一元一次方程概念及解青釉网

合集下载

一元一次方程的概念

一元一次方程的概念

一元一次方程的概念一元一次方程是数学中常见的基础方程,是一种只含有一个未知数的线性方程。

它的基本形式为ax + b = 0,其中a和b为已知常数,x 为未知数。

一元一次方程通常用于描述简单的关系或问题,其求解过程也相对简单。

下面将从一元一次方程的定义、求解方法和实际应用三个方面对其进行详细介绍。

1. 一元一次方程的定义一元一次方程是指只含有一个未知数的线性方程。

线性方程的一次方程指的是方程中的未知数的最高次数为1,而一元则表示方程中只有一个未知数。

一元一次方程的一般形式为ax + b = 0,其中a和b为已知常数,x 为未知数。

方程中的a称为未知数的系数,b称为常数项。

2. 一元一次方程的求解方法一元一次方程的求解是通过对方程两边进行等式性质变换,逐步将未知数的系数和常数项进行运算,最终得出未知数的解。

具体求解一元一次方程的步骤如下:(1)将方程两边进行等式性质变换,移项使得方程变为ax = -b的形式。

(2)将方程两边同时除以未知数的系数a,得到x = -b/a。

(3)根据求出的解x,可得到方程的解集。

需要注意的是,当a=0时,方程不再是一元一次方程,而是一个常数方程。

在求解过程中,需要排除a=0的情况。

3. 一元一次方程的实际应用一元一次方程在实际问题中具有广泛的应用。

它可以用来描述和求解各类线性关系,例如经济学中的成本、销售收入的关系,物理学中的速度、加速度的关系等。

举例来说,假设一个电子商务平台每天有一定数量的订单交易,订单平均价格为p元。

现在要计算每天的总交易额。

假设总交易额为T 元,则可以用一元一次方程来描述该问题。

假设每天的订单数量为n,则根据题意得到方程T = pn。

将此方程化简后得到T = pn。

已知每天的订单数量n,将其代入方程中即可求得总交易额T。

以上是一元一次方程的概念、求解方法和实际应用的介绍。

一元一次方程作为数学中最基础的方程之一,对于理解和解决各类问题具有重要意义。

一元一次方程的定义及解法

一元一次方程的定义及解法

一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a0)。

方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。

通常形式是ax+b=0(a,b为常数,且a0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。

方程一词来源于我国古算术书《九章算术》。

在这本著作中,已经会列一元一次方程。

法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。

在19世纪以前,方程一直是代数的核心内容。

详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。

移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。

性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。

一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=b(a0)的形式;5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

一元一次方程的定义及解法

一元一次方程的定义及解法

一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a0)。

方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。

通常形式是ax+b=0(a,b为常数,且a0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。

方程一词来源于我国古算术书《九章算术》。

在这本著作中,已经会列一元一次方程。

法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。

在19世纪以前,方程一直是代数的核心内容。

详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。

移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。

性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。

一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=b(a0)的形式;5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

一元一次方程的定义和解

一元一次方程的定义和解

一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2.一元一次方程:只含有一个未知数元x,未知数x的指数都是1次,这样的方程叫做一元一次方程.例如:1700+50x=1800,2x+1.5x=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值或几个数值,而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质1:等式两边都加上或减去同个数或式子,结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c
2等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=bc≠0,那么ac=bc
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、去分母方程两边同乘各分母的最小公倍数
2、去括号按去括号法则和分配律
3、移项把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号
4、合并把方程化成ax=ba≠0形式
5.系数化为1在方程两边都除以未知数的系数a,得到方程的解x=ba.。

一元一次方程的定义

一元一次方程的定义

一元一次方程的定义一元一次方程是代数学中的基本概念之一。

它由一个未知数和与该未知数有关的系数、常数构成,并且表达式中各项的最高次数为一。

一元一次方程的一般形式为“ax + b = 0”,其中a和b分别表示系数和常数,x表示未知数。

一元一次方程的解是使方程两边相等的未知数的值。

解决一元一次方程的过程就是找到满足该方程的未知数的值。

通常,解一元一次方程的步骤是先合并同类项,然后进行系数和常数的运算,最后通过移项将未知数x的项与常数项隔离开来。

解一元一次方程的方法有很多种,可以通过等式的性质进行运算,也可以利用变量的代入消去,还可以使用图形解法求得方程的解。

下面是几种常用的解法:1. 等式的性质:一元一次方程中的等式,可以通过加减乘除等运算规则进行求解。

通过对等式两边同时进行相同的运算,可以保证等式仍然成立。

2. 变量的代入消去:对于一元一次方程组,可以通过将一个方程的解代入到另一个方程中,消去其中一个变量,从而得到只含有一个变量的方程,然后进行求解。

3. 图形解法:一元一次方程代表了一条直线,可以通过在坐标系中绘制该直线,然后观察直线与坐标轴的交点来求得方程的解。

解一元一次方程的过程需要注意以下几点:1. 注意方程中的符号和系数:在解方程的过程中要仔细分辨方程中的正负号以及各项的系数,避免计算错误。

2. 确保运算的准确性:进行各种运算时要细心,避免出现运算错误,确保得到的解是准确的。

3. 检验解的正确性:对于求得的方程解,需要将其代入原方程进行检验,确保解满足原方程。

通过以上方法可以解一元一次方程,从而求得未知数的值。

一元一次方程在数学中有着广泛的应用,是解决实际问题的基础。

熟练掌握一元一次方程的定义和解法,对于深入理解代数学的知识体系具有重要意义。

一元一次方程的基本概念

一元一次方程的基本概念

一元一次方程的基本概念一元一次方程是初中数学中的重要概念之一,也是代数学的基础。

它涉及到一个未知数和一次方的关系。

理解和掌握一元一次方程的基本概念对于解决实际问题以及日常生活中的计算都有重要的作用。

一、一元一次方程的定义和表达方式一元一次方程是指只包含一个未知数,并且方程项中的未知数的指数都是1的方程。

一般形式为ax + b = 0,其中a和b分别为已知数。

在一元一次方程中,未知数x代表了一个数量,通过解方程,我们可以求出这个未知数的值。

例如:3x + 5 = 0 就是一个典型的一元一次方程。

二、解一元一次方程的基本方法求解一元一次方程的目的是确定未知数x的值。

解一元一次方程的基本方法是通过逆运算,将方程变形,使得未知数x与已知数分离。

1. 同向消元法同向消元法主要适用于方程中含有系数的情况,即方程中的x前面有一个系数。

步骤如下:1) 将方程两边同时加上或减去相同的值,使得方程中的一项可以被消去。

2) 简化方程,将未知数项系数化为1。

3) 通过逆运算,求得未知数x的值。

例如:2x + 4 = 10,可以通过同向消元法解得x的值为3。

2. 异向消元法异向消元法主要适用于方程中未知数项与已知数项分别在等式两边的情况,即方程中的x前面没有系数。

步骤如下:1) 将方程两边的未知数项移到同一边。

2) 通过逆运算,求得未知数x的值。

例如:x + 5 = 10,可以通过异向消元法解得x的值为5。

三、一元一次方程的应用场景一元一次方程广泛应用于日常生活和实际问题中,可以帮助我们解决一些关于数量和关系的计算。

1. 求解未知数一元一次方程可以帮助我们求解未知数的值。

例如,在一个购物活动中,打折后商品的价格是原价的一半,如果已知商品的原价为x元,可以通过一元一次方程来求解打折后的价格。

2. 解决运动问题一元一次方程也可以应用于运动问题。

例如,在一个长跑比赛中,已知甲、乙两人起跑的时间一样,乙的速度是甲的两倍,已知乙跑完全程用时10分钟,可以通过一元一次方程来解决甲和乙的速度和跑步时间之间的关系。

一元一次方程的概念

一元一次方程的概念

一元一次方程的概念一元一次方程是数学中最基本也是最常见的方程类型之一。

它是用来描述一个未知数和已知系数之间的关系的数学等式。

本文将介绍一元一次方程的定义、特征,以及解一元一次方程的常见方法。

一、一元一次方程的定义一元一次方程是指只含有一个未知数和一次项的方程。

其一般形式可以表示为:ax + b = 0,其中a和b为已知常数,x为未知数。

在一元一次方程中,a不等于0,否则方程将退化为一个常数等式。

在一元一次方程中,未知数x的一次项系数a代表了未知数x的系数,常数b代表了方程中的常数项。

通过对方程中的未知数和已知数进行运算,我们可以求解这个方程并找到未知数的值。

二、一元一次方程的特征一元一次方程具有一些特征,我们可以通过这些特征来判断一个方程是否为一元一次方程。

首先,一元一次方程只涉及一个未知数。

方程中只含有一个变量,其他字母和数字都是已知的常数。

其次,一元一次方程中的未知数只出现在一次项中,并且该项的次数为1。

这意味着未知数只进行一次乘法运算,不存在平方、立方或更高次的情况。

此外,一元一次方程中的系数是已知的常数,不随未知数的变化而变化。

系数通常用字母表示,但它们的值是确定的,不会随求解过程的进行而改变。

三、解一元一次方程的常见方法解一元一次方程的目标是找到未知数x的值,使得方程等式成立。

根据方程的特征,我们可以采用以下常见的方法来解一元一次方程。

1. 合并同类项和移项法通过合并同类项和移项法,将方程转化为ax = -b的形式,然后通过两边同除以a,得到x = -b/a的解。

2. 两边相等原则根据方程两边相等的原则,可以通过运算操作将方程转化为x = -b/a的形式,从而找到未知数的解。

3. 代数运算法通过代数运算法,可以通过一系列等式的变换,将方程简化为形如x = -b/a的解。

4. 图解法对于一元一次方程,可以将方程转化为一条直线的图像。

通过画出这条直线,并与横轴的交点来确定方程的解。

以上是解一元一次方程的常见方法,通过这些方法,我们可以求解一元一次方程并得到其解。

一元一次方程的概念及解法

一元一次方程的概念及解法

板块一 等式与方程的概念☞等式的概念:用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.【例1】 下列各式中,哪些是等式⑴ 31x - ⑵523-= ⑶212x +< ⑷53x += ⑸()x y z xz yz -=- ⑹1x y +=☞方程和它的解方程:含有未知数的等式叫方程,如21x +=,它有两层含义:①方程必须是等式;②等式中必须含有未知数方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。

【例2】 下列各式中哪些是方程⑴7887⨯=⨯ ⑵2345x x ++ ⑶312y y -= ⑷60x =⑸31x > ⑹111x =+ ⑺26x y -= ⑻2430y y -+=【例3】 检验下列各数是不是方程315x x -=+的解⑴ 3x =; ⑵1x =-【巩固】检验下列各数是不是方程213x y x y ++=--的解⑴ 23x y =⎧⎨=-⎩ ⑵10x y =⎧⎨=⎩⑶02x y =⎧⎨=-⎩板块二 等式的性质☞等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b m m=(0)m ≠ ☞注意:⑴在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边⑵等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.⑶在等式变形中,以下两个性质也经常用到:对称性,即:如果a b =,那么b a =.一元一次方程的概念及解法传递性,即:如果a b =,b c =,那么a c =.又称为等量代换易错点:等号左右互换的时候忘记变符号【例4】 根据等式的性质填空:(1)4a b =-,则______a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x =_________; (4)122x y =+,则x =__________.板块三 一元一次方程的概念☞一元一次方程的概念:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.☞一元一次方程的形式:最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.标准形式:方程0ax b +=(其中0a ≠,a ,b 是已知数)叫一元一次方程的标准形式.☞注意:⑴任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.⑵方程ax b =与方程()0ax b a =≠是不同的,方程ax b =的解需要分类讨论完成【例5】 下列各式中:⑴3x +;⑵2534+=+;⑶44x x +=+;⑷12x=;⑸213x x ++=;⑹44x x -=-;⑺23x =;⑻2(2)3x x x x +=++.哪些是一元一次方程?【例6】 若131m x -=是一元一次方程,那么m =【巩固】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k =【巩固】若关于x 的方程2223x x ax a x a -=-+是一元一次方程,则a = ,方程的解是板块四 一元一次方程的解法☞解一元一次方程的一般步骤:1.去分母:在方程的两边都乘以各分母的 最小公倍数 .温馨提示:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.2.去括号:一般地,先去 小括号,再去 中括号,最后去 大括号.温馨提示:不要漏乘括号里的项,不要弄错符号.3.移项:把含有 未知数 的项都移到方程的一边, 不含未知数的项 移到方程的另一边.温馨提示:⑴移项要变号;⑵不要丢项.4.合并同类项:把方程化成ax b=的形式.温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数a(0a≠),得到方程的解bxa =.温馨提示:不要把分子、分母搞颠倒.【例10】122233x xx-+ -=-【巩固】解方程:⑴232164x x++=+;⑵122233x xx-+-=-;⑶2151136x x+--=☞先变形、再解方程【例11】解方程:0.10.020.10.13 0.0020.05x x-+-=☞逐层去括号含有多重括号时,去括号的顺序可以从内向外,也可以从外向内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程史话大约3600年前,古代埃及人写在纸草上的数学问题中,就涉及了含有未知数的等式。

基本概念方程:含有未知数的等式,即:⒈方程中一定有一个或一个以上含有未知数2.方程式是等式,但等式不一定是方程等式的基本性质1等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式。

则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

(3)若a=b,则b=a(等式的对称性)。

(4)若a=b,b=c则a=c(等式的传递性)。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。

则:a×c=b×c a÷c=b÷c思考:mx=my 所以x=y3x=5x 所以3=5一元一次方程合并同类项移项⒈依据:等式的性质一⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-}。

性质一元一次方程概念及解一.选择题(共27小题)1.下列四个式子中,是方程的是()A.1+2+3+4=10 B.2x﹣3 C.x=1 D.2x﹣3>02.下列四个式子中,是方程的是()A.π+1=1+πB.|1﹣2|=1 C.2x﹣3 D.x=03.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式4.已知2+1=1+2,4﹣x=1,y2﹣1=3y+1,x+1,方程有()A.1个B.2个C.3个D.4个5.(1999•烟台)下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3 C.5x﹣3=6x﹣2 D.3x+1=2x﹣16.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0C.2D.87.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6 B.﹣3 C.﹣4 D.﹣58.下列方程中,解是x=2的是()A.2x=4 B.x=4 C.4x=2 D.x=29.(2003•无锡)已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.10.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=11.下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bc C.若,则2a=3bD.若x=y,则12.下列说法正确的是()A.如果ac=bc,那么a=b B.如果,那么a=bC.如果a=b,那么D.如果,那么x=﹣2y13.下列各方程中,是一元一次方程的是()A.3x+2y=5 B.y2﹣6y+5=0 C.x﹣3=D.3x﹣2=4x﹣714.(2008•十堰)把方程3x+去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)15.(2008•郴州)方程2x+1=0的解是()A.B.C.2D.﹣216.(2008•厦门)已知方程|x|=2,那么方程的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=417.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣C.﹣10或D.﹣10或﹣18.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣119.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D.x=﹣320.(2008•眉山)若方程3(2x﹣2)=2﹣3x的解与关于x的方程6﹣2k=2(x+3)的解相同,则k的值为()A.B.﹣C.D.﹣21.如果方程2x+1=3的解也是方程2﹣=0的解,那么a的值是()A.7B.5C.3D.以上都不对22.下列方程中与方程2x﹣3=x+2的解相同的是()A.2x﹣1=x B.x﹣3=2 C.3x=x+5 D.x+3=223.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x A.5(x+21﹣1)=6(x﹣1)24.(2012•台湾)小华带x元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式?()A.B.C.D.25.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.26.(2011•山西)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是()B.x•30%•80%=2080 C.2080×30%×80%=x D.x•30%=2080×80% A.x(1+30%)×80%=208027.(2010•台湾)小芬买15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程式()A.15(2x+20)=900 B.15x+20×2=900 C.15(x+20×2)=900 D.15×x×2+20=900二.解答题(共3小题)28.(2010•淄博)解方程6(x﹣5)=﹣24.29.(2008•永春县)附加题:1.解方程:3x+1=7;2.如图,在△ABC中,∠B=35°,∠C=65°,求∠A的度数.30.已知关于x的方程6x+a=12与方程3x+1=7的解相同,求a的值.一元一次方程概念及解参考答案与试题解析一.选择题(共27小题)1.下列四个式子中,是方程的是()A.1+2+3+4=10 B.2x﹣3 C.x=1 D.2x﹣3>0考点:方程的定义。

分析:方程就是含有未知数的等式,根据定义即可判断选项的正确性.解答:解:A、不含未知数,故错误;B、不是等式,故错误;C、是方程,正确.D、不是等式,故错误.故选C.点评:本题主要考查了方程的定义,含有未知数的等式是方程,是需要熟记的内容.2.下列四个式子中,是方程的是()A.π+1=1+πB.|1﹣2|=1 C.2x﹣3 D.x=0考点:方程的定义。

分析:方程就是含有未知数的等式,根据此定义可得出正确答案.解答:解:A、π是常数,不是未知数,所以π+1=1+π不是方程.B、|1﹣2|=1不含未知数,不是方程.C、2x﹣3不是等式,不是方程.D、x=0是含有未知数的等式,是方程.故选D.点评:本题主要考查方程的定义,判断时关键要抓住特点:含未知数,是等式.3.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式考点:方程的定义。

分析:含有未知数的等式叫方程,等式是用等号连接的,表示相等关系的式子,代数式一定不是等式,等式不一定含有未知数也不一定是方程.解答:解:方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确;故选D.点评:本题主要考查方程的概念,含有未知数的等式叫方程,要熟练掌握方程的定义.4.已知2+1=1+2,4﹣x=1,y2﹣1=3y+1,x+1,方程有()A.1个B.2个C.3个D.4个考点:方程的定义。

分析:含有未知数的等式叫方程,据此可得出正确答案.解答:解:2+1=1+2中不含有未知数,所以它不是方程;4﹣x=1中x是未知数,式子又是等式,所以它是方程;y2﹣1=3y+1中y是未知数,式子又是等式,所以它是方程;x+1是代数式,不是等式,所以它不是方程;综上所述,方程的个数是2个;故选B.点评:本题考查了方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).5.(1999•烟台)下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3 C.5x﹣3=6x﹣2 D.3x+1=2x﹣1考点:方程的解。

专题:计算题。

分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.解答:解:A、将x=﹣2代入原方程.左边=3×(﹣2)﹣2=﹣8,右边=2×(﹣2)=﹣4,因为左边≠右边,所以x=﹣2不是原方程的解.B、将x=﹣2代入原方程.左边=4×(﹣2)﹣1=﹣9,右边=2×(﹣2)+3=﹣1,因为左边≠右边,所以x=﹣2是原方程的解.C、将x=﹣2代入原方程.左边=5×(﹣2)﹣3=﹣13,右边=6×(﹣2)﹣2=﹣14,因为左边≠右边,所以x=﹣2不是原方程的解.D、将x=﹣2代入原方程.左边=3×(﹣2)+1=﹣5,右边=2×(﹣2)﹣1=﹣5,因为左边=右边,所以x=﹣2是原方程的解.故选D.点评:解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0C.2D.8考点:方程的解。

分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a的方程.7.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6 B.﹣3 C.﹣4 D.﹣5考点:方程的解。

分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=2代入方程得:6+a=0解得:a=﹣6.故选A.点评:本题主要考查了方程解的定义,已知x=2是方程的解实际就是得到了一个关于a的方程.8.下列方程中,解是x=2的是()A.2x=4 B.x=4 C.4x=2 D.x=2考点:方程的解。

相关文档
最新文档