第四章二维核磁共振谱
合集下载
二维核磁共振谱综述

1.什么是二维谱 二维核磁共振(2D NMR)方法是有Jeener 于1971年首先提出 的,是一维谱衍生出来的新实验方法.引入二维后,减少了谱线的拥 挤和重叠,提高了核之间相互关系的新信息.因而增加了结构信息, 有利于复杂谱图的解析.特别是应用于复杂的天然产物和生物大分 子的结构鉴定,2DNMR是目前适用于研究溶液中生物大分子构象 的唯一技术.一维谱的信号是一个频率的函数,记为S(ω),共振峰分 别在一条频率轴上.而二维谱是两个独立频率变量的信号函数,记 为S(ω1,ω2),共振峰分布在由两个频率轴组成的平面上.2D-NMR 的b最大特点是将化学位移,偶合常数等参数字二维平面上展开,于 是在一般一维谱中重叠在一个频率轴上的信号,被分散到两个独立 的频率轴构成的二维平面上.,同时检测出共振核之间的相互作用.
3.二维谱的表达方式
(1)堆积图(stacked plot). • 堆积图的优点是直观,具有立体感.缺点是 难以确定吸收峰的频率。大峰后面可能隐 藏小峰,而且耗时较长。 • (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优 点是容易获得频率定量数据,作图快。缺 点是低强度的峰可能漏画。目前化学位移 相关谱广泛采用等高线。
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
• 二维化学位移相关谱包括 • 同核化学位移相关谱(Homonuclear correlation) • 1)通过化学键:COSY, TOCSY, 2DINADEQUATE。 • 2)通过空间:NOESY, ROESY。 • 异核化学位移相关谱(Heteronuclear correlation) • 强调大的偶合常数:1H-13C –COSY • 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)
3.二维谱的表达方式
(1)堆积图(stacked plot). • 堆积图的优点是直观,具有立体感.缺点是 难以确定吸收峰的频率。大峰后面可能隐 藏小峰,而且耗时较长。 • (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优 点是容易获得频率定量数据,作图快。缺 点是低强度的峰可能漏画。目前化学位移 相关谱广泛采用等高线。
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
• 二维化学位移相关谱包括 • 同核化学位移相关谱(Homonuclear correlation) • 1)通过化学键:COSY, TOCSY, 2DINADEQUATE。 • 2)通过空间:NOESY, ROESY。 • 异核化学位移相关谱(Heteronuclear correlation) • 强调大的偶合常数:1H-13C –COSY • 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)
2D核磁共振谱

SI
1024
MC2
TPPI
SF
500.1300144 MHz
WDW
SINE
SSB
2
LB
0.00 Hz
GB
0
精品课件
精品课件
2 NH
3 NH
NOESY用于多 肽序列 的归属
H1
1 12 3
H
CH2O
CH2O
CH2 O
H2N C C N C C N C C OH
H
HH
HH
H
精品课件
2
GPNAM1
sine.100
GPNAM2
sine.100
GPNAM3
sine.100
GPX1
0.00 %
GPX2
0.00 %
GPX3
0.00 %
GPY1
0.00 %
GPY2
0.00 %
GPY3
0.00 %
GPZ1
50.00 %
GPZ2
30.00 %
GPZ3
40.10 %
P16
1000.00 usec
vX
F2
精品课件
δ
vA
对角峰
F1
vA
vA
δ
交叉峰
谷氨酸的H, H-COSY 谱(500MHZ)
1
HO OC
C H (2 )
2
CH
NH 2
3
CH 2
4
4
CH 2
5
COO H
C H 2(4 )
C H 2(3 )
C H 2(3 ) C H 2(4 )
C H (2 )
ppm
2 .2 0
核磁二维谱图

第1页/共19页
4.5.1二维共振谱的形成
• 信号函数s(w1,w2)两个独立的变量都必须是频率。如果其中一个变量是时间, 温度,浓度等,则不属于二维核磁。
预备期
发展期
混合期
检出期
回复平 衡态
1个或 几个脉 冲使体 系激发
建立信 号检出 条件
第2页/共19页
检出 FID信 号
二维核磁的分类
• 1)J分解谱 • -J谱:化学位移和自旋耦合作用分辨开,异核J谱和同核J谱 • 2)化学位移相关谱:-谱,同核偶合,异核偶合,NOE和交换偶合。 • 3)多量子谱 • 二维核磁的表现形式:堆积图,等高线图
7
6
3
4
OH
23
5
4
1
第6页/共19页
6 78 9
第7页/共19页
9
8 7
6O
6
8
5
7
9
1 2
3 4
OH
3
2
9 8
7 6
6
8
O
5
7
9
1 2
3 4
OH
3
2
第8页/共19页
2
3
6
78 9
9
8
7
6
8
O
5
7
9
6 3 12
1 2
3 4
OH
4
5 第9页/共19页
小蠹烯醇1H NMR
第10页/共19页
小蠹烯醇13C NMR
第11页/共19页
小蠹烯醇1H-1H COSY
第12页/共19页
小蠹烯醇双量子滤波1H-1H COSY(DQF-COSY)
第13页/共19页
4.5.1二维共振谱的形成
• 信号函数s(w1,w2)两个独立的变量都必须是频率。如果其中一个变量是时间, 温度,浓度等,则不属于二维核磁。
预备期
发展期
混合期
检出期
回复平 衡态
1个或 几个脉 冲使体 系激发
建立信 号检出 条件
第2页/共19页
检出 FID信 号
二维核磁的分类
• 1)J分解谱 • -J谱:化学位移和自旋耦合作用分辨开,异核J谱和同核J谱 • 2)化学位移相关谱:-谱,同核偶合,异核偶合,NOE和交换偶合。 • 3)多量子谱 • 二维核磁的表现形式:堆积图,等高线图
7
6
3
4
OH
23
5
4
1
第6页/共19页
6 78 9
第7页/共19页
9
8 7
6O
6
8
5
7
9
1 2
3 4
OH
3
2
9 8
7 6
6
8
O
5
7
9
1 2
3 4
OH
3
2
第8页/共19页
2
3
6
78 9
9
8
7
6
8
O
5
7
9
6 3 12
1 2
3 4
OH
4
5 第9页/共19页
小蠹烯醇1H NMR
第10页/共19页
小蠹烯醇13C NMR
第11页/共19页
小蠹烯醇1H-1H COSY
第12页/共19页
小蠹烯醇双量子滤波1H-1H COSY(DQF-COSY)
第13页/共19页
第四章 核磁共振-氢谱

4.1.3 核的回旋和核的共振
当一个原子核的核磁矩处于磁场HO中,由于核自身的旋 转,而外磁场又力求它取向于磁场方向,在这两种力的作用 下,核会在自旋的同时绕外磁场的方向进行回旋,这种运动称 为Larmor进动。
自旋量子数( I ) 1/2 没有外磁场时,其自旋磁距取向是混乱的 在外磁场H0中,它的取向分为两种(2I+1=2) 一种和磁场方向相反,能量较高 (E=μH0) 一种和磁场方向平行,能量较低 ( E= 0)
前言 过去50年,波谱学已全然改变了化学家、生物学家和生 物医学家的日常工作,波谱技术成为探究大自然中分子内部 秘密的最可靠、最有效的手段。NMR是其中应用最广泛研 究分子性质的最通用的技术:从分子的三维结构到分子动力 学、化学平衡、化学反应性和超分子集体、有机化学的各个 领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖。 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系。 1953年 美国Varian公司试制了第一台NMR仪器。
4.2.4 核磁共振图谱
CHCl3
低场
向左
(δ 增大)
磁场强度
向右
(δ 减小)
高场
图3-5 乙醚的氢核磁共振谱
4.3. 氢的化学位移
4.3.1 化学位移
在一固定外加磁场(H0)中,有机物的1H核磁共 振谱应该只有一个峰,即在:
= E / h = · ( 1/2)· H0
分子中各种质子(原子核)由于所处的化学环 境不同,而在不同的共振磁场下显示吸收峰的 现象,称为化学位移,表示:δ/ppm。
核磁共振的条件:
ΔE = h v迴= h v射= hH0/2π 或 v射= v迴= H0/2π
二维核磁共振波谱

2020/1/1
2D NMR谱图
2020/1/1
脉冲序列
在x轴施加不同脉冲角度的射频宏观磁化强度矢量M的 变化情况。
2020/1/1
自旋回波的脉冲序列
90 x
180 x
DE
DE
AQT
自旋回波的脉冲序列为90x°—DE—180x°—DE— AQT,DE表示某一固定的时间间隔(delay);AQT表示 测定信号的采样时间 。
结束
2020/1/1
2020/1/1
1D NMR的脉冲序列和原理示意图
2020/1/1
傅 里 叶 变 换
2020/1/1
2D NMR
通过记录一系列的1D NMR 谱图获得的,每个1D NMR实验的差别仅在于在脉冲序列引入时间增量Δt (t1= t +Δt)。
2020/1/1
11.5.2 2D NMR相关谱
1.1H-1H 相关谱 (1~4)
11.5.1 概述
(1)二维核磁共振波谱:二个时间变量,二次傅里叶变 换,二个独立的频率信号,横坐标和纵坐标均为频率信 号,而第三维则为强度信号。 (2)两坐标代表的化学位移具有相关性,表明所有质子 发生自旋-自旋偶合的信息。 (3)可以是 1H-1H , 1H-13C相关谱;可提供邻近偶合、 远程偶合信息。 (4)不出现一维谱图m6.8~8.6)
2020/1/1
2D NMR 相关谱
间二硝基苯 1H-1H 相关谱
2020/1/1
1H-13C相关谱
2020/1/1
薄荷醇
1H-13C相 关谱
2020/1/1
内容选择
11.1 核磁共振原理 11.2 核磁共振波谱仪 11.3 1H核磁共振波谱 11.4 13C核磁共振波谱 11.5 二维核磁共振波谱 第十二章
2D NMR谱图
2020/1/1
脉冲序列
在x轴施加不同脉冲角度的射频宏观磁化强度矢量M的 变化情况。
2020/1/1
自旋回波的脉冲序列
90 x
180 x
DE
DE
AQT
自旋回波的脉冲序列为90x°—DE—180x°—DE— AQT,DE表示某一固定的时间间隔(delay);AQT表示 测定信号的采样时间 。
结束
2020/1/1
2020/1/1
1D NMR的脉冲序列和原理示意图
2020/1/1
傅 里 叶 变 换
2020/1/1
2D NMR
通过记录一系列的1D NMR 谱图获得的,每个1D NMR实验的差别仅在于在脉冲序列引入时间增量Δt (t1= t +Δt)。
2020/1/1
11.5.2 2D NMR相关谱
1.1H-1H 相关谱 (1~4)
11.5.1 概述
(1)二维核磁共振波谱:二个时间变量,二次傅里叶变 换,二个独立的频率信号,横坐标和纵坐标均为频率信 号,而第三维则为强度信号。 (2)两坐标代表的化学位移具有相关性,表明所有质子 发生自旋-自旋偶合的信息。 (3)可以是 1H-1H , 1H-13C相关谱;可提供邻近偶合、 远程偶合信息。 (4)不出现一维谱图m6.8~8.6)
2020/1/1
2D NMR 相关谱
间二硝基苯 1H-1H 相关谱
2020/1/1
1H-13C相关谱
2020/1/1
薄荷醇
1H-13C相 关谱
2020/1/1
内容选择
11.1 核磁共振原理 11.2 核磁共振波谱仪 11.3 1H核磁共振波谱 11.4 13C核磁共振波谱 11.5 二维核磁共振波谱 第十二章
波谱分析课件第4章 核磁共振碳谱

去偶的目的:提高灵敏度、简化谱图。 一般指质子去偶。
8
常用的去偶方法有:
➢质子宽带去偶法(Proton Broad Band Decoupling)
➢偏共振去偶法(Off-Resonance Decouping) ➢门控去偶法(Gated Decoupling) ➢反转门控去偶法(Inverted Gated Decoupling) ➢选择质子去偶 ➢INEPT谱和DEPT谱
C-O C-Cl
C-Br
40 - 80 35 - 80 25 - 65
Unsaturated carbon - sp2
C=O
C=O
C=C
C C Alkyne carbons - sp
Aromatic ring carbons
Acids Amides Esters Anhydrides Aldehydes Ketones
65 - 90 100 - 150 110 - 175
155 - 185 185 - 220
200
150
100
50
0
Correlation chart for 13C Chemical Shifts (ppm)
22
4.5 核磁共振碳谱解析
23
24
25
CYCLOHEXENE
CYCLOHEXANONE
10
偏共振去耦(Off-resonance decoupling)
偏共振去耦的目的:降低1J,改善因耦合产生 的谱线重叠而又保留了耦合信息,确定碳原子 级数。
使用偏离1H核磁共振的中心频率0.5~1000Hz的 射频 作为质子去偶频率。
11
未去耦
1H
(CH) (CH2) (CH3)
8
常用的去偶方法有:
➢质子宽带去偶法(Proton Broad Band Decoupling)
➢偏共振去偶法(Off-Resonance Decouping) ➢门控去偶法(Gated Decoupling) ➢反转门控去偶法(Inverted Gated Decoupling) ➢选择质子去偶 ➢INEPT谱和DEPT谱
C-O C-Cl
C-Br
40 - 80 35 - 80 25 - 65
Unsaturated carbon - sp2
C=O
C=O
C=C
C C Alkyne carbons - sp
Aromatic ring carbons
Acids Amides Esters Anhydrides Aldehydes Ketones
65 - 90 100 - 150 110 - 175
155 - 185 185 - 220
200
150
100
50
0
Correlation chart for 13C Chemical Shifts (ppm)
22
4.5 核磁共振碳谱解析
23
24
25
CYCLOHEXENE
CYCLOHEXANONE
10
偏共振去耦(Off-resonance decoupling)
偏共振去耦的目的:降低1J,改善因耦合产生 的谱线重叠而又保留了耦合信息,确定碳原子 级数。
使用偏离1H核磁共振的中心频率0.5~1000Hz的 射频 作为质子去偶频率。
11
未去耦
1H
(CH) (CH2) (CH3)
第4章 碳核磁共振波谱和二维NMR谱(3)

2) 二维核磁共振的实验方法
各种脉冲序列的应用。
2
3) 2D-NMR谱的表示方法
a) 堆积图——绘制费时,少 b) 等高线图——应用广泛
4) 2D-NMR的分类
a) 2D-J分解谱(δ-J谱),把δ和J值在两个频率轴展开,包括同核J-分解 谱和异核J-分解谱
b) 二维相关谱,包括同核(1H-1H)和异核(1H-13C)化学位移相关谱, 在此基础上又发展了二维NOE谱、总相关谱等;应用最普遍。
19
Brucine的HSQC(高场部分)
20
f) 1H检测的异核多键化学位移相关谱(HMBC)
➢与COLCO相应 ➢不是用13C检测,而是用1H检测C-H COSY谱 ➢一键相关性显示其大的1JCH值,给出两个交叉峰 ➢充分利用1H较高的灵敏性,样品量少,灵敏度高 ➢水平方向为1H的化学位移,垂直方向为13C的化学位移,垂 直方向的分辨率较低 ➢分为两种,一种包括所有nJCH(n=1, 2, 3),另一种压制了 1JCH信号,突显2JCH和3JCH信息。
7
CHO
1
6
2
5 4
3 OCH3
OH
18
香草醛的COLOC谱(圆圈内为1JCH耦合)
e) 1H检测的异核多(单)量子相关谱(HMQC/HSQC)
➢与C-H COSY相应 ➢不是用13C检测,而是用1H检测C-H COSY谱 ➢充分利用1H较高的灵敏性,灵敏度高 ➢水平方向为1H的化学位移,垂直方向为13C的化学位移,垂 直方向的分辨率较低
28
δ-VE 的 2D-INADEQUATE谱
29
甾族C30H54碳骨架结构
30
4.4.5 2D NMR实例
31
化合物C5H8O5,根据如下谱图确定结构,并说明依据。
各种脉冲序列的应用。
2
3) 2D-NMR谱的表示方法
a) 堆积图——绘制费时,少 b) 等高线图——应用广泛
4) 2D-NMR的分类
a) 2D-J分解谱(δ-J谱),把δ和J值在两个频率轴展开,包括同核J-分解 谱和异核J-分解谱
b) 二维相关谱,包括同核(1H-1H)和异核(1H-13C)化学位移相关谱, 在此基础上又发展了二维NOE谱、总相关谱等;应用最普遍。
19
Brucine的HSQC(高场部分)
20
f) 1H检测的异核多键化学位移相关谱(HMBC)
➢与COLCO相应 ➢不是用13C检测,而是用1H检测C-H COSY谱 ➢一键相关性显示其大的1JCH值,给出两个交叉峰 ➢充分利用1H较高的灵敏性,样品量少,灵敏度高 ➢水平方向为1H的化学位移,垂直方向为13C的化学位移,垂 直方向的分辨率较低 ➢分为两种,一种包括所有nJCH(n=1, 2, 3),另一种压制了 1JCH信号,突显2JCH和3JCH信息。
7
CHO
1
6
2
5 4
3 OCH3
OH
18
香草醛的COLOC谱(圆圈内为1JCH耦合)
e) 1H检测的异核多(单)量子相关谱(HMQC/HSQC)
➢与C-H COSY相应 ➢不是用13C检测,而是用1H检测C-H COSY谱 ➢充分利用1H较高的灵敏性,灵敏度高 ➢水平方向为1H的化学位移,垂直方向为13C的化学位移,垂 直方向的分辨率较低
28
δ-VE 的 2D-INADEQUATE谱
29
甾族C30H54碳骨架结构
30
4.4.5 2D NMR实例
31
化合物C5H8O5,根据如下谱图确定结构,并说明依据。
二维核磁共振谱

COSY OF PBF
NOESY of PBF
COSY
Codeine的NOESY
6,7
3
5
9
10
12 11
O
COSY of 2-丁烯酸乙酯
A
O
B
2。COSY-45 。
• 基本脉冲:90 。 -t1-45 。 -ACQ. 在COSY-90的基础上,将第二脉冲改变成45 。 许多的天然产物的直接连接跃迁谱峰在对 角线附近,导致谱线相互重叠,不易解析。 采用COSY-45 。由于大大限制了多重峰内 间接跃迁,重点反映多重峰间的直接跃迁, 减少了平行跃迁间的磁化转移强度,即消 除了对角线附近的交叉峰,使对角线附近 清晰。
第四章 二维核磁共振谱 4.1二维核磁共振的概述
2。二维谱实验
• A.原则上二维谱可以用概念上不同的三种 实验获得,(如图4.1),(1).频率域实验 (frequency- frequency) (2).混合时域 (frequency-time)实验(3). 时域(time-time) 实验.它是获得二维谱的主要方法,以两个独 立的时间变量进行一系列实验,得到S(t1,t2), 经过两次傅立叶变换得到二维谱S(ω1,ω2). 通常所指的2D-NMR均是时间域二维实验
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
• 二维化学位移相关谱包括 • 同核化学位移相关谱(Homonuclear correlation) • 1)通过化学键:COSY, TOCSY, 2DINADEQUATE。 • 2)通过空间:NOESY, ROESY。 • 异核化学位移相关谱(Heteronuclear correlation) • 强调大的偶合常数:1H-13C –COSY • 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是一种旋转坐标系实验(自旋锁定实验),自旋锁定是把 COSY序列中的第二脉冲以及NOESY序列中最后两个脉冲 (包括混合时间),用一个长射频脉冲取代,把自旋沿着旋转 坐标系的一个锁定,在这种情况下不存在化学位移差,通过发 生标量偶合的磁化转移,导致了全部相关。TOCSY也有称之为 HOHAHA.可以提供自旋系统中偶合关联信息。
4.2.1同核化学位移相关谱
一。COSY(Correlated spectroscopy)
所谓的COSY系指同一自旋体系里质子之 间的偶合相关。1H-1H-COSY可以1H-1H之 间通过成键作用的相关信息,类似于一维 谱同核去偶,可提供全部1H-1H之间的关联。 因此1H-1H-COSY是归属谱线,推导结构及 确定结构的有力工具。
1。COSY-90。的基本脉冲序列包括两个基本脉
冲在此脉冲作用下,根据发展期t1的不同,自旋 体系的各个不同的跃迁之间产生磁化传递,通过 同核偶合建立同种核共振频率间连接图。此图的 二个轴都是1H的δ在ω1=ω2的对角线上可以找 出一维1H谱相对应谱峰信号。通过交叉峰分别作 垂线及水平线与对角线相交,即可以找到相应偶 合的氢核。因此从一张同核位移相关谱可找出所 有偶合体系,即等于一整套双照射实验的谱图 。
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
二维化学位移相关谱包括 同核化学位移相关谱(Homonuclear correlation) 1)通过化学键:COSY, TOCSY, 2D-
INADEQUATE。 2)通过空间:NOESY, ROESY。 异核化学位移相关谱(Heteronuclear correlation) 强调大的偶合常数:1H-13C –COSY 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)
相敏NOESY 与COSY类似,NOESY也适用于相敏 形式。在这种相敏谱上,分辨率高,容 易辨认信号峰,而且谱线比非相敏形式 的谱线狭窄,从而限制了假峰的产生, 有效增加了灵敏度。
phase-sensitive NOESY of strychnine.
N
N
O
O
四。TOCSY
TOCSY脉冲序列:
3.二维谱的表达方式
(1)堆积图(stacked plot). 堆积图的优点是直观,具有立体感.缺点是难 以确定吸收峰的频率。大峰后面可能隐藏 小峰,而且耗时较长。 (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优点 是容易获得频率定量数据,作图快。缺点 是低强度的峰可能漏画。目前化学位移相 关谱广泛采用等高线。
2二维谱实验
A.原则上二维谱可以用概念上不同的三种实
验获得,(如图4.1),(1).频率域实验(frequencyfrequency) (2).混合时域(frequency-time)实 验(3). 时域(time-time)实验.它是获得二维谱 的主要方法,以两个独立的时间变量进行一系 列实验,得到S(t1,t2),经过两次傅立叶变换得 到二维谱S(ω1,ω2).通常所指的2D-NMR均是 时间域二维实验
图4.3 堆积图
等高线
4.二维谱峰的命名
(1)交叉峰(cross peak):出现在 ω1≠ω2处,(即非对角线上)。从峰的位 置关系可以判断哪些峰之间有偶合关系, 从而得到哪些核之间有偶合关系,交叉峰 是二维谱中最有用的部分。 (2)对角峰(Auto peak):位于对角线 (ω1=ω2)上的峰,称为对角峰。对角峰 在F1和F2轴的投影。
但是由于13C天然丰度仅仅为1.1%,出现13C13C偶合的几率为0。01%,13C-13C偶合引起的
卫线通常离13C强峰只有20Hz左右,其强度又仅 仅是13C强峰的1/200,这种弱峰往往出现在强 13C峰的腋部,加上旋转边带,质子去偶不完全, 微量杂质的影响等因素,使1JC-C测试非常困难。 利用双量子跃迁的相位特性可以压住强线,突 出卫线求出JC-C,并根据Jc-c确定其相邻的碳。 一个碳原子最多可以有四个碳与之相连,利用 双量子跃迁二维技术测量偶合碳的双量子跃迁 的频率。13C-13C同核偶合构成二核体系 (AX,AB)两个偶合的13C核能产生双量子跃迁, 孤立的碳则不能。
谱图正负峰以不同的颜色表示(下图蓝色圆圈为正
峰,红色为负峰)。也可以用实心表示正峰,空心 表示负峰。 其交叉峰为纯吸收线形,对角线为色散型 从相敏COSY可以直接读出J值。这里需要辨认主动 偶合和被动偶合。所谓的主动偶合就是相关交叉峰 直接的偶合。其余为被动偶合。主动偶合的每一对 峰总是一正一负。被动偶合的交叉峰是相位相同 (同为正或同为负)
18 --> 11 --> 16 --> 15 --> 17 --> 13.
三。NOESY(Nuclear Overhauser Effect Spectroscopy)
核间磁化传递是通过非相干作用传递,这种传递是靠 交叉驰豫和化学交换来进行。即样品间偶极-偶极传递 的。它的基本脉冲是: π/2-t1-π/2-tm-π/2-ACQ NOESY的基本序列在COSY序列的基础上,加一个固 定延迟和第三脉冲,以检测NOE和化学交换的信息。混 合时间tm是NOESY实验的关键参数,tm的选择对检 测化学交换或NOESY效果有很大影响。选择合适的tm, 可在最后一个脉冲,产生最大的交换,或建立最大的 NOE. NOESY的谱图特征类似于COSY谱,一维谱中出现出 现NOE的两个核在二维谱显示交叉峰。NOESY可以在 一张谱图上描绘出分子之间的空间关系。
图4.1 2D-NMR 三种获得方式
B) 二维核磁共振时间分割
二维谱实验中,为确定所需的两个独立的时间变量,要用特
种技术-时间分割。即把整个时间按其物理意义分割成四个 区间。(如图所示) (1)预备期:预备期在时间轴上通常是一个较长的时期, 使核自旋体系回复对平衡状态,在预备期末加一个或多个射 频脉冲,以产生所需要的单量子或多量子相干。 (2)发展期:在t1开始时由一个脉冲或几个脉冲使体系激 发,此时间系控制磁化强度运动,并根据各种不同的化学环 境的不同进动频率对它们的横向磁化矢量作出标识。 (3)混合期:在此期间通过相干或极化的传递,建立检测 条件。 4)检测期:在此期间检测作为t2函数的各种横向矢量的 FID的变化以及它的初始相及幅度受到t1函数的调制。
A
M
X
与COSY有关的实验自旋回波
COSY(SECSY),双量子相干谱(DQCCOSY),同核接力相干谱(RCT).有兴趣的 同学,可以阅读有关的书籍。
二.天然丰度的双量子13C谱 INDEQUATE (13C-13C-COSY)
这是二维碳骨架直接测定法,是确定碳原子连 接顺序的实验,一种双量子相干技术。是一种 13C-13C化学位移相关谱。在质子去偶的13C谱 中,除了13C信号外,还有比它弱200倍的13C13C偶合卫星峰,13C-13C偶合含有丰富的分子 结构和构型的信息。由于碳是组成分子骨架, 它更能直接反映化学键的特征与取代情况。
O
COSY of 2-丁烯酸乙酯
A
O
B
2。COSY-45 。
-t1-45 。 -ACQ. 在COSY-90的基础上,将第二脉冲改变成45 。 许多的天然产物的直接连接跃迁谱峰在对角 线附近,导致谱线相互重叠,不易解析。采 用COSY-45 。由于大大限制了多重峰内间接 跃迁,重点反映多重峰间的直接跃迁,减少 了平行跃迁间的磁化转移强度,即消除了对 角线附近的交叉峰,使对角线附近清晰。
COSY OF PBF
NOESY of PBFCOSYCodeine的NOESY
6,7
3
5
9
10
12 11
Codeine在高场放大的NOESY
11
18 16
14
17 17’
13
13’ 18’
Table of NOEs 8 - 7, 12 7 - 18, 18' 3 - 5, 10 5 - 11, 16, 18' 9 - 10, 17, 17' 10 - 16 11 - 18, 16, 14, 18' 18 - 13, 18' 16 - 14, 17 13 - 14, 17, 17' 13' - 17, 17' 17 - 17‘
hm
ed
cd bc fh
hk
ci
c fe d e f k
i b a h m
ab af
e
H f h
a OH k
b
C
d
OH
i
m
它只有一个双量子跃迁,其频率正比于两个偶
合的13C核的化学位移之和的平均值。所以如果 两个碳具有相同的双量子跃迁频率,即可以判 断,它们是相邻。 在INADEQUATE谱图中F1与F2分别代表双量子 跃迁频率和13C的卫线,依次代表双量子和单量 子跃迁频率。谱图中一个轴是13C的化学位移, 一个为双量子跃迁频率,其频率正比于两个偶 合的13C核的化学位移之和的平均值。因此谱图 中F1=2F2的斜线两侧对称分布着两个相连的13C 原子信号,表示碳偶合对的单量子平均频率与 双量子频率间的关系,水平连线表明一对偶合 碳具有相同的双量子跃迁频率,可以判断它们 是直接相连的碳。依此类推可以找出化合物中 所有13C原子连接顺序。
二维核磁共振谱
Two dimension nuclear magnetic resonance, 2D-NMR
2D-NMR
1971年Jeener 首先提出 2D-NMR 思想:
具有两个时间变量的nmr 1976年 Ernst小组成功实现了2D-NMR实验后,确 定了二维核磁共振的理论基础 20世纪80年代:2D-NMR加速发展 用途: 解析复杂有机分子最有力的工具;溶液中分 子的三维空间结构的测定;分子动态过程的研究: 多维NMR技术:研究生物大分子(蛋白质、核酸等) 最有效的方法