高中数学 函数的表示法 教案
函数的表示法教案

1.2.2 函数的表示法一、教材分析:函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.二、学习目标:①了解函数的一些基本表示法(列表法、图象法、解析法);②会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.三、教学重点:掌握函数的三种表示方法:解析法、图象法、列表法.四、教学难点:会根据不同的需要选择恰当方法表示函数.五、课时安排:2课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境语言是沟通人与人之间联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为生日快樂!英文为Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute zum Geburtstag!西班牙文为Feliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd metjeverj aardag!在俄语中则是С днемрождения!……问题1:我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么对于函数,又有什么不同的表示方法呢?这节课我们就来研究这个问题(板书课题).2、自主探索,尝试解决结合研究函数概念时生活中的三个例子,以及初中学过的函数的表示方法,老师根据同学们分组讨论(回答)情况,带领学生总结出函数的三种不同表示方法.并作讲解介绍:函数的三种表示方法:解析法: 用数学表达式表示两个变量之间的对应关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.如:1.2.1的实例(1);图象法: 图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间的对应关系的方法叫做图象法.如:1.2.1的实例(2);列表法: 列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的对应关系的方法叫做列表法.如:1.2.1的实例(3).问题2:分析对比三种不同表示方法的优缺点.现提出问题让学生思考,之后根据具体实例提示并和学生一起总结得出结论:解析法能够准确表达出两个变量之间的关系,简明扼要,给自变量求函数值;不足之处,比较抽象.图象法形象直观表示两个变量之间的关系,较好地反映了两个变量的变化趋势;不足之处,变量关系不够精确.列表法通过表格直接得出函数值,没有计算过程;不足之处,不能列出定义域为区间范围的所有函数值,仅能表示有限个.(二)、合作学习让学生合作做练习,教师巡视指导【例1】某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.【例2】下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图所示.由图可看到,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀.张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.【例3】画出函数y=|x|的图象.分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图所示.解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例4.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x ∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如上图所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦;(ⅲ)求平方;(ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”是什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例5.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f: A→B是从集合A到集合B的一个映射,⑷中的对应f: A →B不是从集合A到集合B的一个映射.(三)、当堂检测1.教师引导学生对函数的三种表示法进行对比,并让学生归纳然后说出它们各自的的优缺点.2.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1);第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)3.已知函数f(x)=2000x xx⎧>⎨≤⎩,,,,求f(2),f(-3)的值.解:∵2>0,∴f(2)=22=4.∵-3≤0,∴f(-3)=0.(四)、课堂小结请同学们回想一下,本节课我们学了哪些函数的表示方法?在具体的实际问题中如何恰当地选择?理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.这节课学习的主要内容及要掌握的知识点:①分段函数的表示,求值等问题.②表示函数的三种方法,映射的概念.七.课外作业课本P24习题1.2 A组第7,8,9题.八、教学反思:。
函数的表示方法教案

函数的表示法一.教学目标了解函数的三种表示方法(解析法、图象法、列表法);知道三种表示法各自的优缺点;会根据不同的实际情境选择恰当的方法表示函数.二.教学重难点教学重点:函数的三种表示方法.教学难点:在实际情境中,函数表示方法的恰当选择.三.教学过程(一) 导入新课以提问的方式复习函数的概念, 来揭示函数概念的内涵(尽量让学生自己总结出来).只要有一个对应关系, 使得取值范围中的每一个值都有唯一确定的y 和它对应即可, 不用管这个对应关系是以何种形式给出.让学生阅读课本15至16页的三个引例, 学生很容易就可以发现其对应关系分别以解析式、图象、表格的形式. 与之对应, 函数常用的三种表示法为解析法、图象法、列表法.设计意图:帮助学生回忆出初中就已经接触过的函数的三种表示法:解析法、图象法、列表法.(二) 讲解新课设计思路:围绕课本15至16页的三个引例讲解函数的三种表示法, 以下内容均通过这三个例子进行讲解.1. 三种表示法的定义(了解即可)解析法:用数学表达式表示两个变量之间对应关系的方法.图象法:用图象表示两个变量之间对应关系的方法.列表法:列出表格来表示两个变量之间对应关系的方法.2. 函数用不同方法表示时定义域、值域的不同求法(1)函数定义域的求法①当函数y =f (x ) 用解析式给出时, 函数的定义域是指使解析式有意义的实数x 的集合; ②当函数y =f (x ) 用图像给出时, 函数的定义域是指图像在x 轴上的投影所覆盖的实数x 的集合;③当函数y =f (x ) 用表格给出时, 函数的定义域是指表格中实数x 的集合.(2)函数值域的求法①当函数y =f (x ) 用解析式给出时, 函数的值域由函数的定义域及其对应关系唯一确定; ②当函数y =f (x ) 用图像给出时, 函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合;③当函数y =f (x ) 用表格给出时, 函数的值域是指表格中实数y 的集合.3. 函数三种表示法优缺点的对比(1)解析法的优点:一是简明, 全面地概括了变量间的关系; 二是可以通过解析式求出任意一个自变量的值所对应的函数值.缺点:不够形象, 直观, 具体, 而且并不是所有的函数都能用解析式表示出来.(2)图像法的优点:能形象直观地表示出函数的变化情况.缺点:只能近似地求出自变量的值所对应的函数值, 而且有时误差较大. (企业生产图、股市走势图等)(3)列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值.缺点:它只能表示自变量取较少的有限值时的对应关系. (银行利率表、列车时刻表等)(四) 巩固练习课本练习小结1. 函数的三种表示法: 解析法、图象法、列表法.2. 函数用不同方法表示时定义域、值域的不同求法.3. 函数三种表示法优缺点的对比, 这也是选择函数表示法的标准.。
函数概念及表示法教案

函数概念及表示法教案一、引言函数是数学中的一个重要概念,也是学习和应用数学的基础。
本教案将介绍函数的概念及相关表示法,以帮助学生深入理解和掌握函数的基本原理。
二、函数的概念函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
简而言之,函数就是一个输入输出的规则。
示例1:考虑一个函数f(x),它将自然数集合N的每个元素x映射到其平方,即f(x) = x^2。
例如,当x = 2时,f(2) = 4。
这里,N为输入集合,f(x)为输出集合。
三、函数的表示法函数有多种表示方法,以下是常见的几种表示法:1. 集合表示法函数可以使用集合表示法表示为 {(x, f(x)) | x ∈ N},表示函数包括了所有输入与输出的有序对。
2. 公式表示法函数可以使用公式表示法表示为 f(x) = x^2,通过一个明确的公式表达函数的输入与输出之间的关系。
3. 图像表示法函数可以使用图像表示法,通过绘制函数的图像来显示输入与输出之间的关系。
例如,绘制函数f(x) = x^2的平面直角坐标系图像。
示例2:考虑函数f(x) = x^2,它可以表示为以下三种方式:- 集合表示法:{(x, x^2) | x ∈ N}- 公式表示法:f(x) = x^2- 图像表示法:绘制平面直角坐标系图像,横轴为x,纵轴为f(x)四、函数的性质函数具有以下几个重要的性质:1. 定义域:函数的定义域是指所有可能的输入值的集合。
对于函数f(x) = x^2,定义域可以是实数集R。
2. 值域:函数的值域是函数在定义域中所有可能的输出值的集合。
对于函数f(x) = x^2,值域可以是非负实数集R≥0。
3. 单调性:函数的单调性描述了函数在定义域内的增减关系。
例如,函数f(x) = x^2在定义域上是非递减的。
4. 奇偶性:函数的奇偶性描述了函数在定义域内的对称性。
例如,函数f(x) = x^2是偶函数。
五、函数的应用函数在数学和科学中有广泛的应用,例如:1. 函数在代数和几何中的应用:函数在解方程、求导数、计算曲线的性质等方面起着重要作用。
函数的表示法 教案 (2)

3.1.2 函数的表示方法教学设计教 学 过 程知 识 师生活动设计意图一、小测检验(检测上节课所学内容)题目:画出下列函数.54;22--=-=x x y x y 二、新授课 (一)创设情景,启发思考 活动一 教材例题 表3.1-4是某校高一 (1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 表3.1-4 姓名 测试序号 第一次 第二次 第三次 第四次 第五次 第六次 王伟 98 87 91 92 88 95张城 90 76 88 75 86 80赵磊 68 65 73 72 75 82班级平均分 8 .278.3 85.4 80.3 75.7 82.6请你对这三位同学在高一学年的数学学习情况做一个分析.思考:可以用什么函数表示方法分析问题?解:从表3.1-4中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的成绩变化情况.如果将每位同学的 “成绩”与 “测试序号”之间的函数关系分别用图象(均为6个离散的点)表示出来,如图3.1-6,那么就能直观地看到每位同学成绩变化的情况,这对我们的分析很有帮助.从图3.1-6可以看到,王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张城同学的数学学习成绩不稳定,总是在班级教师展示题目,学生作答。
教师组织,学生思考。
学生口述,教师总结评价。
回忆上节课所学知识点。
建立联系。
通过具体例题,巩固函数表示方法的特征。
加深理解并巩固函数表示法特征。
(2)小王全年综合所得收入额为189600元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%, 1%,9%,专项附加扣除是52800元,依法确定其他扣除是4560元,那么他全年应缴纳多少综合所得个税?分析:根据个税产生办法,可按下列步骤计算应缴纳个税税额:第一步,根据②计算出应纳税所得额t ;第二步,由t 的值并根据表3.1-5得出相应的税率与速算扣除数;第三步,根据①计算出个税税额y 的值. 由于不同应纳税所得额t 对应不同的税率与速算扣除数,所以y 是t 的分段函数.解:(1)根据表3.1-5,可得函数y =f (t )的解析式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>-≤<-≤<-≤<-≤<-≤<-≤≤=.960000,18192045.0,960000660000,8592035.0,660000420000,529203.0,420000300000,3192025.0,300000144000,169202.0,14400036000,25201.0,360000,03.0t t t t t t t t t t t t t t y 函数图象如图3.1-7所示.教师引导并口述思路,学生自主作答。
函数的表示方法教案 苏教版必修1

函数的表示方法(1)教学目标:1.进一步理解函数的概念,了解函数表示的多样性,能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上,了解函数不同表示法的优缺点,针对具体问题能合理地选择表示方法;3.通过教学,培养学生重要的数学思想方法——分类思想方法.教学重点:函数的表示. 教学难点:针对具体问题合理选择表示方法.教学过程:一、问题情境 1. 情境.下表的对应关系能否表示一个函数:2.问题.如何表示一个函数呢? 二、学生活动1.阅读课本掌握函数的三种常用表示方法; 2.比较三种表示法之间的优缺点. 3.完成练习 三、数学建构 1.函数的表示方法: 2.三种不同方法的优缺点: 列表法—用列表来表示两个变量之间函数关系的方法 解析法—用等式来表示两个变量之间函数关系的方法 图象法—用图象来表示两个变量之间函数关系的方法3.三种不同方法的相互转化:能用解析式表示的,一般都能列出符合条件的表、画出符合条件的图,反之亦然;列表法也能通过图形来表示.四、数学运用(一)例题例1 购买某种饮料x听,所需钱数为y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出该函数的值域.跟踪练习:某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.(1)列表:(2)图象:(3)解析式:将条件变换成:“某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出110个”例2 如图,是一个二次函数的图象的一部分,试根据图象中的有关数据,求出函数f(x)的解析式及其定义域.(二)练习:1.1 nmile(海里)约为1854m,根据这一关系,写出米数y关于海里数x的函数解析式.2.用长为30cm的铁丝围成矩形,试将矩形的面积S(cm2)表示为矩形一边长x(cm)的函数,并画出函数的图象.3.已知f(x)是一次函数,且图象经过(1,0)和(-2,3)两点,求f(x)的解析式.4.已知f(x)是一次函数,且f(f(x))=9x-4,求f(x)的解析式.五、回顾小结1.函数表示的多样性;2.函数不同表示方法之间的联系性;3.待定系数法求函数的解析式.六、作业课堂作业:课本35页习题1,4,5.。
函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
19. 函数的表示方法 获奖【一等奖教案】

第2课时 函数的表示方法1.了解函数的三种不同的表示方法并在实际情境中,会根据不同的需要,选择函数恰当的表示方法;(重点) 2.通过具体实例,了解简单的分段函数,并能简单应用.(难点) 一、情境导入 问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢? (2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点一:函数的表示方法【类型一】 用列表法表示函数关系有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题: 质量(克) 1 2 3 4 …伸长量(厘米) 0.5 1 1.5 2 …总长度(厘米) 10.5 11 11.5 12 …(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x 克时,用h 厘米表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克.解析:(1)根据挂重物每克伸长0.5厘米,要伸长5厘米,可得答案;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克; (2)函数的表达式:h =10+0.5x (0≤x ≤50); (3)当h =25时,25=10+0.5x ,x =30,答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.方法总结:列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等. 【类型二】 用图象法表示函数关系 如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的关系,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间? (3)汽车在每个行驶过程中的速度分别是多少? (4)汽车到达离出发地最远的地方后返回,则返回用了多长时间? 解析:根据图象解答即可. 解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米); (2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时; (3)由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是 1.5小时,由此算出平均速度80÷1.5=1603(千米/时);由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;由横坐标看出汽车从C到D用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时);(4)由横坐标看出4.5-3=1.5小时,返回用了1.5小时.方法总结:图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【类型三】用解析式法表示函数关系一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下最远能行驶多少千米?解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)令y=0,求出x即可.解:(1)y=-0.6x+48;(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y =12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米;(3)令y=0,-0.6x+48=0,解得x=80,即这辆车在中途不加油的情况下最远能行驶80km.方法总结:解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.探究点二:函数表示方法的综合运用【类型一】分段函数及其表示为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()解析:根据题意,当0≤x≤100时,y =0.5x;当x>100时,y=100×0.5+0.8(x -100)=50+0.8x-80=0.8x-30,所以,y 与x的函数关系为y=⎩⎪⎨⎪⎧0.5x(0≤x≤100),0.8x-30(x>100).纵观各选项,只有C 选项图形符合.故选C.方法总结:根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量;②要求关于某个具体点,向横、纵轴作垂线来求得该点的坐标;③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【类型二】函数与图形面积的综合运用如图①所示,矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP 的面积为y,y关于x的函数图象如图②所示.(1)求矩形ABCD的面积;(2)求点M、点N的坐标;(3)如果△ABP的面积为矩形ABCD面积的15,求满足条件的x的值.解析:(1)点P从点B运动到点C的过程中,运动路程为4时,面积发生了变化且面积达到最大,说明BC 的长为4;当点P 在CD 上运动时,△ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且运动路程由4到9,说明CD 的长为5.然后求出矩形的面积;(2)利用(1)中所求可得当点P 运动到点C 时,△ABP 的面积为10,进而得出M 点坐标,利用AD ,BC ,CD 的长得出N 点坐标;(3)分点P 在BC 、CD 、AD 上时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式,进而求出x 即可.解:(1)结合图形可知,P 点在BC 上,△ABP 的面积为y 增大,当x 在4~9之间,△ABP 的面积不变,得出BC =4,CD =5,∴矩形ABCD 的面积为4×5=20;(2)由(1)得当点P 运动到点C 时,△ABP 的面积为10,则点M 的纵坐标为10,故点M 坐标为(4,10).∵BC =AD =4,CD =5,∴NO =13,故点N 的坐标为(13,0);(3)当△ABP 的面积为矩形ABCD 面积的15,则△ABP 的面积为20×15=4. ①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x ,y =12AB ·PB =12×5x =5x 2,令5x2=4,解得x =1.6;②点P 在CD 上时,4≤x ≤9,点P 到AB 的距离为BC 的长度4,y =12AB ·PB =12×5×4=10(不合题意,舍去);③点P 在AD 上时,9≤x ≤13时,点P到AB 的距离为P A 的长度13-x ,y =12AB ·P A=12×5×(13-x )=52(13-x ),令52(13-x )=4,解得x =11.4,综上所述,满足条件的x 的值为1.6或11.4.方法总结:函数图象与图形面积是运用数形结合思想的典型问题,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义.三、板书设计1.函数的三种表示方法 (1)列表法; (2)图象法; (3)解析式法.2.函数表示方法的综合运用函数表示法这节课的难点在于针对不同的问题如何选择这三种方法进行表示.针对这个问题,可通过引导学生对例子比较来解决.这样学生通过对不同例子的比较就能很好的区分这三种方法的特点,并能选择合适的方法.这节课的另一个目标是让学生了解分段函数,通过两个例子的介绍,能理解分段函数并按要求进行求值.第2课时 勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点) 2.灵活运用勾股定理及逆定理解决实际问题.(难点) 一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE =PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE 为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD 的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB =90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB=13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得距离C艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分.答:走私艇C 最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数 2.利用勾股定理逆定理求线段的长 3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。
函数的表示方法》教案

函数的表示方法》教案缺点:对于非常复杂的函数,解析式可能很难得到或者很难处理.2)用列表法表示函数关系优点:适用于简单的函数,易于列出表格,易于找出自变量和函数值之间的对应关系.缺点:难以处理连续变化的函数,也难以处理非常复杂的函数.3)用图象法表示函数关系优点:通过图像可以直观地看出函数的性质,能够帮助我们更好地理解函数的变化规律.缺点:图象法只适用于可视化的函数,不适用于非常复杂的函数或者无法可视化的函数.个人看法:三种表示函数的方法各有其优缺点,需要根据具体情况选择合适的方法来表示函数关系.在实际应用中,可以根据问题的性质和需要,选择最适合的方法来解决问题.四.拓展应用1、分段函数的概念;2、设计掷骰子游戏的分段函数;3、小结.函数的表示方法》教案教学目标:1.知识目标:1) 掌握函数的三种常见表示方法;2) 了解函数表示形式的多样性,以及如何进行转化;3) 能够根据要求求出函数的解析式,了解分段函数及其简单应用。
2.能力目标:1) 使学生掌握函数的三种常用表示方法的选用;2) 使学生初步认识如何用函数的知识解决具体问题;3) 使学生初步了解数形结合的思想方法。
3.情感目标:通过本节课的教学,使学生认识到数学源于生活,数学也可应用于生活,能够解决生活中的实际问题。
教学重难点:重点:对函数图象的分析。
难点:通过函数的解析式分析函数的图象。
教学过程:一.复引入1.复函数的概念和定义域对应法则;2.回顾初中时如何作函数y=2x+1的图象。
二.概念形成1.引入人口普查实例,讨论列表法表示函数关系的优缺点;2.探讨图象法表示函数关系的优缺点;3.解析法表示函数关系的定义和优缺点。
三.概念深化1.讨论三种表示函数的方法各自的优缺点;2.总结如何根据问题的性质和需要选择最适合的方法来表示函数关系。
四.拓展应用1.引入分段函数的概念;2.设计掷骰子游戏的分段函数;3.小结。
改写后的教案通过删除明显有问题的段落,剔除了格式错误,同时对每段话进行了小幅度的改写,使其更加简洁明了,易于理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的表示法(二)
【教学目标】
1.知识与技能
巩固求函数解析式的方法,了解映射的概念及表示方法,结合简单的对应图表理解映射的概念. 明确函数与映射的关系,能正确判断对应关系是否为映射.
2.过程与方法
(1)通过函数概念与映射概念对照,理解映射概念;
(2)通过阅读课本实例进一步理解映射的概念.
3. 情感、态度、价值观
映射是近代数学中一个重要概念,是进一步学习各类映射的基础.
【预习任务】
阅读课本p22-23,完成下列任务:
1.试写出映射的概念;理解函数基础上的映射,只是把函数中的两个非空数集推广为两个非空集合.
2.(1)认真体会例7中的第(1)、(2)小题在数形结合中的应用价值;
(2)自己举两个映射的例子;
(3)如何判断一个对应是映射?
(4)指出“函数”与“映射”的区别与联系:
3.回忆上节课例题,归纳求函数解析式的常用方法:
【自主检测】
1.设A={x|x是锐角},B=(0,1),从A到B的映射是“求正弦”,与A的元素600相对
应的B中的元素是什么?与B中的元素
2
2
相对应的A中的元素是什么?
2.设集合M={a,b,c},N={1,-1},试问从M到N的映射共有几个?并将它们分别表示出来。
3.在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B开始向点A运动,设点P运动的路程为x,∆APB的面积为y,试写出y与x的函数关系,并画图.
【组内互检】
1.映射的含义;
2.指出“函数”与“映射”的区别与联系:。