线性系统的根轨迹法51根轨迹的基本概念52根轨迹
自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
线性系统的根轨迹法实验报告

线性系统的根轨迹法实验报告实验二线性系统的根轨迹法一,实验目的1,掌握matlab绘制根轨迹的方法。
2,观察k值变化对系统稳定性的影响。
3,掌握系统临界稳定情况下k值得求取。
4,了解增设零点对系统稳定的影响以及改善系统稳定性的方法。
二,实验原理根轨迹的概念:所谓根轨迹就是当开环系统某一参数从零变到无穷大时,闭环系统特征方程式的根在s平面上变化的轨迹。
根轨迹与系统性能:有了根轨迹就可以分析系统的各种性能了,稳定性的判定,当开环增益从零变到无穷大时,根轨迹不会越过虚轴进入s平面的右半平面,此时K的范围为系统稳定的范围,根轨迹与虚轴的交点处的K值,为系统的临界开环增益,开根轨迹进入s平面的右半平面时所对应的K值为系统不稳定的情况。
三,实验内容A、设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)(s+5)) (1) 绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较; (2) 从实验结果上观察系统稳定的K 值范围;(3) 用simulink 环境观察系统临界稳定时的单位阶跃响应分析:绘制根轨迹的matlab文本为clfnum=1;den=conv([1 1 0],[1 5]); rlocus(num,den) %绘制系统根轨迹1,得到如图的根轨迹图:2,用鼠标点击根轨迹与虚轴处的交点可得到临界稳定的开环增益K=30,所以系统稳定的K值范围为0―30。
3,在simulink环境下按下图连接电路:取增益为30的时候在示波器下观察单位节约响应,输出波形为:由图可以看出单位阶跃响应的输出为等幅的震荡输出,所以此时系统为临界稳定状态。
当改变开环增益为50和20时观察示波器,得到输出波形分别为:由图可知当增益K为50时输出为不稳定的震荡输出,此时系统不稳定,当增益K为20时输出的波形震荡越来越缓慢,最后趋于稳定,所以此时的系统是稳定的。
B,设单位反馈控制系统的开环传递函数为G(S)=K(s+3)/s(s+1)(s+2)(1) 仿照上题绘制系统的根轨迹,并判断系统的稳定性; 参照第一题得到matlab命令文本为:clfnum=1;den=conv([1 1 0],[1 2]); rlocus(num,den) %绘制系统根轨迹得到如图的根轨迹图:1,由图可知根轨迹没有进入s平面右半平面,所以系统在K=0到K=?都是稳定的。
根轨迹法的基本概念

K*
s1,2 1
1 K*
令K*(由0到∞ )变动,s1、s2在s平面的移动轨 迹即为根轨迹。
K* 0, s1 0, s2 2 K* 1, s1 1, s2 1 K* 2, s1 1 j, s2 1 j K* 5, s1 1 2 j, s2 1 2 j
特征方程的根 运动模态 性、系统性能)
1
1
1 ,d 4
m
(s zi )
1 G(s)H(s) 0
G(s)H(s) K*
i1 n
m
(s pj )
(s zi )
j 1
K * i1 n
1
(s pj )
j 1
m
n
模值条件: (s zi ) (s pj ) (2k 1)
i1
j1
n
s pj
相角条件: K *
j 1 m
s zi
i 1
相角条件是确定根轨迹的充分必要条件。相角条件满足(2k 1) 称为180º根轨迹。
4-2 绘制根轨迹的基本法则
一、基本法则
1、 根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点;如果开环零点个数少于 开环极点个数,则有(n-m)条根轨迹终止于无穷远处。
起点: K* 0 s pi
K* s p1 s z1
i 1, 2, n
s pn s zm
终点: K* s zi j 1, 2, m
例题:单位反馈系统的开环传递函数为:G(s)H (s) K *(s 1)
s(s 2)(s 3)
试绘制闭环系统的根轨迹
解: 1、开环零点z1=-1,开环极点p1=0,p2=-2,p3=-3, 根轨迹分支数为3条,有两个无穷远的零点。
自动控制理论 线性系统的根轨迹法

z1
p3
3
1
p2
s2
s1
p1 s3
4
z2
2
p4
先看试验点s1点: ①成对出现的共轭极点p3、 p4对实轴上任意 试探点构成的两个向量的相角之和为0°; ②成对出现的共轭零点z1、 z2对实轴上任意试探点构成的两个向量的 相角之和为0°; ③试探点左边的极点p2对试探点构成的向量的相角为0°; ④试探点右边的极点p1对试探点构成的向量的相角为180°; 所以s1点满足根轨迹相角条件,于是[-p2 ,-p1]为实轴上的根轨迹。 再看s2点:不满足根轨迹相角条件,所以不是根轨迹上的点。
2、根轨迹的对称性
一般物理系统特征方程的系数是实数,其根必为实根或共 轭复根。即位于复平面的实轴上或对称于实轴。
3、根轨迹的支数、起点和终点: n阶特征方程有n个根。当 K* 从0到无穷大变化时,n个根
在复平面内连续变化组成n支根轨迹。即根轨迹的支数等于系统 阶数。
线性系统的根轨迹法>>根轨迹绘制的基本法则
j 1
i 1
n
d ln (s p j )
d ln m (s zi )
j1
i1
ds
ds
d
n j 1
ln(s
p j )
d
m i 1
ln(s
zi )
ds
ds
n d ln(s p j ) m d ln(s zi )
j 1
ds
i 1
ds
n
1
m
1
j1 s p j i1 s zi
设 K* Kgd 时,特征方程有重根 d ,则必同时满足
F(d ) 0 和 F'(d ) 0
根轨迹的基本概念

m
n
上述两式称为满足根轨迹方程(kg>=0)的幅值条件和相角条件。
当根轨迹增益kg<0时:
根轨迹方程可写为:
| kg | s z j
j 1
m
s p
i 1
m j 1
n
e
n m j ( s z j ) ( s pi ) i 1 j 1
的旁边。
根轨迹的两种类型:
180o等相角根轨迹:复平面上所有满足相角条件式(kg>=0)
的点连成的曲线,称为180o等相角根轨迹,简称根轨迹。 0o等相角根轨迹:复平面上所有满足相角条件式(kg<0)的 点连成的曲线,称为0o等相角根轨迹。
这样,当根轨迹增益从kg=0到kg=±∞变化时,根据根轨
称 Gk (s) 1 或 k ×
g
(s z ) (s p )
j1
j
m
i1 n
i
1
为负反馈系统根轨迹方程
4.1.2
根轨迹的幅值和相角条件
当根轨迹增益kg>=0时: 根轨迹方程可写为:kg s Nhomakorabea z j
j 1
m
kg
1
(s z )
i
m
s p
i 1
不满足相角条件,所以点B不是根轨迹上 的点。
Im
B A
A2
p2
s2
s
A1
p1
Re
利用幅值条件在根轨迹上确定特定点的根轨迹增益kg
上例中,若A点的坐标是-1+j1,则根据幅值条件:
kg s( s 2) s 1 j1
1 , kg 2
第4章 线性系统的根轨迹法

m
s p
i 1
n
0
或写成
* s p K i s zi 0 i 1 i 1
m
它是直接利用开环传递函数分析闭环特征根及其性能的图解法。
『例』已知单位反馈系统开环传递函数 G s
讨论系统闭环极点的分布情况(0<K<∞)。
开环增益 K K * i bd
j
z
ac
i
p
j
四、根轨迹方程
(1) 根轨迹方程
1 Gs H s 0 或 Gs H s 1
假设开环传递函数中有m个零点和n个极点
1
K * s zi
i 1
m
s p
i i 1
n
0,
j z2
p3
S1
p2 z3
z1
p4
p1
4. 根轨迹的渐近线
当开环极点数n大于开环零点数m,有n-m条根轨迹 分支沿着与实轴夹角为 a 和交点为 的一组渐进线 a 趋向无穷远处。
(2k 1) a , a nm
p z
i 1 i i 1
n
m
i
nm
『例』指出单位反馈系统根轨迹的条数、根轨迹渐近线与 实轴的夹角和交点。 K* G(s) s( s 1)(s 2) 60 (2k 1) 0 1 2 解:有3条根轨迹, a 180 , a 1 30 3 60
『问题』开环传递函数的3个极点和2个零点如下图,
判断s1是否根轨迹上的点?
s1
5 4
z1 z2
× p3
3
2
× p2
线性系统的根轨迹法

法则7. 根轨迹与虚轴的交点
交点和临界根轨迹增益的求法:
解: 方法一
例8.
,试求根轨迹与虚轴的交点。
K*=0 w =0 舍去(根轨迹的起点)
与虚轴的交点:
闭环系统的特征方程为:
s=jw
劳斯表:
01
s2的辅助方程:
02
K* =30
03
当s1行等于0时,特征方程可能出现纯虚根。
04
等效的开环传递函数为:
参数根轨迹簇
二、附加开环零、极点的作用
试验点s1点
例1.设系统的开环传递函数为: 试求实轴上的根轨迹。
解:
零极点分布如下:
p1=0,p2=-3,p3=-4,z1=-1,z2=-2
实轴上根轨迹为:[-1,0]、[-3,-2]和 (- ∞ ,-4]
jw
-2
-1
1
2
-1
-2
s
.
.
.
.
.
.
.
.
三、闭环零极点与开环零极点的关系
反馈通路传函:
前向通路传函:
典型闭环系统结构图
KG*--前向通路根轨迹增益 KH*--反馈通路根轨迹增益
K*--开环系统根轨迹增益
1
闭环传递函数:
2
开环传递函数:
01
04
02
03
闭环系统根轨迹增益,等于开环系统前向通路根轨迹增益。 对于单位反馈系统,闭环系统根轨迹增益等于开环系统根轨迹益。
(5)用(s-s1)去除Q(s),得到余数R2 ;
(6)计算s2 =s1-R1/R2 ;
(7)将s2 作为新的试探点重复步骤(4)~(6)。
例4.试用牛顿余数定理法确定例3的分离点。
第四章线性系统的根轨迹法

4 分离角不变
1-G(S)H(S)=0 G(K)=1 例题:开环传递函数:
绘制系统的根轨迹。
解:①n=3.所以根轨迹有三条。 ②极点: ③渐近线: 5 分离点:
令 1. 闭环零极点由前向通道的零点和反馈通道的极点构成,对于单 位负反馈系统的闭环零点就是开环零点。 2. 闭环极点与开环极点,开环零极点及根轨迹都有关系。
4).根轨迹方程:
幅值条件: 相角条件: ①满足相角条件的点肯定是根轨迹上的点,相角条件是确定根轨迹 的充要条件。 ②幅值条件是用来确定根轨迹上的点所对应的根轨迹增益。 5).绘制更轨迹的法则: ①根轨迹的连续性:根轨迹是连续变化的直线或曲线。 ②根轨迹的对称性:根轨迹位于幅平面的实轴上或对称的实轴上。 ③根轨迹的条数;等于系统的阶次。即:闭环特征根最高次幂。 ④根轨迹的起点和终点:起源于n个开环极点,终止于m个开环零点。 以及n-m个无穷远零点。
闭环极点。
解 (1)系统的开环极点为,,是根轨迹各分支的起点。由于 系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线
渐进线的倾斜角为 取式中的K=0,1,2,得=π/3,π,5π/3。
渐进线与实轴的交点为
三条渐近线如图的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图中 的粗实线所示。 (4)确定分离点:系统的特征方程式为 即
所以 即: ②分离点: 证明:
②除以①式
无零点 分离点重根 ③分离角:指根轨迹进入分离点的切线方向与离开分离点的切线方向之 间的夹角。当l条根轨迹进入并立即离开分离点时 8)根轨迹的出射角和入射角: 出射角:起始于开环极点的根轨迹在起点处,切线方向与正实轴的夹 角。 入射角:终止于开环零点的根轨迹在终点处切线方向与正实轴的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s1
z1
0 Re
p2
p2
北京科技大学自动化学院自动化系
12
规则五 渐近线
当开环极点数 n大于开环零点数m时, 系统有n-m条根轨 迹终止于S平面的无穷远处,这n-m条根轨迹变化趋向的直线 叫做根轨迹的渐近线,因此渐近线也有n-m条, 且它们交于实 轴上的一点。
渐近线与实轴的交点位置 和与实轴正方向的交角 分别为:
动态性能 当0 kg 1 时, 所有闭环极点均位于实轴上,系统为过
阻尼系统,其单位阶跃响应为单调上升的非周期过程。
当 kg 1 时,特征方程的两个相等负实根,系统为临界阻尼
系统,单位阶跃响应为响应速度最快的非周期过程。
当 kg 1 时,特征方程为一对共轭复根系统为欠阻尼系统,
单位阶跃响应为阻尼振荡过程,振荡幅度或超调量随K g值的 增加而加大,但调节时间不会有显著变化。
2020/5/6
北京科技大学自动化学院自动化系
10
规则三 根轨迹的分支数、连续性和对称性
根轨迹的分支数即根轨迹的条数。根轨迹是描述闭环系统特 征方程的根(即闭环极点) 在s平面上的分布,那么,根轨迹 的分支数就应等于系统特征方程的阶数。
由例5-1 看出,系统开环根轨迹增益k(g 实变量)与复变量 s有一一对应的关系。
当 k g由0到∞连续变化时,描述系统特征方程根的复变量s 在平面上的变化也是连续的,因此,根轨迹是n条连续的曲线。
由于实际的物理系统的参数都是实数,如果它的特征方程有复 数根的一定是对称于实轴的共轭复根,因此,根轨迹总是对称 于实轴的。
结论:根轨迹的分支数等于系统的闭环极点数。根轨 迹是连续且对称于实轴的曲线。
2020/5/6
北京科技大学自动化学院自动化系
5
三、根轨迹的概念
设系统的开环传递函数为:
Gk
s
kg N (s) D(s)
k g为根轨迹增益(或根轨迹的放大系数)
其中:
n
N (s) (s z j ),
n
D(s) (s pj )
j 1
j 1
可得到系统的闭环特征方程式为:
1 Gk
s
0
1
kg
(s d ) 1[(s 1)(s 2 )L (s n )] 0
即可求得 dF (s) 0 ds
2020/5/6
北京科技大学自动化学院自动化系
18
故在重根处有:
dF (s) ds
d (kg
N
(s) ds
D(s))
kg
N
'(s)
D
'(s)
0
D(s)
因为: kg N (s)
所以: D(s) N '(s) D '(s) 0
2020/5/6
北京科技大学自动化学院自动化系
3
当 kg 0 时, s1 0, s2 2
当 0 kg 1 时, s1与 s2 为不相等的两个负实根;
当 kg 1时, s1 s2 1 为等实根;
当 kg 1 时,s1,2 1 j kg 1 共轭复根。
该系统特征方程
S Kg
K* 0
K1
K1
K*
分离点 Re
0 K* 0
K1 0
0
K*
分离点
K* 0
K1
K1
K1 0 北京科技大学自动化学院自动化系
Im
Re K1 0
21
例5-3
绘制开环系统传函数为
Gk (s)
s(s
kg 1)(s
2)
的单位负反馈系统的(180°)根轨迹。
解 1)此系统无开环零点,有三个开环极点,分别为: 2)渐近线: p1 0 p2 1 p3 2
2020/5/6
北京科技大学自动化学院自动化系
11
规则四 实轴上的根轨迹
实轴上的根轨迹由相角条件可证:设某段右侧的零,极点数分
别为: N z , N p
m
n
则: i j Nz N p (1 2k)
i 1
j1
即右侧开环零,极点数的和为奇数时,该段为根轨迹。
p1 p1
Im [s]
2020/5/6
π 180(k 1)
渐近线如图所示。
1800
-4 -3 -2 -1
300 0
0
60 0
C
2020/5/6ຫໍສະໝຸດ 北京科技大学自动化学院自动化系
16
2020/5/6
北京科技大学自动化学院自动化系
17
规则六 根轨迹的分离点、会(汇)合点
K1
K1 0
K1
K1 K1 0
K1 0
会合点 K1 0
规则一 根轨迹的起点
m
由根轨迹的幅值条件可知: s z j j 1 n s pi
1 kg
i1
当 kg 0 ,必有 s pi (i 1, 2,L , n)
此时系统的闭环极点与开环极点相同(重合),把开环极点 称为根轨迹的起点。
2020/5/6
北京科技大学自动化学院自动化系
9
规则二 根轨迹的终点
D(s) - (s p1)(s p2 )L L (s pn )
即
d [ln N (s)] 1 1 L L 1
ds
s z1 s z2
s zm
所以
d
1
1
1
[ln D(s)]
L L
ds
s p1 s p2
s pn
m
1
n
1
i1 s zi j1 s p j
2020/5/6
北京科技大学自动化学院自动化系
n
m
Pi Z j
i1
j1
nm
2k 1 ,k 0,1, 2,L , n m 1
nm
2020/5/6
北京科技大学自动化学院自动化系
13
(1)根轨迹渐近线的倾角
根据幅角条件:
m
(s
z
j
)
n
(s
pi
)
180o(2k
1),
k 0, 1, 2,L
j 1
i 1
当 s 时,零点 z j 、极点 pi 与 s 矢量复角可近似看成相等
20
一般来说: 如果根轨迹位于实轴上两相邻的开环极点( 零点)之间;则出现分离点(会合点) 。如果根轨迹位于 实轴上一个开环极点与一个开环零点之间,则或者既 不存在分离点,也不存在会合点,或者既存在分离点 ,又存在会合点。
四重分离点
复数分离点
K* K* 0
K* 2020/5/6
Im
K1 0
m
由根轨迹的幅值条件可知:
s zj
j1
n
s pi
1 kg
i 1
当 kg 时,必有 s z j ( j 1, 2,L , m)
此时,系统的闭环极点与开环零点相同(重合),我们把 开环零点称为根轨迹的终点。
结论:根轨迹起始于开环极点 (kg 0) ,终止于开环
零点 (kg ) 。
如果开环极点数n大于开环零点数m,则有n-m条根轨迹终止 于S平面的无穷远处(无限零点),如果开环零点数m大于开环 极点数n,则有m-n 条根轨迹起始于S平面的无穷远处。
根据规则可知,系统根轨迹有三条分支,当 kg 0分别从
开环极点 p1、p2、p3出发,kg 时趋向无穷远处,其渐
近线夹角为:
2k 1
600 ,1800
n m
k 0,1, 2,L ,n m 1
渐近线与实轴的交点为
n
m
Pi Z j
i1
j1 1
nm
2020/5/6
北京科技大学自动化学院自动化系
N s Ds
0
即:
N (s) D(s)
1
kg
n
(s zi )
i 1
n
(s pj)
j1
zi 开环的零点
pi
开环的极点
2020/5/6
北京科技大学自动化学院自动化系
6
根轨迹图是闭环系统特征方程的根(闭环极点)随开环系 统某一参数由0变化到∞时在S平面上留下的轨迹。
由此可得到满足系统闭环特征方程的幅值条件和相角条件为:
K* s p1 L L s pn s z1 L L s zm
当 K* ,则对应于 s ,此时 s zi s pi ,上式可写成:
(s p1)(s (s z1)(s
p2 )L z2 )L
L L
(s pn ) (s zm )
(s
a
)nm
上式左边展开:s nm [( p1 p2 pn ) (z1 z2 zm )]s nm1
15
例5-2 已知系统的开环传递函数,试画出该系统根轨迹的渐近线。
Gk
s
kg (s 2) s2 (s 1)(s
4)
解
1渐近线:系统有n=4,m=1,n-m=3 三条渐近线与实轴交点位置为:
σ 1 4 2 1 3
实轴正方向的交角分别是
j
π 60(k 0) 3
A
B
60 0
5π 60(k 2) 3
2020/5/6
北京科技大学自动化学院自动化系
2
5.1 根轨迹的基本概念
一、一个例子
例5-1 一单位负反馈系统的开环传递函数为:
Gk
s
kg s(s
2)
试分析该系统的特征方程的根随系统参数
k
的变化在S平面
g
上的分布情况。
解 系统的闭环特征方程: s2 2s kg 0
特征方程的根是: s1,2 1 1 k g 设 k的g 变化范围是〔0, ∞﹚