2.2.2 函数的表示方法(2)
§2 2.2 函数的表示法

像这样, 像这样,用图像把两个变量间的函数关系表示出来 的方法,称为图像法. 的方法,称为图像法. 特点:图像法可以直观地表示函数的局部变化规律, 特点:图像法可以直观地表示函数的局部变化规律, 进而可以预测它的整体趋势. 进而可以预测它的整体趋势.
3.解析法 3.解析法
一个函数的对应关系可以用自变量的解析表达式 (简称解析式)表示出来,这种方法称为解析法. 简称解析式)表示出来,这种方法称为解析法. 例如,设正方形的边长为x 面积为y 例如,设正方形的边长为x,面积为y,则y 是x的函数,用解析式表示为 y 的函数,
2.2 函数的表示法
1. 通过丰富的实例,体会函数的三种表示方法. 通过丰富的实例,体会函数的三种表示方法. 体会三种表示方法的使用情境与各自的特点. 2. 体会三种表示方法的使用情境与各自的特点. 3.通过具体实例,了解简单的分段函数, 3.通过具体实例,了解简单的分段函数,并能 通过具体实例 简单应用. 简单应用.
= x , x ∈ (0, +∞).
2
特点: 特点:解析法表示的函数关系能较便利地通过计算 等手段研究函数性质.但是,一些实际问题很难找到它的 等手段研究函数性质.但是, 解析式. 解析式.
例题讲解
例1.国内跨省市之间邮寄信函,每封信函的质量和对应的 1.国内跨省市之间邮寄信函, 国内跨省市之间邮寄信函 邮资如下表: 邮资如下表:
在研究函数的过程中, 在研究函数的过程中,采用不同的方法表示函 数,可以帮助我们从不同的角度理解函数的性质, 可以帮助我们从不同的角度理解函数的性质, 同时也是研究函数的重要手段. 同时也是研究函数的重要手段. 初中学习过的函数的表示法有三种: 初中学习过的函数的表示法有三种: 法一:列表法,即题中的表格. 法一:列表法,即题中的表格. 法二:解析法, 法二:解析法, 法三:图像法. 法三:图像法. y
2.2.二次函数的图象和性质(2)

3.联系: y=ax²+c(a≠0) 的图象可以看成y=ax²的图象沿y轴整体平移|c|个单位 得到的.(当c>0时向上平移;当c<0时,向下平移).
独立
知识的升华
作业
P36 习题2.3 1,2题.
祝你成功
3.实验探究系数与图象间的关系
a与图象的关系
a决定 图象的 形状
开口方向 开口大小
当a > 0 时 开口向上 当a < 0 时开口向下 a 越大图象开口越小
a 越小图象开口越大
c与图象的关系
当c=0时图象过原点 C 确定图 象与y轴 当 c > 0时图象与y轴正半轴相交 的交点
当c < 0时图象与y轴负半轴相交
第二章《二次函数》
在同一坐标系中作出二 次函数y=2x²+1的图象与二 次函数y=2x²的图象
y
9 8
y=2x2
函数y=2x2+1的图象是什
6
么形状?
5
它的开口方向,对称轴 和顶点坐标分别是什么?
它与y=2x2的图象有什么 相同和不同?
-4 -3
4
3
2
1
x -2 -1 o 1 2 3 4
y=2x2+1
4、将抛物线y=x2+1的图像向下平移一个单位,
将得到 y=x2 的图像;如果向上平移 一个单位,将得到 y=x2+2 的图像.
5、若抛物线y=-3x2+c的顶点坐标为(0,-5),
则c=_-_5_,二次函数关系式为_y=_-3__x2_-5,
那么它的图像是由y=-3x2怎样移动得来的?
2.2.2对数函数及其性质(二)

区间[a, 2a]上的最大值是最小值的
3倍,求a的值.
x 例4 求证: 函数f(x)= log 2 1 x
在[0, 1]上是增函数.
例5 已知f (x)=loga (a-ax) (a>1).
(1) 求f (x)的定义域和值域; (2) 判证并证明f (x)的单调性.
例6 溶液酸碱度的测量. 溶液酸碱度是通过pH刻画的. pH的 计算公式为pH=-lg[H+],其中[H+]表 示溶液中氢离子的浓度,单位是摩尔/升. (1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢离 子的浓度之间的变化关系; (2)已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升,计算纯净水的pH.
1 ( 2) log 3.4 0.7, log 0.6 0.8, 3
1 2
(3) log 0.3 0.1, log 0.2 0.1
练习 比较大小
(1) log 0.3 0.7, log 0.4 0.3 log 0.3 0.7 log 0.4 0.3
1 ( 2) log 3.4 0.7, log 0.6 0.8, 3
a> 1 0< a< 1
y
图 象
y
O
x
O
x
定义域:(0, +∞);
性 质
2. 对数函数的性质:
a> 1 0< a< 1
y
图 象
y
O
x
O
x
定义域:(0, +∞); 值域:R
性 质
2. 对数函数的性质:
a> 1 0< a< 1
y
图 象
yБайду номын сангаас
O
x
O
x
第二章 2.2.2 第2课时 对数函数及其性质(二)

第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
2.2.2二次函数的性质与图象(2)

预习反馈
小 1组★★ 2组★ 3组★ 4组★★ 5组★ 6组★★ 7组★ 8组★★ 李艳丽 匙永明 刘选和 殷森 组 优 王家明 王彩云 赵晓阳 赵芃 史东岳 闫永洁 秀 个 人 得分 4 4 4 5 1 4 2 2
9组★★
匙红芳 韩静
3
姜珊
杜
彬 朱清华 刘仲轩 朱照纬
刘梦佳 田小桐 曹秀敏 赵雪婷 董金明 王 宁 刘柄鑫 张春艳
存在问题
1、不会选择恰当的形式求解二次函数的解析式; 2、二次函数区间最值问题: 分类不明确、步骤不条理、结论不完整;
3、不会利用二次函数的单调性解决含参问题。
合作探究
内容:
1、二次函数的性质。 2、总结:含参二次函数的求值问题。 3、小组内的其他疑问。
6+3分钟
目标要求:
(1)人人参与,热烈讨论,大声发表自己的 见解 (2)手不离笔、随时记录,组长调控好节奏
精彩点评(20分钟)
展示问题 展示位置 小组 点评
目标:
(1)点评对错、规 范(布局、书写)、思 路分析(步骤、易错 点),总结规律方法 (用彩笔) (2)其它同学认真 倾听、积极思考,重 点内容记好笔记。有 不明白或有补充的要 大胆提出。 (3)力争全部达成 目标,A层多拓展、 质疑,B层注重总结, C层多整理,记忆。 科研小组成பைடு நூலகம்首先要 质疑拓展。
例1(1)
后黑板
7组
例1(2)
例1(3) 例1变式 例2 例3
后黑板
后黑板 后黑板 前黑板 前黑板
8组
9组 3组 5组 6组 2组 1组
4组
整理巩固
要求: 整理巩固探究问题
落实基础知识 完成知识结构图
课堂评价
高中数学必修一课件:2.2.2 对数函数及其性质(二)

loga M loga N loga MN
判断对数函数奇偶性: f ( x) f ( x) 0或f ( x) f ( x) 0
(2) g ( x) lg
解:
x 1 x
2
x2 1 x
2 2
定义域为 R
2 lg ( x ) 1 x lg g ( x) g ( x)
3 2
3
u g ( x) x ax a 在 (, 1 3)上是减函数,
2 且当 x (, 1 3) 时, g ( x) x ax a 0
2 f ( x ) log x 0 a 1 时, a 4x 3
在 (3, ) 上递减, 在 (, 1) 上递增
2 f ( x ) log ( x ax a) 在区间 (, 1 3) 6 、若 2
上是增函数, 求 a 的取值范围?
解: 由于 y log 2 u 在 (0, )上是减函数, 则
解之,得函数定义域为
1 3 {x | x 2且x 1且x } 2 2
2 y log ( x 4 x 7) 的值域? 2:求 3, 定义域: R 值域:
{x | x R且x 2} 值域: R 定义域:
2″
y log 2 ( x 2 4 x 4)
求 a的取值范围?
二次项系数 是否为0?
解得 0 a 1
故函数定义域为R时, 0 a 1.
改变条件为:
3′已知函数 若 值域 为 值域 y lg(ax2 2ax 1), 求 a 的取值范围?
R
解: (1) a 0 时, y lg 1 ,此时不 × 满足题设条件 ; (2) a 0 时,设 u ax2 2ax 1, 因为函数 y的值域是R, 则 a 0 解得 a 1 4a2 4a 0
2.2.2 对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。
精 品 教 学 设 计2.2.2函数的表示方法

精品教学设计函数的表示方法设计理念:以建构主义理论为支持,以回顾旧知——探索新知———例题讲解————巩固新知为主线,注重新课引入,通过分析比较三种不同表示方法的优缺点及分段函数概念的正确理解,更好的掌握这节课的内容教学目标:知识目标:会用三种表示方法表示常用的函数,了解三种表示方法的优缺点。
理解分段函数的概念,掌握画分段函数图像的方法。
能力目标:渗透分类、比较、归纳的数学思想情感目标:注重数学知识与实际生活得紧密联系,增强数学的趣味性,提高学生学习数学的兴趣教学重点:函数表示方法教学难点:分段函数的定义,作图教学准备:制作ppt,几何画板只做例题片段,学生提前预习教学过程:回顾旧知:通过三个具体例子,从解析式,图像,表格三个方面复习函数的概念。
(1)气温的摄氏度数x与华氏度数y之间可以进行9325y x=+转化,华氏度数y是不是摄氏度x的函数?为什么?(2)某气象站测得当地某一天的气温变化情况如图所示:(3)近年来上海市区的环境绿化不断得到改善,下表是上海市区人均绿化面积变化的一些统计数据:探索新知:回顾以前学过的函数引入解析法,观察图表引入图表法,根据图像得到图像法。
引导学生自己得出三种表达方式的定义及优缺点。
老师进行总结归纳解析法:即全面地概括了变量之间的依赖关系,又简单明了,便于对函数进行理论上的分析和研究.但有时函数不能用解析法表示,或很难找到这个函数的解析式.列表法:自变量的值与其对应的函数值一目了然,查找方便.但有很多函数,往往不可能把自变量的所有值与其对应的函数值都列在表中.图像法:非常直观,可以清楚地看出函数的变化情况.但是,在图像中找对应值时往往不够准确,而且有时函数画不出它的图像,还有很多函数不可能得到它的完整图像.用适当的方法表示函数,或者把几种方法结合起来,能够帮助我们更好的理解函数和运用函数解决问题讲解例题。
: 例2、某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案:f (1) 1, f (0) 1, f (2) 3, f ( f (1)) f (1) 1, f ( f (0)) f ( 1) 1, 3 1 f ( f (0.5)) f ( ) . 4 2
泰兴市第五高级中学 柳金爱
小结:
1.分段函数与分类讨论.
7,0 x ≤ 3 参考答案:f ( x) 7 2.4( x 3),x 3
实际问题中,分段函数是常见的函数模型.
泰兴市第五高级中学 柳金爱
数学应用:
例2.如图,梯形OABC各顶点的坐标分别为O(0,0),A(6,0),B(4,2), C(2,2).一条与y轴平行的动直线l从O点开始作平行移动,到A点为 止.设直线l与x轴的交点为M,OM=x,记梯形被直线l截得的在l左侧的 图形的面积为y.求函数y=f(x)的解析式、定义域、值域. y C B
-2
y 1 -1 O 1 2 x
x2-2x,x>0.
f(x)=
- x2 - 2 x , x ≤0 ,
也可以表示为y= x(|x|-2)
泰兴市第五高级中学 柳金爱
参考资料
y (3) 的变式y= x(|x|-2) - x 2 - 2 x , x ≤0 ,
=
x2-2x,x>0.
O
x
泰兴市第五高级中学 柳金爱
参考答案:
1 2 2 x ,0 ≤ x ≤ 2 f ( x) 2 x 2,2 x ≤ 4 , 1 8 ( x 6)2 , 4 x ≤ 6 O 2
A
ቤተ መጻሕፍቲ ባይዱ
x
定义域为[0,6], 值域为[0,8]
数学应用:
1.如图,点P在边长为2的正方形边上按A→B→C→D→A的方向移动, 试将AP表示成移动的距离x的函数.
数学应用:
2.函数f(x)=| 2x+1|与g(x)=| x+1| +| x| 是同一函数吗?
列表对比:
x f(x) g (x )
-3 5 5
-2 3 3
-1 1 1
0 1 1
1 3 3
2 5 5
3 7 7
画出函数f(x)与g(x)的图象.
泰兴市第五高级中学 柳金爱
数学应用:
-2x-1, x<-0.5 x≥-0.5
2.分段函数的应用 .
注:分段函数不是几个函数,而是一个完整的函数,只是在不同的区 间上具有不同的对应关系.
泰兴市第五高级中学 柳金爱
作业:
P32第3,10,12题.
泰兴市第五高级中学 柳金爱
参考答案:
D
C P
x,0 ≤ x 2 A 2 ( x 2) 4, 2 ≤ x 4 f ( x) , 2 ( x 6) 4, 4 ≤ x 6 8 x,6 ≤ x ≤ 8
泰兴市第五高级中学 柳金爱
高中数学 必修1
姓名:柳金爱 单位:泰兴市第五高级中学
泰兴市第五高级中学 柳金爱
情境问题:
列表法 函数的表示法 解析法 图象法
如果函数y=f(x) 在不同的区间上具有不同的对应法则呢?
泰兴市第五高级中学 柳金爱
数学应用:
例1.某市出租汽车收费标准如下:在 3km以内(含3km)路程按起步价7元收费, 超过3km以外的路程按2.4元/km收费.试 写出收费额关于路程的函数解析式.
y f(x)=| 2x+1|
f(x)=
2x+1, x O -2x-1 g(x)= 1 2x+1 x<-1 -1≤x<0 x≥0 g(x)=| x+1| +| x| y
x
泰兴市第五高级中学 柳金爱
O
数学应用:
x2-1,x≥0, 3.若f(x)= 求f(-1),f(0),f(2),f(f(-1)),f(f(0)), 2x+1,x<0. f(f(0.5))的值.
B
数学应用:
例3.将函数f(x)= | x+1|+| x-2|表示成分段函数的形式,并画出其图象, 根据图象指出函数f(x)的值域.
-2x+1 f (x)= 3 2x-1
x<-1 -1≤x<2 x≥2 y f (x)
值域是[3, +
)
x
泰兴市第五高级中学 柳金爱
O
例4 如图所示, 该图象是由 开口方向相反的 两条抛物线构成, 试求该函数的解析式