培优专题(四) 一元一次方程的定义及解
(完整word)4一元一次方程培优训练(有答案)

一元一次方程培优训练基础篇一、选择题1。
把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A 。
132177=--x x B.13217710=--x x C 。
1032017710=--x x D.132017710=--x x2。
与方程x+2=3—2x 同解的方程是( )A.2x+3=11B.-3x+2=1C.132=-x D 。
231132-=+x x 3。
甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6。
5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A 。
7x=6。
5x+5 B.7x+5=6.5x C 。
(7-6.5)x=5 D 。
6。
5x=7x-5 4。
适合81272=-++a a 的整数a 的值的个数是( )A 。
5B 。
4C 。
3D 。
25。
电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A 。
0。
81a 元 B 。
1.21a 元 C 。
21.1a 元 D 。
81.0a 元6。
一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。
A.17 B 。
18 C.19 D.207.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是( ) A。
1.6秒B.4.32秒C.5.76秒D。
345.6秒8.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合作这项工程需天数为( ) A.y x +1 B 。
y x 11+ C 。
xy1 D. yx 111+9、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a-的值是( ) A 、0 B 、283- C 、29- D 、2910、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )A 、142857B 、157428C 、124875D 、175248 二、填空题11.当=a 时,关于x 的方程01214=+-a x 是一元一次方程。
全效学习七上数学培优专题一元一次方程的定义及解

数学
人教版七年级上册
课件目录
首
页
末
页
a-x bx-3 a b 7. 已知关于 x 的方程 = 的解是 x=2,试求代数式 - + 2 3 4 3 2[5a-4(2a-b)]的值. a- 2 2b- 3 解:把 x= 2 代入方程得: = , 2 3 化简得: 3(a- 2)= 2(2b- 3), 即 3a- 4b= 0,
5 移项,系数化为 1 得: x=- . 3 5 即这个方程的根为: x=- . 3
数学
人教版七年级上册
课件目录
首
页
末
页
二、一元一次方程的解
1 4.已知 y=3 是 6+ (m-y)=2y 的解,试求|-m|+m2 的值. 4
1 解:把 y= 3 代入方程,得: 6+ (m- 3)= 6, 4 解得: m= 3, 则原式= 3+ 9= 12.
数学
人教版七年级上册
课件目录
首
页
末
页
2- 2.5a 解: 设 处的数字是 a, 把 x=- 2.5 代入方程得: 3 + 2.5=- 1, 解得:a= 5, 则 处的数字为 5.
数学
人教版七年级上册
课件目录
首
页
末
页
x- m m 6.已知关于 x 方程 =x+ 与 x-1=2(2x-1)的解互为倒数, 2 3 求 m 的值.
5或 7 . 数值为________
【解析】 kx+2=4x+5, (k-4)x=3, ∵x,k都是正整数,
一元一次方程的定义及解法

一元一次方程的定义及解法方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a0)。
方程简介一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
方程一词来源于我国古算术书《九章算术》。
在这本著作中,已经会列一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
详细内容合并同类项1.依据:乘法分配律2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项3.合并时次数不变,只是系数相加减。
移项1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
2.依据:等式的性质3.把方程一边某项移到另一边时,一定要变号。
性质性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立解法步骤使方程左右两边相等的未知数的值叫做方程的解。
一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=b(a0)的形式;5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
一元一次方程的概念与解法

一元一次方程的概念与解法一元一次方程是数学中最基础的一种方程形式,也是初中阶段学习数学的重要内容之一。
它是形如ax+b=0的方程,其中a、b为已知实数,且a≠0。
本文将介绍一元一次方程的概念和解法。
一、概念一元一次方程是指只含有一个变量的一次方程。
其中,变量通常用字母表示,如x、y等,系数则表示变量前面的常数,如a、b等。
一元一次方程的一般形式为ax+b=0,在方程中,a称为未知数的系数,b称为常数项。
二、解法解一元一次方程的常用方法有三种:图解法、等式性质法和代入法。
1. 图解法图解法是通过绘制一元一次方程的图像来求解方程的解。
为了方便绘图,我们可以将方程变形为y=ax+b的形式,其中x是自变量,y是因变量。
通过观察图像与x轴的交点,我们可以直观地得到方程的解。
2. 等式性质法等式性质法是利用等式两边平等的性质来求解一元一次方程。
在解题过程中,我们可以通过变换等式的形式,将方程中的未知数移到一边,将常数移到另一边,最终得到未知数的值。
3. 代入法代入法是先令方程中的未知数等于一个已知值,然后求解出已知值对应的未知数的值。
首先,我们可以通过变形将方程转化为x的显式表达式,然后代入一个已知的数值,求解出未知数的值。
三、示例下面通过解一些具体的一元一次方程来进一步说明解法。
例1:解方程2x+5=0等式性质法:2x=-5 (移项)x=-5/2 (除以系数2)例2:解方程3x-1=2x+4等式性质法:3x-2x=4+1 (移项)x=5 (合并同类项)例3:解方程4(x-2)=2x+3等式性质法:4x-8=2x+3 (分配律)4x-2x=3+8 (移项)2x=11x=11/2 (除以系数2)结语一元一次方程是数学学习的基础,掌握解方程的方法对于数学的学习和日常生活都有着重要的意义。
通过图解法、等式性质法和代入法,我们可以解决各种一元一次方程的问题。
在实际应用中,我们可以灵活运用这些方法,解决各种与一元一次方程相关的数学问题。
数学中的一元一次方程知识点

数学中的一元一次方程知识点一元一次方程是数学中的基础概念,也是初等代数中的重要内容。
它在解决实际问题和建立数学模型时起到了关键的作用。
本文将介绍一元一次方程的基本定义、性质和求解方法。
1. 一元一次方程的定义一元一次方程是指一个变量的一次方程,形式通常为ax + b = 0,其中a和b是已知的常数,而x是未知数。
一元一次方程的问题通常是要求解未知数的值。
2. 一元一次方程的性质一元一次方程具有以下几个性质:- 一元一次方程只有一个未知数。
- 方程中的系数和常数可以是任意实数,但未知数通常是实数。
- 方程中的系数不能同时为零,即a ≠ 0。
- 一元一次方程的解通常是唯一的,也就是只有一个解或无解。
3. 一元一次方程的求解方法解一元一次方程的常用方法有以下几种:- 原始解法:通过移项和消元的方式,将方程变形为x = 数字的形式,得到方程的解。
- 代入法:将已知的解代入方程,验证解是否满足方程的等式关系。
- 叠减法:通过两个方程相减,消去一个未知数,得到一个一元一次方程,从而求解未知数的值。
- 等价方程法:通过变形,将原方程转化为一个等价的方程,使得求解过程更简单。
4. 一元一次方程在实际问题中的应用一元一次方程在实际问题中有广泛的应用,比如:- 财务问题:计算投资回报率、利润分配等问题时,通常可以建立一元一次方程来求解。
- 几何问题:用一元一次方程可以计算图形的面积、周长、对角线长度等。
- 物理问题:用一元一次方程可以描述速度、加速度、力等物理量之间的关系。
总结:一元一次方程是数学中的重要概念,它帮助我们解决实际问题,建立数学模型,以及理解数学中的基本性质和求解方法。
通过掌握一元一次方程的知识,我们可以更好地理解和应用数学,提高解决问题的能力。
一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
一元一次方程讲解

(一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程。
一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- 。
我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0)。
例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程。
2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数。
要注意不要漏掉不含分母的项,如方程 x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误。
(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号。
特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号。
括号前有数字因数时要注意使用分配律。
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边。
注意移项要变号。
(4)合并项:把方程化成最简形式ax=b (a≠0)。
(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= 。
解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤。
(二)例题:例1.解方程 (x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便。
解:移项得: (x-5)+ (x-5)=3合并得:x-5=3∴ x=8。
例2.解方程2x- = -解:因为方程含有分母,应先去分母。
去分母:12x-3(x+1)=8-2(x+2) (注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4 (注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x= 。
初中数学知识归纳一元一次方程的基本概念与解法

初中数学知识归纳一元一次方程的基本概念与解法一、什么是一元一次方程数学中的方程是指包含了一个或多个未知数的等式。
一元一次方程是指方程中只包含一个未知数,并且该未知数的最高次数为一。
一元一次方程的一般形式为ax + b = 0,其中a和b是已知的实数常量,x是未知数。
二、一元一次方程的解法1. 通过逆运算法解一元一次方程一元一次方程的基本思路是通过逆运算法将未知数从方程中的其他项中分离出来,从而求得方程的解。
例如,我们考虑方程2x + 5 = 0。
为了将x从方程的其他项中分离出来,我们需要使用逆运算,即将5移到方程的另一侧,并且改变其符号,即2x = -5。
接下来,将方程中的系数2除到x的前面,得到x = -5/2。
这就是方程的解。
2. 通过移项法解一元一次方程除了逆运算法,还可以使用移项法来解一元一次方程。
移项法的基本思路是将方程中所有项移至一个侧,从而将方程化简为ax = b的形式,然后通过除法求解出x的值。
举个例子,我们考虑方程3x - 7 = 11。
为了将x的系数3移到方程的另一侧,我们需要在等式两边同时加上7,得到3x = 18。
接下来,将方程中的系数3除到x的前面,得到x = 18/3 = 6。
这就是方程的解。
3. 通过综合运用解一元一次方程有时候,解一元一次方程需要综合使用逆运算法和移项法。
这通常在方程较复杂,或者方程中含有分数等特殊情况下使用。
例如,我们考虑方程4(2x - 3) = 2(x + 5) + 6。
首先,将方程中的括号展开得到8x - 12 = 2x + 10 + 6。
接下来,将方程中的项整理到一个侧得到8x - 2x = 28 + 12。
继续整理得到6x = 40。
最后,将方程中的系数6除到x的前面,得到x = 40/6 = 20/3。
这就是方程的解。
三、例题演练1. 解方程2x - 3 = 5。
解:将方程中的常数项3移到方程的另一侧得到2x = 8。
然后,将方程中的系数2除到x的前面得到x = 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 一元一次方程的定义
1.已知方程x 5m -4+5=0是关于x 的一元一次方程,求m 的值.
2.已知(|m |-1)x 2-(m -1)x +8=0是关于x 的一元一次方程,求m 的值.
3.已知方程2kx 2+2kx +3k =4x 2+x +1是关于x 的一元一次方程,求k 的值,并求出这个方程的解.
二 一元一次方程的解
4.已知y =3是6+14
(m -y )=2y 的解,试求|-m |+m 2的值.
5.某书中有一方程2+Kx 3
-x =-1,K处在印刷时被墨迹盖住了,书后的答案为x =-2.5,那么K处的数字是多少?
6.已知关于x 的方程x -m 2=x +m 3
与x -1=2(2x -1)的解互为倒数,求m 的值.
7.已知关于x 的方程a -x 2=bx -33的解是x =2,试求代数式a 4-b 3
+2[5a -4(2a -b )]的值.
三 一元一次方程解的情况
8.关于x 的方程kx +2=4x +5有正整数解,则满足条件的k 的正整数值为____.
9.已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.
10.已知关于x 的方程2a (x -1)=(5-a )x +3b 有无数多解,求a ,b 的值.。