第一章燃料与燃烧概述

合集下载

【2017年整理】燃烧学复习重点

【2017年整理】燃烧学复习重点

第一章燃烧化学反应动力学基础1、什么叫燃烧?2、浓度和化学反应速度正确的表达方法?化学反应速度如何计量?3、什么是单相反应、多相反应、简单反应、复杂反应、总包反应?4、质量作用定律的适用范围?如何从微观的分子运动论的观点来理解质量作用定律?试用质量作用定律讨论物质浓度对反应速度的影响。

5、什么是反应级数?反应级数与反应物浓度(半衰期)之间的关系如何?6、常用的固体、液体和气体燃料的反应级数值的范围是多少?7、试用反应级数的概念,讨论燃尽时间与压力之间的关系。

8、惰性组分如何影响化学反应速率?9、Arrhenius定律的内容是什么?适用范围?如何从微观的分子运动论的观点来理解Arrhenius定律?10、什么是活化能?什么是活化分子?它们在燃烧过程中的作用?11、图解吸热反应和放热反应的活化能与反应放热(吸热)之间的关系。

12、什么叫链式反应?它是怎样分类的?链反应一般可以分为几个阶段?13、描述氢原子燃烧的链式反应过程。

14、试用活化中心繁殖速率和销毁速率的数学模型,结合编程技术,绘制氢原子浓度随时间变化的图线,解释氢燃烧的几种反应的情况。

并讨论:分支链反应为什么能极大地增加化学反应的速度?15、烃类燃烧的基本过程是什么,什么情况下会发生析碳反应?如何进行解释?什么样的烃类燃烧时更容易发生析碳反应?如何防止烃类燃烧析碳?16、图解催化剂对化学反应的作用。

17、什么叫化学平衡?平衡常数的计算方法?吕·查德里反抗规则的内容是什么?18、什么是燃料的低位发热量和高位发热量?19、试用本章的知识解释,从燃烧学的角度来看,涡轮增压装置对汽车发动机的作用是什么?20、过量空气系数(a)与当量比(b)的概念?21、燃烧过程中,有几种NOx的生成机理?第二章燃烧空气动力学基础——混合与传质1.为什么说混合与传质对燃烧过程很重要?2.什么是传质?传质的两种基本形式是什么?3.什么是“三传”?分子传输定律是怎样表述的?它们的表达式如何?(牛顿粘性定律、傅立叶导热定律、费克扩散定律)4.湍流中,决定“三传”的因素是什么?湍流中,动量交换过程和热量、质量交换的强烈程度如何?怎么用无量纲准则数的数值来说明这一点?5.试推导一个静止圆球在无限大空间之中,没有相对运动的情况下,和周围气体换热的Nu数,以及和周围气体进行传质的Nu zl数。

燃烧基础知识

燃烧基础知识

燃烧基础知识目录一、燃烧概述 (1)二、燃烧要素 (2)1. 可燃物 (3)2. 氧化剂 (4)3. 点火源 (4)三、燃烧过程及阶段 (5)1. 燃烧过程的物理变化 (7)2. 燃烧过程的化学变化 (8)四、燃烧类型 (9)1. 扩散燃烧 (10)2. 预混燃烧 (11)五、燃烧反应方程式及计算 (12)1. 燃烧反应方程式的编写原则和方法 (13)2. 燃烧反应的计算方法与应用实例 (14)六、燃烧的应用与控制系统 (16)一、燃烧概述燃烧是一种化学反应过程,广泛存在于自然界以及人类生产生活中。

燃烧的本质是物质之间的氧化反应,其中包含了能量的转化与释放。

燃烧过程涉及三个基本要素:可燃物、助燃物和点火源。

可燃物是燃烧反应的主体,助燃物主要是氧气,而点火源则是引发燃烧反应的能量来源。

燃烧反应是一种放热反应,意味着在反应过程中会释放热量。

这种热量释放的形式多样,可以表现为火焰、热辐射等。

燃烧反应的速度和强度取决于多种因素,包括可燃物的性质、助燃物的浓度、点火源的能量以及环境温度等。

了解燃烧的基础知识对于防止火灾、控制燃烧过程以及有效利用燃烧产生的能量具有重要意义。

在工业、农业、交通运输以及日常生活等领域,燃烧知识的应用十分广泛。

在发动机中燃烧燃料以产生动力,在烹饪中使用火来加热食物,以及在火灾发生时如何正确使用灭火设备等。

对燃烧基础知识的理解和掌握至关重要,不仅有助于我们更好地利用燃烧带来的好处,还能在紧急情况下采取正确的应对措施,保护生命财产安全。

我们将更详细地介绍燃烧的相关知识和理论。

二、燃烧要素燃烧是一种化学反应,通常涉及燃料、氧气和热量。

要使燃料燃烧,必须同时满足三个基本要素,即燃料、氧气和热量。

燃料:燃料是燃烧过程中产生能量的来源。

它可以是一种固体、液体或气体。

常见的燃料包括煤、石油、天然气、木材、纸张等。

燃料的种类和性质对燃烧过程有很大影响,不同燃料具有不同的燃烧特性和效率。

氧气:氧气是燃烧过程中的必要成分,燃料无法燃烧。

燃烧学讲义第一章

燃烧学讲义第一章

第1章燃烧化学基础燃烧的本质和条件1.1.1 燃烧的本质所谓燃烧,就是指可燃物与氧化剂作用发生的放热反应,通常伴有火焰、发光和发烟的现象。

燃烧区的温度很高,使其中白炽的固体粒子和某些不稳定(或受激发)的中间物质分子内电子发生能级跃迁,从而发出各种波长的光;发光的气相燃烧区就是火焰,它的存在是燃烧过程中最明显的标志;由于燃烧不完全等原因,会使产物中混有一些微小颗粒,这样就形成了烟。

从本质上说,燃烧是一种氧化还原反应,但其放热、发光、发烟、伴有火焰等基本特征表明它不同于一般的氧化还原反应。

如果燃烧反应速度极快,则因高温条件下产生的气体和周围气体共同膨胀作用,使反应能量直接转变为机械功,在压力释放的同时产生强光、热和声响,这就是所谓的爆炸。

它与燃烧没有本质差别,而是燃烧的常见表现形式。

现在,人们发现很多燃烧反应不是直接进行的,而是通过游离基团和原子这些中间产物在瞬间进行的循环链式反应。

这里,游离基的链锁反应是燃烧反应的实质,光和热是燃烧过程中的物理现象。

1.1.2 燃烧的条件及其在消防中的应用1.1.2.1 燃烧的条件燃烧现象十分普遍,但其发生必须具备一定的条件。

作为一种特殊的氧化还原反应,燃烧反应必须有氧化剂和还原剂参加,此外还要有引发燃烧的能源。

1.可燃物(还原剂)不论是气体、液体还是固体,也不论是金属还是非金属、无机物还是有机物,凡是能与空气中的氧或其它氧化剂起燃烧反应的物质,均称为可燃物,如氢气、乙炔、酒精、汽油、木材、纸张等。

2.助燃物(氧化剂)凡是与可燃物结合能导致和支持燃烧的物质,都叫做助燃物,如空气、氧气、氯气、氯酸钾、过氧化钠等。

空气是最常见的助燃物,以后如无特别说明,可燃物的燃烧都是指在空气中进行的。

3.点火源凡是能引起物质燃烧的点燃能源,统称为点火源,如明火、高温表面、摩擦与冲击、自然发热、化学反应热、电火花、光热射线等。

上述三个条件通常被称为燃烧三要素。

但是即使具备了三要素并且相互结合、相互作用,燃烧也不一定发生。

锅炉原理-2010-01-概述.

锅炉原理-2010-01-概述.

N2
2018/12/22
CO2
O2
H2O
18
火力发电厂的汽水流程
原水 软化 低压加热器 除氧器
过热器
水冷壁
省煤器
高压加热器
高压缸 抽汽
2018/12/22
再热器 抽汽
中压缸
低压缸
凝汽器
19
00300530 锅炉原理 第一章 概述
§1.1 锅炉机组的工作过程
1,原煤:配煤破碎干燥、制粉输送煤
EHE, INTREX, Ω管
分离器效率低 磨损 翻床 结渣 汽温不足 蒸发量不足
11
世界能源储藏分布
煤炭 美国、中国、俄罗斯、澳 大利亚
石油
委内瑞拉、中东、俄罗斯
天然气
2018/12/22
中东、俄罗斯、美国
12
中国电站锅炉燃料:煤炭为主

烟煤:陕西、山西北部、内蒙古西部、 安徽北部 无烟煤:山西东部、河南西部、湖南、 贵州、广东 贫煤:山西中南部、山东西南部、江西 南部 褐煤:内蒙与东三省交界处、云南东北 部
[1] 樊泉桂 锅炉原理[M]. 第一版.北京:中国电力出版社. 2008年9月.
全书内容
第一章 概述 第二章 燃料及其燃烧特性
第三章 燃料燃烧计算和锅炉机组热平衡
第四章 煤粉制备及系统 第五章 燃烧理论基础 第六章 燃烧设备和煤粉燃烧技术
[1] 樊泉桂 锅炉原理[M]. 第一版.北京:中国电力出版社. 2008年9月.
2018/12/22
9
固体燃料:
固体燃料 煤炭 秸秆 生活垃圾 褐煤 工业垃圾 洗中煤 农场垃圾 林场垃圾 石油焦
2018/12/22 10
无烟煤 贫煤 烟煤

《燃烧学》课程笔记

《燃烧学》课程笔记

《燃烧学》课程笔记第一章燃料与燃烧概述一、燃烧学发展简史1. 古代时期- 早期人类通过摩擦、打击等方法产生火,火的使用标志着人类文明的开始。

- 古埃及、古希腊和古罗马时期,人们开始使用火进行冶炼、烹饪和取暖。

2. 中世纪时期- 炼金术的兴起,炼金术士们试图通过燃烧和其他化学反应来转化金属。

- 罗杰·培根(Roger Bacon)在13世纪对火进行了研究,提出了火的三要素理论:燃料、空气和热。

3. 17世纪- 法国化学家安托万·洛朗·拉瓦锡(Antoine Lavoisier)通过实验证明了燃烧是物质与氧气的化学反应,推翻了燃素说。

- 拉瓦锡的氧化学说为现代燃烧理论奠定了基础。

4. 18世纪- 约瑟夫·普利斯特里(Joseph Priestley)和卡尔·威廉·舍勒(Carl Wilhelm Scheele)分别独立发现了氧气。

- 拉瓦锡和普利斯特里的实验揭示了氧气在燃烧过程中的作用。

5. 19世纪- 热力学第一定律和第二定律的发展,为理解燃烧过程中的能量转换提供了理论基础。

- 化学反应动力学的发展,科学家们开始研究燃烧反应的速率和机理。

6. 20世纪- 燃烧学作为一门独立学科得到发展,研究内容包括火焰结构、燃烧污染物生成与控制等。

- 计算流体力学(CFD)的应用,使得燃烧过程的模拟和优化成为可能。

- 环保意识的提高,促进了清洁燃烧技术和低污染燃烧技术的发展。

二、常见的燃烧设备1. 炉子- 锅炉:用于发电和工业生产中的蒸汽供应。

- 炉灶:家用烹饪设备,使用天然气、液化石油气等作为燃料。

- 热水器:利用燃料燃烧产生的热量加热水。

2. 发动机- 内燃机:汽车、摩托车等交通工具的动力来源。

- 燃气轮机:用于飞机、发电厂等,具有较高的热效率。

3. 焚烧炉- 医疗废物焚烧炉:用于医院废物的无害化处理。

- 城市生活垃圾焚烧炉:用于垃圾减量和资源回收。

气体燃料的燃烧

气体燃料的燃烧

气体燃料的燃烧燃烧是指气体燃料与氧气的化学反应,释放出能量和产生新的化合物。

本文将探讨气体燃料的燃烧过程、燃烧机制以及与燃烧相关的一些重要概念。

气体燃料是一种常见的能源形式,在许多领域中被广泛使用。

常见的气体燃料包括天然气、液化石油气等。

这些气体燃料具有不同的组成和物化性质,对燃烧过程有着重要的影响。

天然气是一种主要由甲烷组成的气体燃料。

甲烷是一种无色、无味的气体,在大自然中广泛存在。

天然气的主要成分还包括乙烷、丙烷和丁烷等烷烃。

天然气具有高热值、易燃等特点,被广泛用于家庭供暖、工业生产和发电等领域。

液化石油气(LPG)是一种混合物,主要由丙烷和丁烷组成。

相比于天然气,LPG具有更高的压缩性和储存性,可以在液态状态下运输和储存。

LPG是一种清洁燃料,广泛应用于烹饪、野营和汽车燃料等领域。

除了天然气和LPG,还有一些特殊的气体燃料具有独特的特性。

例如,氢气是一种无色、无味的气体,在燃烧时产生的唯一副产品是水蒸气,因此被认为是一种环保的燃料。

氢气具有高热值和轻质的特点,目前正在被广泛研究和应用于氢能源领域。

另一个重要的气体燃料是甲烷,它是一种无色、无味的气体,也是天然气的主要成分。

甲烷是一种常见的温室气体,直接使用甲烷作为燃料会产生温室气体排放。

然而,甲烷可以通过特殊的燃烧装置燃烧,将其转化为二氧化碳和水,减少温室气体排放。

综上所述,气体燃料的组成对燃烧过程具有重要影响。

了解不同气体燃料的物化性质和特点,有助于选择合适的燃料和优化燃烧过程,以提高能源利用效率和减少环境污染。

气体燃料的燃烧是指气体燃料与氧气发生化学反应的过程。

燃烧的三要素包括燃料、氧气和足够的燃料温度。

燃烧过程的第一步是点火。

当气体燃料与点火源接触时,会发生燃烧反应。

点火源可以是明火、电火花或者其他能提供足够能量的源头。

通过点火,燃料的化学能被释放,产生燃烧反应。

燃烧反应是气体燃料与氧气发生的化学反应。

气体燃料中的可燃物质与氧气结合,产生新的化合物和能量释放。

沼气燃烧知识

沼气燃烧知识

1、相对穿透深度与射程定义及其在气流混合过程中的 物理意义。 2、燃气自由射流的特点与图形 3、不同相交气流的流动规律 4、旋转射流的特点与产生旋转射的方法、旋流数的计 算; 第四章燃气燃烧的火焰传播 火焰面:未燃气体和已燃气体的分界面即为火焰锋 面,亦称火焰前沿(前锋)。 常压条件下火焰前锋的 厚度:10-2~10-1mm 火焰传播速度:火焰前锋沿其法线方向朝新鲜混气传 播的速度。用 Sn 表示。 测定 Sn 的实验方法的概述两种主要方法 静力法:静力法是让火焰焰面在静止的可燃混合物中 运动。 动力法:动力法则是让火焰焰面处于静止状态,而可 燃混合物气流则以层流状态作相反方内运动。 管子法、本生火焰法 影响火焰传播速度的因素 1.混气成分的影响
高热值是指 1m3 燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。
低热值是指 1m3 燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 一般焦炉煤气的低热值大约为 16000—17000KJ/m3 天然气的低热值是 36000—46000 KJ/m3 液化石油气的低热值是 88000—120000KJ/m3 按 1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为 3800—4060KCal/m3 天然气的低热值是 8600—11000KCal/m3 液化石油气的低热值是 21000—286000KCal/m3 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算:
销毁的数量,这个过程就称为不稳定的氧化反应过
程。
着火: 由稳定的氧化反应转变为不稳定的氧化反应而
引起燃烧的一瞬间。
支链着火:在一定条件下,由于活化中心浓度迅速增

燃烧学 第3版 第1章 绪论

燃烧学 第3版 第1章 绪论
从炉排后部观察的商品型煤燃尽状态
从炉排前部观察的商品型煤燃尽状态
内燃机
燃气轮机,涡轮/涡扇发动机
火箭发动机
液体火箭发动机
固体火箭发动机
燃料分类
类 别
天然燃料
人工燃料
固体燃料
木柴,泥煤,烟煤,无烟煤,石煤,油页岩等(可燃冰)
木炭,焦炭,泥煤砖,煤矸石,甘蔗渣,可燃垃圾等
液体燃料
现代燃烧学的发展
燃烧科学的应用
全世界的能源结构以石油和煤为主,石油和煤的主要利用方式——燃烧; 燃料中存在有害物质:烟尘、灰、SOx、NOx →污染环境 →酸雨、温室效应等。改善燃烧工艺,控制燃烧过程,发展洁净燃烧技术。
1.2
常见的燃烧设备
电站煤粉锅炉系统简图
电站煤粉锅炉
链条锅炉
石油
汽油,煤油,柴油,甲醇,乙醇,二甲醚,水煤浆
气体燃料
天然气,煤层气,页岩气
高炉煤气,发生炉煤气,焦炉煤气,液化石油气
第一章 绪论
1.1
燃烧概述
140~150万年前,“摩擦生火第一次使人类支配了一种自然力,从而最终把人和动物分开”
燃烧是物质因剧烈氧化而发光、发热的现象--“火”
Байду номын сангаас
17世纪末,德国斯塔尔(stahl)提出了燃素论 18世纪中叶,法国化学家拉瓦锡和俄国科学家罗蒙诺索夫根据他们的实验,分别提出燃烧是物质氧化的理论。 1774年普利斯特列发现了氧。拉瓦锡的燃烧学说得到确立,开始了揭开燃烧学本质的过程。
现代燃烧学的确立
19世纪,阐明了燃烧过程中重要的平衡热力学特性。
20世纪30年代,美国化学家刘易斯和 俄国谢苗诺夫将化学动力学的机理引入燃烧研究,认为化学反应动力学是影响燃烧速率的重要因素,初步奠定了燃烧理论的基础 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国汽油的牌号
异辛烷C8H18的辛烷值 100 正庚烷C7H16的辛烷值 0 研究法辛烷值 (RON) 马达法辛烷值 (MON) 不同配比的标 准油样,ON
抗爆指数 (Ai)
我国柴油的牌号
军用柴油—两个级各有3种牌号 轻柴油---三个级各有 6种牌号 重柴油---2种牌号

十六烷烃的十六 烷值C16H34 a-甲基萘C11H10 (或七甲基壬烷 的十六烷值)
100 0 不同配比的标 准油样, CN
国产重油的牌号

60oC重油恩氏黏度数值命名 有多种牌号(如20号、60号等)
1.1.3 气体燃料
气体燃料分为人造煤气和天然气 人造煤气:是由液体燃料或固体燃料经过加工而 得到的主产品或副产品。 人造煤气包括: 以CO、H、甲烷为主体的煤气系列,

闪点和燃点

燃点(着火温度、着火点)
燃油在常压空气中能自行燃烧起来的最低温度 称为燃点,也称为着火温度或着火点。

闪点
燃油被加温到某一温度,油面上的油蒸汽发生 闪火现象,此时油温叫做油的闪点。
通常燃点较闪点高10~30℃。 闪点是燃油储存中的防火指标。

凝固点和沸点
凝固点 盛有燃油的试管倾斜45o ,燃油油面在1分钟 内仍保持不变时的温度。 凝固点越高,流动性越好 凝固点越低,流动性越差 沸点 无固定沸点,只有一个温度范围,沸腾从某一 温度开始,随温度升高而连续进行。 石油蒸馏就是收集不同沸点的镏出物


航空汽油--馏出温度40-180oC 车用汽油(90号以下)--馏出温度35-205oC 车用汽油(90号以上)--馏出温度35-195oC 轻柴油--馏出温度205-360oC 煤油--馏出温度200-320oC 航空煤油--馏出温度150-250oC 重油--馏出温度300oC以上 大型船用柴油机燃料--馏出温度350oC以上 渣油--馏出温度高于500-520oC
几个概念:



标准煤: 燃料的每释放出29300kJ(7000kcal)热 量就折算为1公斤标准煤。(按低位发热量) 中国煤炭: 燃料的每释放出20934kJ(5000kcal) 热量就折算为1公斤标准油煤。(按低位发热 量) 标准油(原油): 燃料的每释放出41868kJ (10000kcal)热量就折算为1公斤标准油煤。(按 低位发热量) 标准燃气(油气): 燃料每释放出 9500kcal热 量就折算为1公斤标准燃气。 燃料每释放出 133300kcal热量就折算为1公斤标 准油气。(按低位发热量),水分 逸出后,有机物开始热分解并逸出的各种气 态可燃物质。 挥发分对煤的着火过程有重大影响。挥发分 高的煤容易着火,也容易燃尽。 挥发分是煤进行分类的主要依据。 挥发分高低和焦炭结块的难易程度(焦结 性)对煤的燃烧特性有很大的影响。 固定碳 :从煤中扣除水分、灰分及挥发分后 剩下的部分就是固定碳,是煤中主要可燃物 质。
粘结性
煤的分类:

根据干燥无灰基挥发分、收到基低位发热 量、以及其他成分作为参考标准,大致把煤 粉锅炉用煤分为五大类。 低质煤 褐煤 烟煤 贫煤 无烟煤
A
碳 化 程 度
无烟煤的特点
炭化程度最高的煤 含碳高50%~95%、坚硬 挥发分少Vdaf=6.5%-10%, 收到基低位发热量21MJ/kg 适于长途运输 可燃性较差,不易着火
K r:温度修正系数,单位1 / ℃; r :t℃时油的密度和4℃时纯水密度比; r420: 20℃时油的密度和4℃时纯水密度比;
t 4
燃油粘度

表征油输送和雾化的难易程度 粘度大,流动性差、雾化效果也差。 表征粘度的方法 运动粘度 m2/s 动力粘度 kg/(m·s) 恩氏粘度 0E

恩氏粘度: 温度toC时200毫升燃油通过恩氏粘度 计标准容器时间,与同体积20oC蒸馏水通过恩氏 粘度计标准容器时间之比。 恩氏粘度与运动粘度之间换算为: v=8.00E-8.64/0E,mm2/s(当1.35< 0E<3.20) v=7.60E-4.0/0E,mm2/s(当0E>3.20) 或统一用v=7.7530E-1.784/0E,mm2/s 燃油的粘度值与它的化学成分、馏程、温度和压力 等多因素有关。
燃煤新技术概述
煤的气化 通过煤与空气、氢气、氧气、蒸汽、二氧化碳 中的一种和几种的混合物的化学反应得到气态 产物,即煤气的过程。 煤的液化 煤炭液化是把固态状态的煤炭通过化学加工, 使其转化为液体产品的技术。煤炭通过液化可 将硫等有害元素以及灰分脱除,得到洁净的二 次能源。 煤浆燃料
煤浆燃料
液体燃料特点
含硫量低。 基本没有灰分。 低位发热量在40MJ/kg左右。 各种燃油的燃烧特性差异较大。 液体燃料的相对密度和粘度对液体燃料的 燃烧特性影响很大。

燃油相对密度
燃油的相对密度用t℃时油的密度和4℃时水 密度之比表示,即
r r K r (20 t )
t 4 20 4
固体燃料基成分表示法
收到基(应用基) 空气干燥基(分析基) 干燥基 干燥无灰基 (可燃基)

收到基(应用基)
燃料进入燃烧装置前的元素组成。 下标ar表示
Car H ar Oar N ar S ar War Aar 100%
空气干燥基(分析基)
C
去掉燃料外部水分后的元素组成。下 标ad表示
QGW=4.187(81C+300H-26(O-S)) kJ/kg QDW=4.187(81C+246H-26(O-S)-6W) kJ/kg
QGw和 QDw的换算
Qar , Dw Qar ,Gw 25129 H ar / 100 War / 100
Qad , Dw Qad ,Gw 25129 H ad / 100 Wad / 100
1.1.2 液体燃料
液体燃料指物质形态为液态的可燃物质。 天然液体燃料:石油 工业用液体燃料:通常是原油经过一系列 炼油工艺加工而形成的。 包括汽油、煤油、轻柴油、重柴油、重 油、渣油等石油产品。 还包括焦油和酒精。

石油的组成

石油的组成元素 主要因素:C、H、O、N、S C:84%~87%(质量分数含量) H:11%~14% O:0.1%~1% N:<0.2% 微量金属因素:钒、镍、铁、铝、钙、 镁、钴、 铜等 微量非金属因素:氯、硅、磷、硒、砷等


灰分:煤中的不可燃矿物质。有害成分,也是影响 燃烧质量的主要成分。 灰分大,可燃物含量减少,发热量降低; 灰分大,不易燃烧完全; 灰分大,烟气中灰粒增多,受热面磨损严重; 灰分大,污染环境; 灰分大,受热面积灰增多,传热能力下降,燃烧设 备热效率降低。 水分:不可燃,有害成分。
煤的工业分析
煤的工业分析:通过实验测出煤中的水分 (W)、灰分(A)、挥发分(V)和固定碳 (FC)的质量的百分比以及煤的发热量。 煤的工业分析,又叫煤的技术分析或实用分 析,是评价煤质的基本依据。 通常煤的水分、灰分、挥发分是直接测出 的,而固定碳是用差减法计算出来的。 广义上讲,煤的工业分析还包括煤的全硫分和 发热量的测定, 又叫煤的全工业分析。

褐煤的特点
碳化程度较低 易风化、易氧化、自燃 不适于远地运输和长期储存 含碳较高40%~50% 挥发分较少 Vdaf>40% 收到基低位发热量 11.5~21 MJ/kg 易燃烧,不粘结

低质煤的特点
发热量低 灰分高 含水量高 高硫量 易结渣 一般不能单独燃用

水煤浆技术的发展及应用


70年代石油危机后,掀起了开发煤油混合燃料 (COM)的热潮。为此水煤浆燃料(CWM)的研究迅 速倔起。 到80年代初在制备方面的技术大体上已成熟,并 已对水煤浆燃料进行了很多大规模的燃烧试验。 水煤浆技术开发应用先进的国家有日本、美国、 瑞典,加拿大、意大利、法国、德国、英国、中 国等国自80年代起也进行了一系列开发研究。
油煤浆:30%煤粉+70%的油 水煤浆:50~70%的煤粉和水与少量的添 加剂混合成的 (1)易于运输 (2)能代油燃烧 (3)降低SO2和NO

(4)减少环境污染
水煤浆的特点
水煤浆是20世纪80年代起发展起来的一种 煤代油燃料; 其特征是外观象油,流动性好、粘度低; 储运稳定、不沉淀; 能用槽罐车、船舶或管道运输,无自燃着 火和爆料,使用起来比煤和油安全。
R
贫煤的特点
炭化程度次高的煤 含碳高50%~70%、坚硬 挥发分少-
Vdaf>6.5%-10% 收到基低位发热量 18.5MJ/kg
适于长途运输 可燃性较差,不太易着火
烟煤的特点
碳化程度较高的煤 具有粘结性 分为长焰煤、气煤、肥煤、结焦煤、瘦煤 含碳较高40%~70% 挥发分较少Vdaf=20%-27%(中)和27%40%(高) 收到基低位发热量 16.5/15.5 MJ/kg 容易着火。
第一章 燃料与燃烧概述
刘雪玲
天津大学热能工程系
1.1 燃料的燃烧特性
燃料:指在空气中容易燃烧,并能够比较 经济地利用其燃烧热的物质的总称。 燃料按其状态可分为: 气体燃料、液体燃料、固体燃料。 燃料按其获得途径分为: 天然燃料和人造燃料。

1.1.1 固体燃料
天然的固体燃料有煤、泥煤和木柴等。 人造的固体燃料有焦炭、煤球、煤粉以及木 炭等。 泥煤特点 挥发分高、 可燃性好 反应性强、 含硫量低 机械性能差、灰分熔点低
热值


单位质量或体积的液体燃料完全燃烧所释放出 的热量。 油的C、H含量较煤多,因此油的热值远大于 煤。通常燃油热值在38.5~44MJ/kg 油质越重,H含量越少,热值越低 例如:汽油热值高,重油热值低 液体燃料热值测定 氧弹量热仪测定 根据元素分析用门捷列夫公式计算
相关文档
最新文档