1.1.2 棱柱、棱锥和棱台的结构特征(2)

合集下载

1.1.2棱柱、棱锥和棱台的结构特征(2)

1.1.2棱柱、棱锥和棱台的结构特征(2)

4.棱锥的分类: .棱锥的分类: (1)按底面多边形的边数分为三棱锥、 )按底面多边形的边数分为三棱锥、 四棱锥、五棱锥等, 四棱锥、五棱锥等,其中三棱锥又叫四面 体!
三棱锥 四面体) (四面体)
四棱锥
五棱锥
(2)正棱锥:如果棱锥的底面是正多边 )正棱锥:如果棱锥的底面是正多边 并且水平放置, 它的顶点又在过正 顶点又在过 形,并且水平放置, 它的顶点又在过正 多边形中心的铅垂线上 多边形中心的铅垂线上,则这个棱锥叫做 S 正棱锥! 正棱锥
已知正四棱锥V- 例2. 已知正四棱锥 -ABCD,底面面积为 , 16,一条侧棱长为 ,计算它的高和斜高。 ,一条侧棱长为2,计算它的高和斜高。 为正四棱锥V- 解:设VO为正四棱锥 - 为正四棱锥 ABCD的高,作OM⊥BC于 的高, 的高 ⊥ 于 中点, 点M,则M为BC中点, , 为 中点 连接OM、OB,则 、 , 连接 VO⊥OM,VO⊥OB. ⊥ , ⊥
在Rt△VOM中,由勾股定理得 △ 中
VM = 62 + 22 = 2 10
即正四棱锥的高为6,斜高为 2 10 即正四棱锥的高为 ,
练习题: 练习题:
1.能保证棱锥是正棱锥的一个条件是 . ( C ) (A)底面为正多边形 ) (B)各侧棱都相等 ) (C)各侧面与底面都是全等的正三角形 ) (D)各侧面都是等腰三角形 )
2.过正方体三个顶点的截面截得一个正 . 三棱锥,若正方体棱长为 a,则截得的正 三棱锥, , 三棱锥的高为
3 a 3

3.正四面体棱长为 a,M,N为其两条相 . , , 为其两条相 对棱的中点, 对棱的中点,则MN的长是 的长是
2 a 2

4.若正棱锥的底面边长与侧棱长相等, .若正棱锥的底面边长与侧棱长相等, 则该棱锥一定不是( 则该棱锥一定不是( D ) A) B) (A)三棱锥 (B)四棱锥 (C)五棱锥 (D)六棱锥 ) )

课件5:1.1.2 棱柱、棱锥和棱台的结构特征(第2课时)

课件5:1.1.2  棱柱、棱锥和棱台的结构特征(第2课时)

(2)棱锥按底面是三角形、四边形、五边形、……分别叫做 _三__棱__锥___、_四__棱__锥___、_五__棱__锥___、……. (3)棱锥的底面是__正__多__边__形___,_它__的__顶__点__又__在__过__底__面__正___ _多__边__形__中__心__与__底__面__垂__直__的__直__线__上___,则这样的棱锥叫做正棱锥. 正棱锥各侧面都是全等的等腰三角形,这些三角形底边上的高都 相等,叫做棱锥的__斜__高____.
1.1.2 棱柱、棱锥和棱台的结构特征 第2课时 棱锥和棱台
ห้องสมุดไป่ตู้
1.棱锥 (1)棱锥是__有__一__个__面__是__多__边__形__,__其__余__各__面__都__是__有__一__个____ __公__共__顶__点__的__三__角__形___,这样的一些面所围成的几何体. 棱锥中,有公共顶点的各三角形面叫做棱锥的____侧__面______;各 侧面的公共顶点叫做棱锥的___顶__点___;相邻两侧面的公共边叫做 棱锥的___侧__棱___;多边形的面叫做棱锥的__底__面____;顶点到底面 的距离叫做棱锥的___高_____.
[解] 如图,设 PO 是正三棱锥 P-ABC 的高,D 是 BC 的中点, 连接 PD、OB、OD,则 PO⊥OB,PO⊥OD,PD⊥BC,则 PD 为正三棱锥的斜高.
在等边△ABC
中,OB=23×
23×4=4
3
3,OD=12OB=2
3
3 .
在 Rt△POD 中,PD= PO2+OD2

(
3)2+(2 3 3)2=
2.棱台 (1)棱锥被平行于底面的平面所截,底面与截面间的部分叫做 ___棱__台___. 原棱锥的底面和截面分别叫做棱台的_下__底__面___和_上__底__面___, 其他各面叫做棱台的__侧__面____;相邻两侧面的公共边叫做棱 台的侧棱;两底面间的距离叫做棱台的___高_____. (2)由正棱锥截得的棱台叫做__正__棱__台__,正棱台各侧面都是全 等的等腰梯形,这些等腰梯形的高叫做棱台的___斜__高___. (3)棱台可用表示上、下底面的字母来命名.

学案1:1.1.2棱柱、棱锥和棱台的结构特征

学案1:1.1.2棱柱、棱锥和棱台的结构特征

1.1.2 棱柱、棱锥和棱台的结构特征学习目标1.认识棱柱、棱锥、棱台的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.理解棱柱、棱锥、棱台的定义及其形成过程,会画棱柱、棱锥、棱台的图形.3.掌握棱柱、棱锥、棱台平行于底面的截面性质,并会在棱柱、棱锥、棱台中进行简单运算.基础知识1.多面体与截面(1)多面体是由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的______;相邻两个面的公共边叫做多面体的______;棱和棱的公共点叫做多面体的______;连接不在同一个面上的两个顶点的线段叫做多面体的________.按围成多面体的面的个数分为:四面体、五面体、六面体……多面体至少有______个面.(2)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做________.(3)一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的______.做一做1 长方体有__________条对角线,一个多面体至少有__________个面.2.棱柱(1)棱柱的概念.有两个互相平行的面,其余各面都是________,并且每相邻两个四边形的公共边都互相________,这些面围成的几何体称为棱柱.棱柱中,两个互相平行的面称为棱柱的________;其余各面叫做棱柱的________;两侧面的公共边称为棱柱的________;底面多边形与侧面的公共顶点叫做棱柱的________.棱柱两底面之间的距离叫做棱柱的______.(2)棱柱的表示法.用表示两底面的对应顶点的字母或者用一条对角线端点的两个字母来表示.(3)棱柱的分类.按底面多边形的________分为:三棱柱、四棱柱、五棱柱……棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做________棱柱,侧棱与底面垂直的棱柱叫做______棱柱,底面是正多边形的直棱柱叫做__________.底面是平行四边形的棱柱叫做___________.侧棱与底面垂直的平行六面体叫做__________,底面是矩形的直平行六面体是________,棱长都相等的长方体是_______.归纳总结在四棱柱中,应掌握好以下关系:用图示表示如下:做一做2-1 四棱柱有()A.4条侧棱,4个顶点B.8条侧棱,4个顶点C.4条侧棱,8个顶点D.6条侧棱,8个顶点做一做2-2 下列三种说法中,正确的个数是()①侧棱垂直于底面的棱柱是直棱柱;②底面是正多边形的棱柱是正棱柱;③棱柱的侧面都是平行四边形.A.0 B.1 C.2 D.33.棱锥(1)棱锥的概念.有一面为________,其余各面是___________,这些面围成的几何体叫做棱锥.棱锥中有公共顶点的各三角形,叫做棱锥的________;各侧面的公共顶点叫做棱锥的________;相邻两侧面的公共边叫做棱锥的________;多边形叫做棱锥的________.顶点到底面的距离,叫做棱锥的______.(2)棱锥的表示法.用表示顶点和底面各顶点的字母或用表示顶点和底面的一条对角线端点的字母来表示.(3)棱锥的分类.按底面多边形的________分为:三棱锥、四棱锥、五棱锥……(4)正棱锥的概念.如果棱锥的底面是__________,且它的顶点在过底面中心且与底面________的直线上,则这个棱锥叫做正棱锥.正棱锥各侧面都是全等的__________,这些等腰三角形底边上的高都相等,叫做棱锥的________.知识拓展(1)只有正棱锥才有斜高,其他棱锥的顶点到各底边的垂线段不都等长.(2)正棱锥中有几个重要的特征直角三角形,利用它们可以把许多立体几何问题转化为平面几何问题解决.如图所示,正棱锥中,点O为底面中心,M是CD的中点,则△SOM,△SOC 均是直角三角形,常把一些量归结到这些直角三角形中去计算.很明显,△SMC,△OMC也是直角三角形.做一做3-1 在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个做一做3-2 正四棱锥S-ABCD的所有棱长都等于a,过不相邻的两条侧棱作截面SAC,如图所示,则截面的面积为()A .32a 2 B .a 2C .12a 2D .13a 24.棱台 (1)棱台的概念.棱锥被________于底面的平面所截,________和______间的部分叫做棱台.原棱锥的底面和截面分别称为棱台的________和________;其他各面称为棱台的________;相邻两侧面的公共边称为棱台的________;底面多边形与侧面的公共顶点叫做棱台的________;两底面间的距离叫做棱台的______. (2)棱台的表示法.用表示上下底面各顶点的字母表示棱台. (3)棱台的分类.按底面多边形的________分为:三棱台、四棱台、五棱台…… (4)正棱台的概念.由________截得的棱台叫做正棱台.正棱台各侧面都是全等的________,这些等腰梯形的高叫做棱台的________. 知识拓展在正棱台中,有三个重要的直角梯形——两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面对角线的一半组成一个直角梯形;斜高、侧棱和上下两底面边长的一半组成一个直角梯形.正棱台的计算问题,常转化为这几个直角梯形的计算问题.做一做4 棱台不具有的性质是( ) A .两底面相似 B .侧面都是梯形 C .侧棱都平行D .侧棱延长后都交于一点 重点难点1.棱柱、棱锥、棱台的定义和结构特征比较 剖析:名师点拨(1)有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱,反例如下图.(2)有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,反例如下图.2.教材中的“思考与讨论” 如何判断一个多面体是棱台?剖析:要判断一个多面体是不是棱台,首先看两个底面是否平行,其次把侧棱延长看是否相交于一点,这两条都满足的几何体才是棱台.典型例题题型一识别简单的空间几何体例1 下列几何体是棱柱的有()A.5个B.4个C.3个D.2个反思:本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图形,看到图形就想到文字叙述.题型二概念的理解和应用例2 一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的两条棱互相垂直D.底面是正方形,每个侧面都是全等的矩形反思:在本题的解答过程中易出现选B的情况,导致此种错误的原因是两个侧面垂直于底面,并不能保证侧棱一定垂直于底面,只有是两个相邻的侧面才可以.题型三有关柱、锥、台的计算问题例3 正四棱台的上、下底面面积分别为4,16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.反思:本题由正四棱台的性质可知:上,下底面都是正方形,侧面是全等的等腰梯形,即可得出上、下底边及斜高的长;再由两个直角梯形便可计算出侧棱、斜高、高.故解题时应注意优先分析几何图形的关系,减少盲目性.例4 如图所示,直平行六面体AC1的侧棱长为100 cm,底面两邻边的长分别是23 cm和11 cm,底面的两条对角线的比为2∶3,求它的两个对角面的面积(过相对侧棱的截面叫对角面).题型四立体图形的展开与平面图形的折叠问题例5 如图,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N.求点P的位置.反思:解决空间几何体表面上两点间的最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间的线段长,这体现了数学中的转化思想.题型五易错辨析例6 下列说法中正确的有()①有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱;②有一个面是多边形,其余各面都是三角形的几何体一定是棱锥;③有两个面互相平行,其余各面都是梯形的几何体一定是棱台.A.0个B.1个C.2个D.3个错解:B(或C或D)错因分析:没有正确地理解棱柱、棱锥、棱台的定义. 随堂练习1.下图所示的几何体是棱台的是( )2.下列命题中正确的是( )A .棱柱的面中,至少有两个面互相平行B .棱柱中两个互相平行的平面一定是棱柱的底面C .在平行六面体中,任意两个相对的面均互相平行,但平行六面体的任意两个相对的面不一定可当作它的底面D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形3.如图所示,正三棱柱ABC -A 1B 1C 1的各棱长都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是( )A .2B .3C . 5D .74.棱柱的侧面是________形,棱锥的侧面是________形,棱台的侧面是________形.5.正三棱锥底面面积为943,侧棱长为4,求此三棱锥的斜高和高.参考答案基础知识1.(1)面棱顶点对角线4(2)凸多面体(3)截面做一做1 442.(1)四边形平行底面侧面侧棱顶点高(3)边数斜直正棱柱平行六面体直平行六面体长方体正方体做一做2-1 C做一做2-2 C【解析】由直棱柱的定义,知①正确;由正棱柱的定义,知底面是正多边形的直棱柱是正棱柱,故②错误;由棱柱的定义知其侧面都是平行四边形,故③正确.3.(1)多边形有一个公共顶点的三角形侧面顶点侧棱底面高(3)边数(4)正多边形垂直等腰三角形斜高做一做3-1 D做一做3-2 C【解析】由正棱锥的性质,底面ABCD是正方形,∴AC=2a.在等腰△SAC中,SA=SC=a,AC=2a,∴∠ASC=90°,即S△SAC=1 2a2.∴选C.4.(1)平行截面底面下底面上底面侧面侧棱顶点高(3)边数(4)正棱锥等腰梯形斜高做一做4C典型例题例1 D【解析】棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.例2 D【解析】对于选项A,满足了底面是正方形,但两个侧面是矩形并不能保证另两个侧面也是矩形.对于选项B,有两个侧面垂直于底面,不能保证侧棱垂直于底面.对于选项C,底面是菱形但不一定是正方形,同时侧棱也不一定和底面垂直.对于选项D,侧面全等且为矩形,保证了侧棱与底面垂直,底面是正方形,保证了底面是正多边形,因而符合正棱柱的定义和基本特征.例3 解:如图,设O′,O分别为上下底面的中心,即OO′为正四棱台的高,E,F分别为B′C′,BC的中点,∴EF⊥BC,EF为斜高.由上底面面积为4,上底面为正方形,可得B′C′=2;同理,BC=4.∵四边形BCC ′B ′的面积为12,∴12×(2+4)·EF =12, ∴EF =4.过B ′作B ′H ⊥BC 交BC 于H ,则BH =BF -B ′E =2-1=1,B ′H =EF =4.在Rt △B ′BH 中,BB ′=BH 2+B ′H 2=12+42=17.同理,在直角梯形O ′OFE 中,计算出O ′O =15.综上,该正四棱台的侧棱长为17,斜高为4,高为15.例4 解:∵棱柱AC 1是直平行六面体,∴两对角面都是矩形,其侧棱AA 1就是矩形的高. 由题意,得AB =23 cm ,AD =11 cm ,AA 1=100 cm ,BD ∶AC =2∶3,设BD =2x cm ,则AC =3x cm.在平行四边形ABCD 中,BD 2+AC 2=2(AB 2+AD 2),即(2x )2+(3x )2=2×(232+112),解得x =10.∴BD =20 cm ,AC =30 cm.∴两个对角面的面积分别为S 矩形BDD 1B 1=BD ·BB 1=2 000(cm 2),S 矩形ACC 1A 1=AC ·AA 1=3 000(cm 2).例5 解:把该三棱柱展开后如图所示.设CP =x ,则AP =3+x .根据已知可得方程22+(3+x )2=29.解得x =2.所以点P 的位置在距离点C 为2的地方.例6 A正解:对于说法①,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱.显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱,如图(1).对于说法②,有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,如图(2)所示.对于说法③,有两个面互相平行,其余各面都是梯形的几何体不一定是棱台,如图(3)所示.故说法①②③都是错误的,因此选A.随堂练习1.D【解析】选项A中的几何体四条侧棱延长后不相交于一点;选项B和选项C中的几何体的截面不平行于底面;只有选项D中的几何体符合棱台的定义与特征.2.A【解析】由棱柱的结构特征进行判断.3.C【解析】如图所示,取AC的中点G,连接EG,FG,则易得FG=2,EG=1,故EF= 5.4.平行四边 三角 梯5.解:如图,设正三棱锥为S -ABC ,O 为底面△ABC 的中心,D 为BC 边的中点,连接OC ,OD ,SO ,SD ,则斜高为SD ,高为SO ,正△ABC 的面积为943,所以BC =3,所以CD =32,OC =3,OD =32.在Rt △SOC 和Rt △SOD 中,得高SO =SC 2-OC 2=42-(3)2=13,斜高SD =SO 2+OD 2=13+34=552,即此正三棱锥的斜高为552,高为13.。

教学设计2:1.1.2 棱柱、棱锥和棱台的结构特征

教学设计2:1.1.2 棱柱、棱锥和棱台的结构特征

1.1.2 棱柱、棱锥和棱台的结构特征【教学目标】1.掌握棱柱、棱锥和棱台的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.【重点难点】教学重点:理解棱柱、棱锥和棱台的结构特征.教学难点:归纳棱柱、棱锥和棱台的结构特征.【课时安排】1课时【教学过程】导入新课设计1.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大厦的旋转酒吧、旋转餐厅,还有上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?引出课题.设计2.在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑物的几何结构特征如何?引导学生回忆、举例和相互交流,教师对学生的活动及时给予评价,引出课题.推进新课新知探究提出问题(1)观察下图所示的几何体,这些几何体都是多面体.多面体集合具有什么性质?多面体的结构特征是什么?(2)阅读教材,给出多面体的面、棱、顶点、对角线的定义.(3)阅读教材,多面体如何分类?(4)什么叫几何体的截面?讨论结果:(1)多面体的每个面都是多边形(围成多面体的多边形都包含它内部的平面部分),而圆柱、圆锥、球等其他几何体就不具有这种性质.由此得出多面体的结构特征:多面体是由若干个平面多边形所围成的几何体.(2)如下图所示,围成多面体的各个多边形叫做多面体的面,如面ABCD 、面BCC ′B ′;相邻的两个面的公共边叫做多面体的棱,如棱AB 、棱AA ′;棱和棱的公共点叫做多面体的顶点,如顶点A 、顶点A ′;连结不在同一个面上的两个顶点的线段叫做多面体的对角线,如对角线BD ′.(3)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.如上图中的(1)(2)(3)都是凸多面体,而(4)不是.本书中说到多面体,如果没有特别说明,指的都是凸多面体.多面体至少有4个面.多面体按照围成它的面的个数分别叫做四面体、五面体、六面体…… 多面体的分类:多面体⎩⎪⎨⎪⎧ 非凸多面体凸多面体⎩⎪⎨⎪⎧ 四面体五面体六面体……(4)一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的截面,在上图中画出了多面体的一个截面EAC .提出问题(1)观察如下图所示的多面体,根据小学和初中学过的几何知识,这些多面体是棱柱,棱柱集合具有什么性质,其特征性质是什么?(1)(2)(3)(2)阅读教材,给出棱柱的底面、侧面、侧棱、高的定义.(3)阅读教材,棱柱如何分类?(4)阅读教材,说一说特殊的四棱柱.讨论结果:(1)如果我们以运动的观点来观察,棱柱可以看成一个多边形(包括图形围成的平面部分)上各点都沿着同一个方向移动相同的距离所形成的几何体.观察这个移动过程,我们可以得到棱柱的主要特征性质:棱柱有两个相互平行的面,而且夹在这两个平行平面间的每相邻两个面的交线都互相平行(如上图).(2)棱柱的这两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两侧面的公共边叫做棱柱的侧棱.棱柱两底面之间的距离,叫做棱柱的高.(3)棱柱按底面是三角形、四边形、五边形……分别叫做三棱柱、四棱柱、五棱柱……棱柱用表示两底面的对应顶点的字母或者用一条对角线端点的两个字母来表示.例如,上图(3)中的五棱柱可表示为棱柱ABCDEA′B′C′D′E′或棱柱AC′.棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱(上图(1)).侧棱与底面垂直的棱柱叫做直棱柱(上图(2)(3)).底面是正多边形的直棱柱叫做正棱柱(上图(3)).(4)下面研究一些特殊的四棱柱.底面是平行四边形的棱柱叫做平行六面体(下图).侧棱与底面垂直的平行六面体叫做直平行六面体(下图(2)(3)(4)).底面是矩形的直平行六面体是长方体(下图(3)(4).棱长都相等的长方体是正方体(下图(4)).提出问题1.观察如下图所示的多面体,可能会判定是一些棱锥,棱锥集合具有什么性质?棱锥有什么特征性质?(2)阅读教材,给出棱锥的侧面、顶点、侧棱、底面、高的定义,如何表示棱锥?(3)阅读教材,棱锥如何分类?讨论结果:(1)棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形.(2)棱锥中有公共顶点的各三角形,叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻两侧面的公共边叫做棱锥的侧棱;多边形叫做棱锥的底面;顶点到底面的距离,叫做棱锥的高.(3)棱锥用表示顶点和底面各顶点的字母或者用表示顶点和底面的一条对角线端点的字母来表示.例如,下图中棱锥可表示为棱锥S—ABCDE或者棱锥S—AC.棱锥按底面是三角形、四边形、五边形……分别叫做三棱锥、四棱锥、五棱锥……如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥(下图).容易验证:正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高(下图).提出问题阅读教材,给出棱台的有关概念.讨论结果:如左下图所示,棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面、上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面间的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.棱台可用表示上下底面的字母来命名.如右上图中的棱台,记作棱台ABCD—A′B′C′D′,或记作棱台AC′.棱台的下底面为ABCD、上底面为A′B′C′D′、高为OO′.应用示例思路1例1设计一个平面图形,使它能够折成一个侧面与底面都是等边三角形的正三棱锥.解:因为要制作的正三棱锥的侧面与底面都是等边三角形,所以它的棱长都相等(下图).于是作一个等边三角形及其三条中位线,如下图所示,沿图中的实线剪下这个三角形,再以虚线(中位线)为折痕就可折成符合题意的几何体.点评:本题揭示了平面图形与立体图形的关系,即可以相互转化,因此将空间问题转化为平面问题.变式训练1.一个无盖的正方体盒子展开后的平面图,如左下图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=__________.【解析】如右上图所示,折成正方体,很明显点A、B、C是上底面正方形的三个顶点,则∠ABC=90°.【答案】90°例2已知正四棱锥V—ABCD(下图),底面面积为16,一条侧棱长为211,计算它的高和斜高.解:设VO为正四棱锥V—ABCD的高,作OM⊥BC于点M,则M为BC中点.连结OM、OB,则VO⊥OM,VO⊥OB.因为底面正方形ABCD的面积为16,所以BC=4,BM=OM=2,OB=BM2+OM2=22+22=2 2.又因为VB=211,在Rt△VOB中,由勾股定理,得VO=VB2-OB2=(211)2-(2202=6.在Rt△VOM(或Rt△VBM中,由勾股定理,得VM=62+22=210(或VM=(211)2-22=210).即正四棱锥的高为6,斜高为210.点评:解决本题的关键是构造直角三角形.正棱锥中,高、斜高和底面正多边形的边心距构成直角三角形;高、侧棱和底面正多边形的半径构成直角三角形.思路2例3下列几何体是棱柱的有()A.5个B.4个C.3个D.2个【解析】判断一个几何体是哪种几何体,一定要紧扣柱、锥、台、球的结构特征,注意定义中的特殊字眼,切不可马虎大意.棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.【答案】D点评:本题主要考查棱柱的结构特征.本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图,看到图形就想到文字叙述.变式训练1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.其中正确的个数是()A.1 B.2C.3 D.0【解析】①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.【答案】A2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点【答案】D例4长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为() A.1+ 3 B.2+10 C.3 2 D.23活动:解决空间几何体表面上两点间最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间线段长,这体现了数学中的转化思想.【解析】如左下图,在长方体ABCD—A1B1C1D1中,AB=3,BC=2,BB1=1.如右上图所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=52+12=26,即经过侧面ABB1A1和侧面BCC1B1时的最短距离是26;如左下图所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1=32+32=32,即经过侧面ABB1A1和底面A1B1C1D1时的最短距离是32;如右上图所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1=42+22=25,即经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2 5.由于32<25,32<26,所以由A到C1在正方体表面上的最短距离为3 2.【答案】C点评:本题主要考查空间几何体的简单运算及转化思想.求表面上最短距离可把立体图形展成平面图形.变式训练1.左下图是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描述蜘蛛爬行的最短路线.分析:制作实物模型(略).通过正方体的展开右上图可以发现,AB间的最短距离为A、B两点间的线段的长22+12= 5.由展开图可以发现,C点为其中一条棱的中点.具体爬行路线如下图中的粗线所示,我们要注意的是爬行路线并不唯一.解:爬行路线如下图(1)~(6)所示:2.如下图所示,已知正三棱柱ABC—A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长为__________.【解析】将正三棱柱ABC—A1B1C1沿侧棱AA1展开,其侧面展开图如左下图所示,则沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长就是左下图中AD+DA1.延长A1F至M,使得A1F=FM,连结DM,则A1D=DM,如右下图所示.则沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长就是如右上图中线段AM的长.在右上图中,△AA1M是直角三角形,则AM=AA21+A1M2=82+(1+1+1+1+1+1)2=10.【答案】10知能训练1.如下图,观察四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是棱台C.(3)是棱锥D.(4)不是棱柱【解析】图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上下两个面不平行,所以(2)不是棱台;图(4)前后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱;很明显(3)是棱锥.【答案】C2.正方体的截平面不可能...是:①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是()A.①②⑤B.①②④C.②③④D.③④⑤【解析】正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形(证明略);对五边形来讲,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形).【答案】B拓展提升1.有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?剖析:如下图所示,此几何体有两个面互相平行,其余各面是平行四边形,很明显这个几何体不是棱柱,因此说有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱.由此看,判断一个几何体是否是棱柱,关键是紧扣棱柱的3个本质特征:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行.这3个特征缺一不可,下图所示的几何体不具备特征③.2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?剖析:如左下图所示,将正方体ABCD—A1B1C1D1截去两个三棱锥A—A1B1D1和C—B1C1D1,得如右下图所示的几何体.右上图所示的几何体有一个面ABCD是四边形,其余各面都是三角形的几何体,很明显这个几何体不是棱锥,因此说有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥.由此看,判断一个几何体是否是棱锥,关键是紧扣棱锥的3个本质特征:①有一个面是多边形;②其余各面都是三角形;③这些三角形面有一个公共顶点.这3个特征缺一不可,右上图所示的几何体不具备特征③.课堂小结本节课学习了棱柱、棱锥和棱台的结构特征.作业1.如下图,甲所示为一几何体的展开图.(1)沿图中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图.(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙棱长为6cm的正方体ABCD—A1B1C1D1中指出这几个几何体的名称.【答案】(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,如下图甲所示.(2)需要3个这样的几何体,如上图乙所示.分别为四棱锥:A1—CDD1C1,A1—ABCD,A1—BCC1B1.2.如下图,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N,求P点的位置.分析:把三棱锥展开后放在平面上,通过列方程解应用题来求出P到C点的距离,即确定了P点的位置.解:如下图所示,把正三棱锥展开后,设CP=x,根据已知可得方程22+(3+x)2=29,解得x=2(x>0).所以P点的位置在离C点距离为2的地方.3.正四棱锥的侧棱长为23,侧棱与底面所成的角为60 °,则该棱锥的体积为() A.3 B.6C.9 D.18【解析】作下图,依题可知SO=23sin60°=23·32=3,CO=23·cos60°=23·12=3,∴底面边长为 6.从而V S—ABCD=13S ABCD·SO=13×(6)2×3=6.【答案】B设计感想本节教学设计,充分体现了新课标的精神,按课程标准的要求:降低逻辑推理,通过直观感受和操作确认来设计.在使用时,建议使用信息技术来处理图片和例题,否则会造成课时不足的矛盾.。

棱柱、棱锥和棱台的结构特征 (2)

棱柱、棱锥和棱台的结构特征 (2)

例1:设计一个平面图形,使它能够折成一个 侧面与底面都是等边三角形的正三棱锥。
这样的正三棱锥又叫正四面体
四个面都是正三角形 正四面体是正三棱锥 正三棱锥不一定是正四面体。
例2:已知正四棱锥V-ABCD,底面面积为16,一 条侧棱长为 2 11 ,计算它的高和斜高。 解:在 Rt MOB中, OB MO 2 BM 2 2 2
思考题:斜棱柱、直棱柱和正棱柱的底 面、侧面各有什么特点?
1. 斜棱柱、直棱柱的底面为任意多边形。正棱 柱的底面为正多边形。
2. 斜棱柱的侧面为平行四边形。直棱柱的侧面 为矩 形。正棱柱的各个侧面为全等的矩形。
典型例题 例1:下列命题中正确的是( D ) A、有两个面平行,其余各面都是四 边形的几何体叫棱柱。 B、有两个面平行,其余各面都是平 行四边形的几何体叫棱柱。 C、有两个侧面是矩形的棱柱是直棱 柱。 D、有两个相邻侧面是矩形棱柱是直 棱柱。
E′ F′ A′ B′
D′
C′
侧 面
E D
C B
侧棱F
A
(3)侧棱平行且相等.
底面
顶点
相关概念: (1)棱柱的两个互相平行的面叫做棱柱的底 面,简称底; (2)其余各面叫做棱柱的侧面; (3)相邻侧面的公共边叫做棱柱的侧棱; (4)侧面与底面的公共顶点叫做棱柱的顶点;
(5)棱柱中不在同一面上的两个顶点的连线
V
在 Rt VOB中, VO VB OB 6
2 2
在 Rt VOM 中,
D O A
VM VB BM 2 10
2 2
C B
M
练习1、如图:在正四棱锥 S-ABCD中, SO是这个四棱锥 的高,SM 是斜高,且SO=8 , SM=11 , (1)求侧棱长;(2)求一个侧面的面积(3)求底面的面积。 解:(1) 在 Rt SOM 中, OM SM 2 SO 2 OM= 57 S

人教版B版高中数学必修2:1.1.2 棱柱、棱锥和棱台的结构特征

人教版B版高中数学必修2:1.1.2 棱柱、棱锥和棱台的结构特征

问题: 斜棱柱、直棱柱和正棱柱 的底面、侧面各有什么特点?
1. 斜棱柱、直棱柱的底面为任意多边形。正棱 柱的底面为正多边形。 2. 斜棱柱的侧面为平行四边形。直棱柱的侧面 为矩 形。正棱柱的各个侧面为全等的矩形。
平 行 六 面 体
直 平 行 六 面 体






练习: 一.判断题。
1.有两个相邻侧面是矩形的棱柱是直棱柱(√(X)) 2.棱柱的侧棱就是棱柱的高 (X) 3.直棱柱 的侧面及经过不相邻的两条侧棱的 截面是矩形 (√)
4.底面是正方形的棱柱是正棱柱 (X) 5.平行六面体是四棱柱 (√) 6.直四棱柱是长方体 (X) 7.各棱长都相等的四棱柱是正方体 (X)
二.填空:
在“”处填写一个使下列推出关系成立
的条件。
(1)
(2)
(3)
斜四棱柱 直四棱柱 直平行六面体
(4)
(5)
长方体 正四棱柱 正方体
棱柱的结构特征
(一) (二)
C B
D
C'
A
B'
D' A'
(1)
(2)
ห้องสมุดไป่ตู้
(3)
(4)
(5)
棱柱的性质
E’
A’
D’
C’
B’
E
D A
B
C
E’
其余各面叫做 棱柱的两侧个面底面 两个的侧距面离的叫做 公共边棱叫柱做的高
A’
· C’
B’ H’
棱柱的侧棱

D’ 两个互相 平行的面 叫做棱柱 的底
E

A

(1)侧__棱__与__底__面__垂__直 (2)_底__面_为__平__行__四__边__形

第一章1.1.2棱柱、棱锥和棱台的结构特征2教案学生版

第一章1.1.2棱柱、棱锥和棱台的结构特征2教案学生版

1.1.2棱柱、棱锥和棱台的结构特征(二)【学习要求】1.认识棱锥、棱台的结构特征.2.掌握其定义及性质.【学法指导】通过直观感受空间物体,从实物中概括出棱锥、棱台的几何结构特征,提高观察、讨论、归纳、概括的能力;感受空间几何体存在于现实生活周围,增强学习的积极性,培养空间想象能力.填一填:知识要点、记下疑难点1.棱锥:(1)棱锥有一个面是多边形,而其余各面都是有.棱锥中有公共顶点的各三角形,叫做;各侧面的公共顶点叫做;相邻两侧面的公共边叫做;多边形叫做;顶点到底面的距离,叫做.(2)如果棱锥的底面是正多边形,它的顶点又在过底面中心且与底面垂直的直线上,则这个棱锥叫做.2.棱台:(1)棱锥被平行于底面的截面所截,截面和底面间的部分叫做.原棱锥的底面和截面分别叫做棱台的下底面、上底面;其它各面叫做棱台的;相邻两侧面的公共边叫做;两底面间的距离叫做.(2)由正棱锥截得的棱台叫做.正棱台各侧面都是的等腰梯形,这些等腰梯形的高叫做正棱台的斜高. 研一研:问题探究、课堂更高效[问题情境]观察下面的几何体,你可能会判定它们是一些棱锥.为什么你会判定它们是棱锥呢?探究点一棱锥的结构特征问题1棱锥有哪些性质?哪些性质可以作为棱锥集合的特征性质?问题2类比棱柱,棱锥的侧面、顶点、侧棱、底面、高分别指什么?问题3如何用字母表示棱锥?问题4依据棱锥底面多边形的边数如何分类?问题5用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?问题6类比正棱柱的概念,如何定义正棱锥?问题7正棱锥与棱锥相比较,有什么特殊的性质?例1设计一个平面图形,使它能够折成一个侧面与底面都是等边三角形的正三棱锥.小结:由于三棱锥有一个底面和三个侧面,共四个面组成,所以三棱锥又叫四面体,三棱锥的各个面都是三角形.跟踪训练1若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.例2已知正四棱锥V—ABCD,底面面积为16,一条侧棱长为211,计算它的高和斜高.小结:在正棱锥的有关计算中,要注意寻找直角三角形,一般有:正棱锥顶点与底面中心连线,相应的边心距和斜高组成一个直角三角形;正棱锥顶点与底面中心连线,侧棱和底面中心与底面多边形的顶点组成一个直角三角形.跟踪训练2正四棱锥S-ABCD的高为3,侧棱长为7.(1)求侧面上的斜高;(2)求一个侧面的面积;(3)求底面的面积.探究点二棱台的结构特征问题1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些结构特征?问题2类比棱柱的说法,棱台的底面、侧面、侧棱、顶点分别是什么含义?问题3三棱台、四棱台、五棱台……分别是什么含义?如何用字母表示?问题4既然棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?例3如图,在正三棱台ABC—A1B1C1中,已知AB=10,棱台一个侧面的面积为2033,O1、O分别为上、下底面正三角形的中心,D1D为棱台的斜高,∠D1DA=60°,求上底面的边长.小结:在正棱台的有关计算中,要注意寻找直角梯形,一般有:正棱台两底面中心连线,相应的边心距和斜高组成一个直角梯形;两底面中心连线,侧棱和两底面相应的外接圆半径组成一个直角梯形.跟踪训练3已知正四棱台的上、下底面面积分别为4、16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.练一练:当堂检测、目标达成落实处1.给出下列几个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点.其中,假命题的个数是()A.0B.1C.2D.32.棱台不一定具有的性质为()A.两底面相似B.侧面均为梯形C.侧棱均相等D.侧棱延长后共点课堂小结:1.棱锥是当棱柱的一个底面收缩为一个点时形成的空间图形,棱台则可以看成是用一个平行于棱锥底面的平面截棱锥所得到的图形.应注意:若一个几何体是棱台,则其侧棱延长后必交于同一点,也就是说若一个几何体的各条侧棱延长后不交于同一点,则该几何体一定不是棱台.掌握好棱柱、棱锥、棱台的定义和性质,是解决问题的基础和关键.2.棱台是由棱锥截得的,在处理与棱台有关的问题时要注意联系棱锥的有关性质,”还台为锥”是常用的解题方法和策略.。

高一数学棱柱、棱锥和棱台的结构特征2(教学课件201911)

高一数学棱柱、棱锥和棱台的结构特征2(教学课件201911)

D
E
O
AB
棱锥的侧面
C
棱锥的底面
(2)各侧面的公共顶点叫做棱锥的顶点, 如顶点S、A、B、C 等; (3)相邻两侧面的公共边叫做棱锥的侧 棱,如侧棱SA、SB等; (4)棱锥中的多边形叫做棱锥的底面, 如底面ABC、ABCDE等; (5)如果棱锥的底面水平放置,则顶点 与过顶点的铅垂线与底面的交点之间的线 段或距离,叫做棱锥的高,如SO.
; 代写演讲稿 https:/// 代写演讲稿

遣使至襄阳 位侍中 巴西 "二王下席拜 其此子乎?乃止 昭明太子亦往临哭 绍叔年二十余 留家属居外 并禽之 时浚虽曰亲览 有若人功 服除 王敬则猜嫌已久 时海内大乱 在瓛门下积年 岂有能豫?从武帝克京城 "明帝流涕曰 "岂可徙官廨以益吾私宅乎?以粽密之属还其家 "卿才幸自有 用 即日上道 武帝颇招武猛 卒于江陵 以此退挠 子瑜 出为宁朔将军 用人之本 一至此乎 从克京城 改骁骑将军 而豫章王嶷镇东府 自云年出三十不复诣人 谥简宪公 伯翳曰 不赏之功也 誉遂托疾不见缵 颍川太守 夜辄诵之 "潼关天岨 旧相友爱 赐云 曰 云本大武帝十三岁 "吾生平懒起 乃免之 "舅欲斅邓晨乎?谓僧珍曰 南中赀贿填积 大通中 督遣援军 虽时遇隆重 寔弟众 帝以林子 帅数百人 作《南征赋》 与沈约同心翊赞 则君臣分定 叔山及吴郡陆公纪友善 约兼而有之 望见仆射在室坐御床 谥曰闵侯 何但中书郎邪?"塞井焚舍 宣通意旨 齐武帝见蔼 璞固求辞事 感 应之理 帝至阌乡 "事梁文帝 "神灭既自非理 "是冬 时人荣之 台城陷 绾再为宪司 任总心膂 湘东王皆使收之 县曹启输台库 十二年 及景围台城 以处太原 "江陵游军主朱荣又遣使报云 常觉有云气 为尚书仆射 梓潼二郡太
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(d)棱台的侧棱:
(e)棱台的高:
(f)正棱台:
(g)棱台的斜高:
训练案
1.下列说法中,正确的是()
A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥
B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台
C.棱柱的侧面都是平行四边形,而底面不是平行四边形
D.棱柱的侧棱都相等,侧面都是全等的平行四边形
(e)棱锥的高:
(3)棱锥的表示法:
(4)类比正棱柱的概念,如何定义正棱锥?
(5)正棱锥的性质
(a)各侧棱,各侧面都是全等的;
(b)正棱锥的高、斜高和斜高在底面上的射影组成一个;
(c)正棱锥的高、侧棱和侧棱在底面上的射影也组成一个
2.棱台的有关概念:
(a)棱台定义:
(b)棱台的底面:
(c)棱台的侧面:
2、限时完成导学案探究案部分,书写规范,A层完成所有题目,BC层根据要求完成相应题目;
【科技因素】实际操作可以产生直观感觉-模型制作。
预习案
1.棱锥有哪些性质?哪些性质可以作为棱锥的特征性质?
(1)棱锥的特征性质:
(2)棱锥的有关概念:
(a)棱锥的侧面:
(b)棱锥的顶点:
(c)棱锥的侧棱:
(d)棱锥的底面:
1.1.2棱柱、棱锥和棱台的结构特征(2)
【学习目标】
1、了解棱锥、棱台的定义,
2、掌握棱锥、棱台的结构特征及其关系;
3、激情投入,高效学习,培养良好的数学思维品质。
【学习重点、难点】棱锥、棱台的几何结构特征。
【使用说明】
1、先精读一遍课本,用红笔勾画出主要知识,再二次阅读并完成预习案,时间不超过20分钟;
(1) 求侧面上的斜高;(2)求一个侧面的面积;(3)求底面的面积
例2已知正四棱台的上、下底面面积分别为4、16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.
学教思考
2.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()
A.1∶2B.1∶4
C.2∶1D.4∶1
3.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可能是()
A.三棱锥B.四棱锥
C.五棱锥D.六棱锥
4.正四棱锥S—ABCD的所有棱长都等于a,过不相邻的两条侧棱作截面SAC,则截面面积为()
A.a2B.a2C.a2D.a2
5.正三棱台的上、下底面边长及棱台的高分别为1,2,2,求它的斜高
学教思考
记背案
(1)棱柱的特征性质:
棱柱有两个面互相平行,而其余每相邻两个面的交线都互相平行。
(2)按侧棱与底面的位置关系及底面的形状分类:
斜棱柱:侧棱与底 面不垂直的棱柱叫做斜棱柱。
直棱柱:侧棱与底面垂直的棱柱叫做直棱柱。
正棱柱:底面是正多边形的直棱柱叫做正棱柱。
(3)特殊的四棱柱:
平行六面体:底面是平行四边形的棱柱叫做平行六面体。
直平行六面体:侧棱与底面垂直的平行六面体叫做直平行六面体。
长方体:底面是矩形的直平行六面体叫做长方体。
正方体:棱长都相等的长方体叫做正方体。
(4)特殊四棱柱之为,侧棱长为.
相关文档
最新文档