用于正常使用极限状态验算的框架梁标准组合表
桥博中组合对应规范

一、预应力混凝土梁1.持久状况正常使用极限状态计算(结构抗裂验算,第六章)参照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(以下简称桥规)条,对预应力混凝土受弯构件进行正截面和斜截面抗裂验算。
(1)、正截面拉应力要求a.全预应力构件短期效应组合预制构件(对应桥梁博士正常使用组合II)σσpc≤0分段浇筑构件(对应桥梁博士正常使用组合II)σσpc≤0即短期效应组合下不出现拉应力。
类构件(短期效应组合)短期效应组合(对应桥梁博士正常使用组合II)σst-σpc≤长期效应组合(对应桥梁博士正常使用组合I)σlt-σpc≤0即长期组合不出现拉应力,短期组合不超过限值。
(2)、斜截面主拉应力要求a. 全预应力构件(短期效应组合)预制构件(对应桥梁博士正常使用组合II)σtp≤现场浇筑构件(对应桥梁博士正常使用组合II)σtp≤b. A类构件短期效应组合预制构件(对应桥梁博士正常使用组合II)σtp≤现场浇筑构件(对应桥梁博士正常使用组合II)σtp≤2、持久状况和短暂状况构件的应力计算(持久状况)持久状况预应力混凝土构件应力计算参照《桥规》条的规定加以考虑。
计算使用阶段正截面混凝土的法向压应力和斜截面混凝土的主压应力,并不得超过规定限值。
考虑预加力效应,分项系数取,并采用标准组合,汽车荷载考虑冲击系数。
(1)正截面验算:标准组合下(对应桥梁博士正常使用组合III)构件受压区边缘混凝土法向压应力σkc+σpt≤(2)斜截面验算:标准组合下构件边缘混凝土主压应力(对应桥梁博士正常使用组合III)σcp≤3、持久状况和短暂状况构件的应力计算(短暂状况)(对应桥梁博士施工阶段应力)短暂状况预应力混凝土应力验算根据《桥规》7、2、8条,计算在预应力和构件自重等施工荷载作用下截面边缘的法向应力。
(1)法向压应力:σcct≤’(2)法向拉应力:(拉应力σctt不应超过’)a.当σctt≤’,预拉区纵向钢筋配筋率不小于%b.当σctt=’,预拉区纵向钢筋配筋率不小于%c.当’<σctt<’,预拉区纵向钢筋配筋率线性内插4、持久状况承载能力极限状态验算(1)、正截面抗弯承载能力(对应桥梁博士承载能力组合I)根据《桥规》条,按基本组合进行持久状况正截面抗弯承载能力极限状态计算。
08--水工钢筋砼--钢筋混凝土正常使用极限状态 2012

概述
四、裂缝的控制等级规定
分三级: 一级---严格要求不出现裂缝的构件,按荷载效应的标准组合 进行计算,构件受拉边缘砼不应产生拉应力; 二级---一般要求不出现裂缝的构件,按荷载效应的标准组合 进行计算,构件受拉边缘砼允许产生拉应力,但拉应力不应超
过以砼拉应力限制系数αct控制的应力值;
三级---允许出现裂缝的构件,按荷载效应的标准组合分别进 行计算,最大裂缝宽度计算值不应超过附录5表1所列允许值。
概述
三、裂缝控制验算规范规定
钢筋混凝土结构构件设计时,应根据使用要求进行 不同的裂缝控制验算: 1、抗裂验算
承受水压的轴心受拉构件、小偏心受拉构件、以及 发生裂缝后会引起严重渗漏的其它构件,应进行抗裂 验算。如有可靠防渗措施或不影响正常使用时,也可 不进行抗裂验算。
抗裂验算时,结构构件受拉边缘的拉应力不应超过
8.1 抗裂验算
二、受弯构件
4、讨论: (1)γm 的影响因素: γm是受拉区为梯形的应力图形,按Mcr相等的原则, 折算成直线应力图形时,相应受拉边缘应力比值 γm与假定的受拉区应力图形有关,各种截面的γm值见 附录五表4 γm还与截面高度h﹑配筋率和受力状态有关 γm随h值的增大而减小
述
概述
一、结构的极限状态分类
分为两类: 1、承载能力极限状态: 结构或构件达到最大承载力或不适应承载的过大变 形。超过该极限状态,结构就不能满足预定的安全性 要求。 对各种结构构件都应进行承载能力极限状态设计。 采用荷载设计值及材料强度设计值。 荷载效应采用基本组合及偶然组合。
概述
普通钢筋混凝土结构构件,由于混凝土抗拉强度低,通常带 裂缝工作,裂缝的控制等级属于三级,故需进行裂缝宽度的验 算。若需达到一、二级,需使用预应力技术。
混凝土结构原理第9章正常使用极限状态验算课件

对于弹性均质材料截面,EI为常数,M- 关系为直线。
钢筋混凝土是不均质的非弹性材料,因此受弯过程中EI不 是常数。
由于混凝土开裂、 M
弹塑性应力-应变关
EcI0
系和钢筋屈服等影
响,钢筋混凝土适
My
筋梁的M- 关系不
Ms
再是直线,而是随
弯矩增大,截面曲
Mcr
Bs
率呈曲线变化。
9.3.1 截面弯曲刚度的概念及定义
9.2.3 平均裂缝宽度
裂缝宽度是指受拉钢筋截面重心水平处构件侧表面的裂缝 宽度。裂缝宽度的离散性比裂缝间距更大些。
平均裂缝宽度计算式 平均裂缝宽度wm等于构件裂缝区段内钢筋的平均伸长与相
应水平处构件侧表面混凝土平均伸长的差值。
9.2.3 平均裂缝宽度
wm
e smlm
e
l ctm m
e
sm
(1
偏心受压构件:
s sq
Nq (e h0 ) h0 As
0.87 0.12 1 f
h0 2 e
9.2.4 最大裂缝宽度及其验算
确定最大裂缝宽度的方法
最大裂缝宽度由平均裂缝宽度乘以“扩大系数”得到。 “扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力
则受弯构件的挠度为
f
S (M k
M
q
)l
2 0
S M ql02 q
Bs
Bs
上式仅用刚度B表达时,
f
S
M
k
l
2 0
B
令以上两式相等可得刚度B为,
B
Mk
M q (q 1) M k
Bs
用于正常使用极限状态验算的框架梁标准组合表

恒荷载+活荷载 1.0×S Gk +1.0× QK S -82.68 108.46 94.22 -85.31 -109.33 -7.77 2.85 -7.20 -6.50 -1.57 -80.53 103.19 88.21 -80.46 -103.16 -6.19 1.28 -7.20 -8.07 -3.14 -91.76 116.27 98.95 -89.11 -115.40
恒荷载+活荷载 1.0×S Gk +1.0× QK S -77.72 98.10 72.30 -78.63 -98.40 -3.55 2.87 -2.45 -2.99 -2.31 -76.37 90.31 70.27 -76.33 -90.30 -2.77 2.17 -2.35 -3.61 -3.01 -83.95 98.17 75.52 -83.08 -97.89
荷载类型 楼层 截面位置 左端 AB跨 跨中 右端 左端 BC跨 跨中 右端 左端 4 CD跨 跨中 右端 左端 DE跨 跨中 右端 左端 EF跨 跨中 右端 M V M V M V M V M V M V M V M V M V M V M V M V M V M V M V S Gk -68.07 76.57 55.64 -68.11 -76.58 -2.16 3.64 0.10 -0.07 -1.54 -52.63 58.74 42.21 -52.63 -58.74 -0.07 1.54 0.10 -2.16 -3.64 -68.11 76.58 55.64 -68.07 -76.57 S QK -19.25 15.34 17.29 -17.69 -21.47 -0.56 -0.57 -1.32 -1.69 -0.57 -25.85 31.57 25.56 -25.85 -31.57 -1.69 0.57 -1.32 -0.56 0.57 -17.69 21.47 17.28 -17.57 -21.43
内力组合,配筋

=M-V ;
=V-q
将框架梁轴线处的内力换算为梁支座边缘处的内力值,计算过程见下 表。(梁端负弯矩调幅系数为)
轴线处内力换算为梁支座边缘处内力值(BF 跨)
截面位置
重力荷 内力
载
恒载
轴 线 处 内 力
梁支 座边 缘处 内力
调幅 后梁 支座 边缘 处内 力
载+风载)。 (2)地震作用效应和其他荷载效应的基本组合。 考虑重力荷载代表值、风载和水平地震组合(对一般结构,风载组 合系数为 0):×重力荷载+×水平地震。 (3)荷载效应的标准组合 荷载效应的标准组合:×恒载+×活载。
二、框架梁内力组合 选择第四层 BF 框架梁为例进行内力组合,考虑恒载、活载、重力荷载代
梁跨中截面:+Mmax 及相应的 V(正截面设计),有时需组合-M。 梁支座截面:-Mmax 及相应的 V(正截面设计),Vmax 及相应的 M (斜截面设计),有时需组合+Mmax。 框架柱的控制截面通常是柱上、下梁端截面。柱的剪力和轴力在 同一层柱内变化很小,甚至没有变化,而柱的梁端弯矩最大。同一端 柱截面在不同内力组合时,有可能出现正弯矩或负弯矩,考虑到框架 柱一般采用对称配筋,组合时只需选择绝对值最大的弯矩。框架柱的 控制截面最不利内力组合有以下几种: 柱截面:|Mmax|及相应的 N、V;
截面位置
V(kN)
(kN)
Asv/s= /
左端
右端
(8) 验算最小配箍率 ρ=Asv/(b*s)=201/(250*200)=% ρ=%≥ρmin=%,满足最小配箍率要求
实配四肢箍筋(Asv/s) 8@200 8@200
《建筑施工门式钢管脚手架安全技术规范》(JGJ128-2010)

《建筑施工门式钢管脚手架安全技术规范》(JGJ128-2010)1 总则1.0.1 为在门式钢管脚手架的设计与施工中贯彻执行国家安全生产法规,做到技术先进、经济合理、安全适用,制定本规范。
1.0.2 本规范适用于房屋建筑与市政工程施工中采用门式钢管脚手架搭设的落地式脚手架、悬挑脚手架、满堂脚手架与模板支架的设计、施工和使用。
1.0.3 在施工前应按本规范的规定对门式钢管脚手架或模板支架结构件及地基承载力进行设计计算,并应编制专项施工方案。
1.0.4 门式钢管脚手架的设计、施工与使用,除应符合本规范外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 门式钢管脚手架frame scaffoldings with steel tubules以门架、交叉支撑、连接棒、挂扣式脚手板、锁臂、底座等组成基本结构,再以水平加固杆、剪刀撑、扫地杆加固,并采用连墙件与建筑物主体结构相连的一种定型化钢管脚手架(图2.1.1)。
又称门式脚手架。
2.1.2 门架frame门式脚手架的主要构件,其受力杆件为焊接钢管,由立杆、横杆及加强杆等相互焊接组成(图2.1.2)。
2.1.3 配件accessories门式脚手架的其它构件,包括连接棒、锁臂、交叉支撑、挂扣式脚手板、底座、托座。
2.1.4 连接棒spigot用于门架立杆竖向组装的连接件,中间带有凸环的短钢管制作。
2.1.5 交叉支撑cross bracing每两榀门架纵向连接的交叉拉杆。
2.1.6 锁臂locking arm门架立杆组装接头处的拉接件,其两端有圆孔挂于上下榀门架的锁销上。
2.1.7 锁销locking pin用于门架组装时挂扣交叉拉杆和锁臂的锁柱,以短圆钢围焊在门架立杆上,其外端有可旋转90°的卡销。
2.1.8 挂扣式脚手板hanging platform两端设有挂钩,可紧扣在两榀门架横梁上的定型钢制脚手板。
2.1.9 调节架adjust frame用于调整架体高度的梯形架,其高度为600mm~1200mm,宽度与门架相同。
混凝土结构设计规范--正常使用极限状态验算

正常使用极限状态验算8.1 裂缝控制验算第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算:1一级--严格要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤0(8.1.1-1)2二级--一般要求不出现裂缝的构件在荷载效应的标准组合下应符合下列规定:σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定:σcq-σpc≤0(8.1.1-3)3三级--允许出现裂缝的构件按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定;ωmax≤ω1im(8.1.1-4) 式中σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力;σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算;f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用;ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算;ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。
注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。
第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并考虑长期作用影响的最大裂缝宽度(mm)可按下列公式计算:(8.1.2-1)(8.1.2-2)d eq=Σn i d2i/Σn i v i d i(8.1.2-3)(8.1.2-4)式中αcr--构件受力特征系数,按表8.1.2-1采用;ψ--裂缝间纵向受拉钢筋应变不均匀系数:当ψ<0.2时,取ψ=0.2;当ψ>1时,取ψ=1;对直接承受重复荷载的构件,取ψ=1;σsk--按荷载效应的标准组合计算的钢筋混凝土构件纵向受拉钢筋的应力或预应力混凝土构件纵向受拉钢筋的等效应力,按本规范第8.1.3条计算;E s--钢筋弹性模量,按本规范表4.2.4采用;c--最外层纵向受拉钢筋外边缘至受拉区底边的距离(mm):当c<20时,取c=20;当c>65时,取c=65;ρte--按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率;在最大裂缝宽度计算中,当ρte<0.01时,取ρte=0.01;A te--有效受拉混凝土截面面积:对轴心受拉构件,取构件截面面积;对受弯、偏心受压和偏心受拉构件,取A te=0.5bh+(b f-b)h f,此处,b f、h f为受拉翼缘的宽度、高度;A s--受拉区纵向非预应力钢筋截面面积;A p--受拉区纵向预应力钢筋截面面积;d eq--受拉区纵向钢筋的等效直径(mm);d i--受拉区第i种纵向钢筋的公称直径(mm);n i--受拉区第i种纵向钢筋的根数;v i--受拉区第i种纵向钢筋的相对粘结特性系数,按表8.1.2-2采用。
结构设计组合系数规范规定与设计使用表

结构设计组合系数规范规定与设计使用表前言实际工作中广大设计人员往往忽略了结构设计组合系数的规定,认为软件已经考虑了规范规定,而不知其中的特殊规定,在设计相关结构时没能很好调整软件的组合系数,存在一定的安全隐患,本人详细查阅了有关规范并整理如下:第一章《建筑结构荷载规范》GB 50009― 2001中有关规定3.2.3 对于基本组合,荷载效应组合的设计值S 应从下列组合值中取最不利值确定:1)由可变荷载效应控制的组合:n S=γGSGk+γQ1SQ1k+∑γQiyciSQiki=2式中γG―永久荷载的分项系数,应按第3.2.5 条采用;γQi―第i 个可变荷载的分项系数,其中γQ1 为可变荷载Q1 的分项系数,应按第3.2.5 条采用;SGK―按永久荷载标准值Gk 计算的荷载效应值;SQik―按可变荷载标准值Qik 计算的荷载效应值,其中SQ1k 为诸可变荷载效应中起控制作用者;Ψci―可变荷载Qi 的组合值系数,应分别按各章的规定采用;n―参与组合的可变荷载数。
2)由永久荷载效应控制的组合:n S=γGSGk+∑γQiyciSQiki=1注:1 基本组合中的设计值仅适用于荷载与荷载效应为线性的情况。
2 当对SQ1k 无法明显判断时,轮次以各可变荷载效应为SQ1k,选其中最不利的荷载效应组合。
3 当考虑以竖向的永久荷载效应控制的组合时,参与组合的可变荷载仅限于竖向荷载。
3.2.4 对于一般排架、框架结构,基本组合可采用简化规则,并应按下列组合值中取最不利值确定:1)由可变荷载效应控制的组合:S=γGSGk+γQ1SQ1knS=γGSGk+0.9∑γQiSQiki=12)由永久荷载效应控制的组合仍按公式(3.2.3-2)式采用。
3.2.5 基本组合的荷载分项系数,应按下列规定采用:1 永久荷载的分项系数:1)当其效应对结构不利时―对由可变荷载效应控制的组合,应取1.2;―对由永久荷载效应控制的组合,应取1.35;2)当其效应对结构有利时―一般情况下应取1.0;―对结构的倾覆、滑移或漂浮验算,应取0.9。