(n)= cos(n+1)x (n)
C. y(n)=x (2n)
D.y(n)=x (- n)
7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )
A. 实轴
B.原点
C.单位圆
D.虚轴
8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )
A.有限长序列
B.无限长序列
C.反因果序列
D.因果序列
9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频
域抽样点数N 需满足的条件是 ( )

A.N≥M
B.N≤M
C.N≤2M
D.N≥2M
10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )
A.0 B .∞ C. -∞ D.1
三、判断题(每题1分, 共10分)
1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

( )
2.x(n)= sin (ω0n)所代表的序列不一定是周期的。

( )
3.FIR 离散系统的系统函数是z 的多项式形式。

( )
4.y(n)=cos[x(n)]所代表的系统是非线性系统。

( ) 5.FIR 滤波器较IIR 滤波器的最大优点是可以方便地实现线性相位。

( ) 6.用双线性变换法设计IIR 滤波器,模拟角频转换为数字角频是线性转换。

( ) 7.对正弦信号进行采样得到的正弦序列一定是周期序列。

( ) 8.常系数差分方程表示的系统为线性移不变系统。

( ) 9.FIR 离散系统都具有严格的线性相位。

( ) 10.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。



四、简答题 (每题5分,共20分)
4.8点序列的按时间抽取的(DIT )基-2 FFT 如何表示?
五、计算题 (共40分)
1.已知2
(),2(1)(2)z X z z z z =>+-,求x(n)。

(6分)
2.写出差分方程表示系统的直接型和级联..型结构。

(8分)
)1(31
)()2(81
)1(43
)(-+=-+--n x n x n y n y n y
3.计算下面序列的N 点DFT 。

(1))0()()(N m m n n x <<-=δ(4分)
(2))0()(2
N m e n x mn N j <<=π
(4分)
4.设序列x(n)={1,3,2,1;n=0,1,2,3 },另一序列h(n) ={1,2,1,2;n=0,1,2,3},
(1)求两序列的线性卷积 y L (n); (4分)
(2)求两序列的6点循环卷积y C (n)。

(4分)
(3)说明循环卷积能代替线性卷积的条件。

(2
清华大学数字信号处理试卷
5.设系统由下面差分方程描述:
x
-
n
=n
n
y
n
y
y
+
-
)2
(
)1
)1
(
(
(-
+
)
(1)求系统函数H(z);(2分)
(2)限定系统稳定
..,写出H(z)的收敛域,并求出其单位脉冲响应h(n)。

(6分)。

相关文档
最新文档