19.1.2 函数的图象 第2课时 函数的表示方法教案
19.1.2 函数的图象 第2课时 函数的三种表示方法 (共60张PPT)

考虑到x代表的实际意义为行驶路程,因 此 x 不能取负数 . 而且行驶中的耗油量不能超 过总的油量,所以有: 50-0.1x≥0 x≤500
自变量的取值范围为:0≤ x≤500 完整的函数解析式为: y=50-0.1x(0≤ x≤500)
思考
用解析式法表示函数 有什么优缺点? 解析式法简单明了,能够准确的反映整个变 化过程中自变量与函数之间的对应关系,但有些 实际问题中的函数关系,不能用解析式表示,如 气温与时间的函数关系.
2
2.5
3
3.5
4
5
6
…
y … 12 6 4
3 2.4 2
12 7
1.5 1.2 1 …
思考
用列表法表示函数有 什么优缺点? 列表法一目了然,使用起来比较方便,但列 出的对应值是有限的,不易看出自变量与函数之 间的对应规律.
用列表法与解析式法表示n边形的内角和 和m(单位:度)关于边数n的函数.
A
B
C
D
2. 星期日上午 9 时小王从家中出发到距家 900 米 处的书店买书,如图是 9 时 ~10 时这段时间内他与家 的距离随时间变化的图象 .根据此图象,请你用简短 的语句分别叙述小王在9时10分至9时15分与9时30分 至9时50分这两段时间内活动的情况:
9时10分至9时15分: 在家 ; 9时30分至9时50分:在书店买书 .
(1)弹簧没挂物体的长度是多少?
解:当x=0时,y=10,即弹簧没 挂物体的长度是10 cm.
(2)弹簧所挂物体的最大质量是多少?这时弹簧 的长度是多少?
弹簧所挂物体的最大质 量是20kg; 这时弹簧的长度为20cm.
课堂小结
1.解析式法
新北师版初中数学八年级下册精品教案19.1.2 第2课时 函数的表示方法

第2课时函数的表示方法1.了解函数的三种不同的表示方法并在实际情境中,会根据不同的需要,选择函数恰当的表示方法;(重点)2.通过具体实例,了解简单的分段函数,并能简单应用.(难点)一、情境导入问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点一:函数的表示方法【类型一】用列表法表示函数关系有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用h厘米表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克.解析:(1)根据挂重物每克伸长0.5厘米,要伸长5厘米,可得答案;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克;(2)函数的表达式:h=10+0.5x(0≤x≤50);(3)当h=25时,25=10+0.5x,x=30,答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.方法总结:列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.【类型二】用图象法表示函数关系如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?解析:根据图象解答即可.解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时;(3)由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是 1.5小时,由此算出平均速度80÷1.5=1603(千米/时);由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时);(4)由横坐标看出4.5-3=1.5小时,返回用了1.5小时.方法总结:图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【类型三】 用解析式法表示函数关系 一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下最远能行驶多少千米?解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)令y =0,求出x 即可.解:(1)y =-0.6x +48;(2)当x =35时,y =48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y =12时,48-0.6x =12,解得x =60,∴汽车剩油12升时,行驶了60千米;(3)令y =0,-0.6x +48=0,解得x =80,即这辆车在中途不加油的情况下最远能行驶80km.方法总结:解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.探究点二:函数表示方法的综合运用 【类型一】 分段函数及其表示为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )解析:根据题意,当0≤x ≤100时,y =0.5x ;当x >100时,y =100×0.5+0.8(x -100)=50+0.8x -80=0.8x -30,所以,y 与x的函数关系为y =⎩⎪⎨⎪⎧0.5x (0≤x ≤100),0.8x -30(x >100).纵观各选项,只有C 选项图形符合.故选C.方法总结:根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量;②要求关于某个具体点,向横、纵轴作垂线来求得该点的坐标;③在实际问题中,要注意图象与x 轴、y 轴交点坐标代表的具体意义.【类型二】 函数与图形面积的综合运用如图①所示,矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图②所示.(1)求矩形ABCD 的面积; (2)求点M 、点N 的坐标;(3)如果△ABP 的面积为矩形ABCD 面积的15,求满足条件的x 的值.解析:(1)点P 从点B 运动到点C 的过程中,运动路程为4时,面积发生了变化且面积达到最大,说明BC 的长为4;当点P 在CD 上运动时,△ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且运动路程由4到9,说明CD 的长为5.然后求出矩形的面积;(2)利用(1)中所求可得当点P 运动到点C 时,△ABP 的面积为10,进而得出M 点坐标,利用AD ,BC ,CD 的长得出N 点坐标;(3)分点P 在BC 、CD 、AD 上时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式,进而求出x 即可.解:(1)结合图形可知,P 点在BC 上,△ABP 的面积为y 增大,当x 在4~9之间,△ABP 的面积不变,得出BC =4,CD =5,∴矩形ABCD 的面积为4×5=20;(2)由(1)得当点P 运动到点C 时,△ABP 的面积为10,则点M 的纵坐标为10,故点M 坐标为(4,10).∵BC =AD =4,CD =5,∴NO =13,故点N 的坐标为(13,0);(3)当△ABP 的面积为矩形ABCD 面积的15,则△ABP 的面积为20×15=4. ①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x ,y =12AB ·PB =12×5x =5x 2,令5x2=4,解得x =1.6;②点P 在CD 上时,4≤x ≤9,点P 到AB 的距离为BC 的长度4,y =12AB ·PB =12×5×4=10(不合题意,舍去);③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为P A 的长度13-x ,y =12AB ·P A=12×5×(13-x )=52(13-x ),令52(13-x )=4,解得x =11.4,综上所述,满足条件的x 的值为1.6或11.4.方法总结:函数图象与图形面积是运用数形结合思想的典型问题,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义.三、板书设计1.函数的三种表示方法(1)列表法;(2)图象法;(3)解析式法.2.函数表示方法的综合运用函数表示法这节课的难点在于针对不同的问题如何选择这三种方法进行表示.针对这个问题,可通过引导学生对例子比较来解决.这样学生通过对不同例子的比较就能很好的区分这三种方法的特点,并能选择合适的方法.这节课的另一个目标是让学生了解分段函数,通过两个例子的介绍,能理解分段函数并按要求进行求值.。
人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教学设计

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教学设计一. 教材分析人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)的教学内容主要包括函数的图像表示方法和函数的解析式表示方法。
学生在第一课时已经学习了函数的定义和简单性质,本课时将进一步学习如何用图像和解析式来表示函数,从而更好地理解和把握函数的本质。
二. 学情分析学生在学习本课时,已经具备了初步的函数知识,能够理解函数的定义和简单性质。
但学生在函数图像和解析式表示方法的理解上可能存在一定的困难,因此需要教师在教学中给予充分的引导和解释。
三. 教学目标1.让学生理解函数的图像表示方法和解析式表示方法。
2.让学生能够运用图像和解析式来表示简单的函数。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.函数的图像表示方法。
2.函数的解析式表示方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现。
2.使用多媒体教学,展示函数的图像和解析式,增强学生的直观感受。
3.学生进行小组讨论和合作,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.相关的教学素材和案例。
七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾上一课时所学的函数知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示一些生活中的实例,让学生观察和分析这些实例中的数量关系,从而引出函数的图像表示方法和解析式表示方法。
3.操练(10分钟)教师给出一些简单的函数,让学生尝试用图像和解析式来表示。
教师在学生操作过程中给予适当的引导和帮助。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己在操练过程中的经验和心得,从而加深对函数图像和解析式表示方法的理解。
5.拓展(10分钟)教师提出一些具有挑战性的问题,让学生思考和探索,以提高学生的分析问题和解决问题的能力。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确函数的图像表示方法和解析式表示方法的重要性。
八年级下册数学教案19.1.2 第2课时 函数的表示方法教案教学设计人教版

第2课时 函数的表示方法1.了解函数的三种不同的表示方法并在实际情境中,会根据不同的需要,选择函数恰当的表示方法;(重点) 2.通过具体实例,了解简单的分段函数,并能简单应用.(难点) 一、情境导入 问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢? (2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的? 二、合作探究 探究点一:函数的表示方法 【类型一】 用列表法表示函数关系 有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题: 质量(克) 1 2 3 4 … 伸长量(厘米) 0.5 1 1.5 2 … 总长度(厘米)10.51111.512…(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x 克时,用h 厘米表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克.解析:(1)根据挂重物每克伸长0.5厘米,要伸长5厘米,可得答案;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克;(2)函数的表达式:h =10+0.5x (0≤x ≤50);(3)当h =25时,25=10+0.5x ,x =30,答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克. 方法总结:列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.【类型二】 用图象法表示函数关系 如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的关系,请根据图象回答下列问题: (1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间? (3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?解析:根据图象解答即可.解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时;(3)由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是 1.5小时,由此算出平均速度80÷1.5=1603(千米/时);由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时);(4)由横坐标看出4.5-3=1.5小时,返回用了1.5小时.方法总结:图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【类型三】 用解析式法表示函数关系一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下最远能行驶多少千米?解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)令y =0,求出x 即可. 解:(1)y =-0.6x +48;(2)当x =35时,y =48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y =12时,48-0.6x =12,解得x =60,∴汽车剩油12升时,行驶了60千米;(3)令y =0,-0.6x +48=0,解得x =80,即这辆车在中途不加油的情况下最远能行驶80km.方法总结:解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.探究点二:函数表示方法的综合运用 【类型一】 分段函数及其表示为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )解析:根据题意,当0≤x ≤100时,y =0.5x ;当x >100时,y =100×0.5+0.8(x -100)=50+0.8x -80=0.8x -30,所以,y 与x的函数关系为y =⎩⎪⎨⎪⎧0.5x (0≤x ≤100),0.8x -30(x >100).纵观各选项,只有C 选项图形符合.故选C.方法总结:根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量;②要求关于某个具体点,向横、纵轴作垂线来求得该点的坐标;③在实际问题中,要注意图象与x 轴、y 轴交点坐标代表的具体意义.【类型二】 函数与图形面积的综合运用如图①所示,矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图②所示.(1)求矩形ABCD 的面积; (2)求点M 、点N 的坐标;(3)如果△ABP 的面积为矩形ABCD 面积的15,求满足条件的x 的值.解析:(1)点P 从点B 运动到点C 的过程中,运动路程为4时,面积发生了变化且面积达到最大,说明BC 的长为4;当点P 在CD 上运动时,△ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且运动路程由4到9,说明CD 的长为5.然后求出矩形的面积;(2)利用(1)中所求可得当点P 运动到点C 时,△ABP 的面积为10,进而得出M 点坐标,利用AD ,BC ,CD 的长得出N 点坐标;(3)分点P 在BC 、CD 、AD 上时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式,进而求出x 即可.解:(1)结合图形可知,P 点在BC 上,△ABP 的面积为y 增大,当x 在4~9之间,△ABP 的面积不变,得出BC =4,CD =5,∴矩形ABCD 的面积为4×5=20;(2)由(1)得当点P 运动到点C 时,△ABP 的面积为10,则点M 的纵坐标为10,故点M 坐标为(4,10).∵BC =AD =4,CD =5,∴NO =13,故点N 的坐标为(13,0);(3)当△ABP 的面积为矩形ABCD 面积的15,则△ABP 的面积为20×15=4. ①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x ,y =12AB ·PB =12×5x =5x 2,令5x2=4,解得x =1.6;②点P 在CD 上时,4≤x ≤9,点P 到AB 的距离为BC 的长度4,y =12AB ·PB =12×5×4=10(不合题意,舍去);③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为P A 的长度13-x ,y =12AB ·P A=12×5×(13-x )=52(13-x ),令52(13-x )=4,解得x =11.4,综上所述,满足条件的x 的值为1.6或11.4.方法总结:函数图象与图形面积是运用数形结合思想的典型问题,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义.三、板书设计1.函数的三种表示方法 (1)列表法; (2)图象法; (3)解析式法.2.函数表示方法的综合运用函数表示法这节课的难点在于针对不同的问题如何选择这三种方法进行表示.针对这个问题,可通过引导学生对例子比较来解决.这样学生通过对不同例子的比较就能很好的区分这三种方法的特点,并能选择合适的方法.这节课的另一个目标是让学生了解分段函数,通过两个例子的介绍,能理解分段函数并按要求进行求值.。
函数的图象(第2课时+函数的三种表示方法)+课件+2023-2024学年人教版数学八年级下册

A. B. C. D.
①当 时, 随 的增大而增大;②当 时, 有最小值,最小值为80(答案不唯一)
(3)数学应用:已知当潮水高度超过 时,货轮能够安全进出此港口,则当天什么时间段适合货轮进出此港口?
解:由图象,得当 时, 或 或 或 , 当 或 时, ,即当天 到 或 到 适合货轮进出此港口.
跟踪训练
1.(2023·萱花中学阶段练习)丽丽妈妈喜欢跳广场舞,某天她步行到离家较远的广场,跳了一会儿广场舞后跑步回家.下列能反映当天丽丽妈妈离家的距离 与时间 的函数关系的大致图象是( )
C
A. B. C. D.
解:用列表法表示该正方形的周长 关于边长 的函数如下:
0
1
2
3
4
...
0
4
8
12
16
...
用解析式法表示该正方形的周长 关于边长 的函数为 .
(2)用解析式法和图象法(在所给图中画出)表示该正方形的面积 关于边长 的函数.
解: 用解析式法表示该正方形的面积 关于边长 的函数为 .用图象法表示该正方形的面积 关于边长 的函数如图所示.
(3)结合函数图象,写出点 , 相距3个单位长度时 的值.
解: 当 时, ,即 ;当 时, ,即 ,解得 , 的值为3或4.5.
11.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发匀速行驶.两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续驶往乙
(3)当刺梨的销量为50千克时,销售额是_ _____元.
7.(教材P80例4变式)今年夏天,某地区由于持续高温和连日无雨,水库蓄水量普遍下降.某水库的蓄水量 (万立方米)与干旱持续时间 (天)之间的关系如图所示,请根据此图,回答下列问题:
函数第二课时函数的图像教案-数学八年级下第十九章19.1人教版

第十九章一次函数11.1 函数第二课时 19.1.2函数的图象1 教学目标1.1 知识与技能:[1]学会用列表、描点、连线的方法画函数图象,提高解决实际问题的能力;[2]学会观察、分析函数图象信息,提高识图能力、分析函数图象信息能力。
1.2过程与方法:[1]学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题。
[2]体会数形结合思想,并利用它解决问题,提高解决问题能力。
1.3 情感态度与价值观:[1]体会数学方法的多样性,提高学习兴趣。
[2]认识数学在解决问题中的重要作用从而加深对数学的认识。
2 教学重点/难点2.1 教学重点[1]函数图象的画法。
[2]观察分析图象信息。
2.2 教学难点[1]分析概括图象中的信息。
3 专家建议在教学当中设计多个学生自己思考的过程,给学生发表见解的机会,把课堂的大部分时间还给学生,教师做一个引导的作用让学生多思考,自己动手得到结论,让他们的印象更加深刻,在理解的基础上熟练掌握并运用结论。
让学生观察几组特殊函数图象的特点和函数表达式之间关系归纳总结出函数图象的一般规律。
加深对图象表示的理解,进一步体会数形结合以及从特殊到一般的数学思想。
4 教学方法启发式教学5 教学用具多媒体课件,教学用直尺、三角板等。
6 教学过程6.1情境引入【师】我们在前面学习了函数意义,并掌握了函数关系式的确立。
但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映。
例如用心电图表示心脏生物电流与时间的关系。
即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰。
我们这节课就来解决如何画函数图象的问题及解读函数图象信息。
【板书】第十九章一次函数 19.1 函数第二课时函数的图象6.2 自主探究[1]问题1在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题。
现在让我们来回顾一下。
看图回答:【师】先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的?【生】以小组为单位自主探究学习。
人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案一. 教材分析《函数的表示方法》是中学数学中重要的概念之一,对于八年级的学生来说,这是一个新的知识领域。
本节课的内容包括函数的定义、函数的表示方法以及函数的性质。
通过本节课的学习,学生可以掌握函数的基本概念,了解函数的表示方法,并能够运用函数的性质解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。
但是,学生在学习新的知识时,往往还存在一定的困难,需要教师的耐心引导和讲解。
此外,学生对于实际问题的解决能力还有待提高,需要通过大量的练习来加强。
三. 教学目标1.了解函数的定义和表示方法。
2.掌握函数的性质,并能够运用函数的性质解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.函数的定义和表示方法。
2.函数的性质的理解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而掌握函数的基本概念和性质。
同时,通过案例分析和小组合作,培养学生的实际问题解决能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学PPT,包括函数的定义、表示方法和性质等内容。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考函数的定义和表示方法。
例如,什么是函数?函数如何表示?2.呈现(15分钟)通过PPT展示函数的定义和表示方法。
详细解释函数的定义,以及如何用图像、表格和解析式来表示函数。
3.操练(15分钟)让学生通过练习题来巩固函数的定义和表示方法。
可以选择一些简单的练习题,让学生独立完成,然后进行讲解和解析。
4.巩固(10分钟)通过一些实际问题来巩固函数的性质。
例如,给定一个函数的图像,让学生判断函数的性质。
5.拓展(10分钟)让学生通过小组合作,解决一些复杂的实际问题。
例如,给定一个实际问题,让学生运用函数的性质来解决。
人教版八年级数学(下)课件:19_1_2 函数的图象(第2课时)

19.1 函数 19.1.2 函数的图象
(第2课时)
导入新知 在计算器上按照下面的程序进行操作:
输入x(任意一个数)
按键
× 2 + 5=
填表:
显示y(计算结果)
x 1 3 -4 y 7 11 -3
0 101 5 207
显示的数y是输入的数x的函数吗?为什么? 如果是,写出它的解析式. 是, y = 2x+5.
27千克
探究新知
考点 2 利用函数表达式解答实际问题 如图,要做一个面积为12 m2的小花坛,该花坛的一边长为 x m, 周长为 y m.
(1)变量 y 是变量 x 的函数吗?如果是,写出自变量的取值 范围;
(2)能求出这个问题的函数解析式吗?
解:(1)y 是 x 的函数,自变量 x 的取
值范围是x>0.
答:是, y=8+2(x-3) =2x+2
用函数解析 式来表示.
这里是怎样表 示所付费用y与 所走路程x的 函数关系的?
探究新知 问题3 如图是某地某一天的气温变化图.
这里是怎样表示气温T与 时间t之间的函数关系的?
(1)指出其中的两个变量是 气温T , 时间t .
用平面直 角坐标系 中的一个 图象来表 示的.
探究新知
其函数的图象如下:
y/m
5
5
4
B
3
3A 2
1
O
O
1
2
3
4
5
6
7
5
8
t/h
探究新知
(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度
将达到多少m.
解:如果水位的变化规律不变,按上述函数预测,再持续2小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时函数的表示方法
1.了解函数的三种不同的表示方法并在实际情境中,会根据不同的需要,选择函数恰当的表示方法;(重点)
2.通过具体实例,了解简单的分段函数,并能简单应用.(难点)
一、情境导入
问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?
(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?
二、合作探究
探究点一:函数的表示方法
【类型一】用列表法表示函数关系
(不超过50克),它的长度会改变,
(1)
(2)当所挂重物为x克时,用h厘米表示总长度,请写出此时弹簧的总长度的函数表达式.
(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克.
解析:(1)根据挂重物每克伸长0.5厘米,要伸长5厘米,可得答案;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据函数值,可得所挂重物质量.
解:(1)5÷0.5×1=10(克),
答:要想使弹簧伸长5厘米,应挂重物10克;
(2)函数的表达式:h=10+0.5x(0≤x≤50);
(3)当h=25时,25=10+0.5x,x=30,
答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.
方法总结:列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.
【类型二】用图象法表示函数关系
s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:
(1)汽车共行驶的路程是多少?
(2)汽车在行驶途中停留了多长时间?
(3)汽车在每个行驶过程中的速度分别是多少?
(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?
解析:根据图象解答即可.
解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米);
(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时;
(3)由纵坐标看出汽车到达B点时的路程是80千米,由横坐标看出到达B点
所用的时间是1.5小时,由此算出平均速度80÷1.5=160
3
(千米/时);由纵坐标
看出汽车从B到C没动,此时速度为0千米/时;由横坐标看出汽车从C到D用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时);
(4)由横坐标看出4.5-3=1.5小时,返回用了1.5小时.
方法总结:图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.
【类型三】用解析式法表示函数关系
1千米,耗油0.6升,
如果设剩余油量为y(升),行驶路程为x(千米).
(1)写出y与x的关系式;
(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?
(3)这辆车在中途不加油的情况下最远能行驶多少千米?
解析:(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)令y=0,求出x即可.
解:(1)y=-0.6x+48;
(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米;
(3)令y=0,-0.6x+48=0,解得x=80,即这辆车在中途不加油的情况下最远能行驶80km.
方法总结:解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.
探究点二:函数表示方法的综合运用
【类型一】 分段函数及其表示
准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )
解析:根据题意,当0≤x ≤100时,y =0.5x ;当x >100时,y =100×0.5+0.8(x -100)=50+0.8x -80=0.8x -30,所以,y 与x 的函数关系为y =⎩⎨⎧0.5x (0≤x ≤100),0.8x -30(x >100).
纵观各选项,只有C 选项图形符合.故选C. 方法总结:根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量;②要求关于某个具体点,向横、纵轴作垂线来求得该点的坐标;③在实际问题中,要注意图象与x 轴、y 轴交点坐标代表的具体意义.
【类型二】 函数与图形面积的综合运用
如图①所示,矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动
至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图②所示.
(1)求矩形ABCD 的面积;
(2)求点M 、点N 的坐标;
(3)如果△ABP 的面积为矩形ABCD 面积的15
,求满足条件的x 的值.
解析:(1)点P 从点B 运动到点C 的过程中,运动路程为4时,面积发生了变化且面积达到最大,说明BC 的长为4;当点P 在CD 上运动时,△ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且运动路程由4到9,说明CD 的长为
5.然后求出矩形的面积;(2)利用(1)中所求可得当点P 运动到点C 时,△ABP 的面积为10,进而得出M 点坐标,利用AD ,BC ,CD 的长得出N 点坐标;(3)分点P 在BC 、CD 、AD 上时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式,进而求出x 即可.
解:(1)结合图形可知,P 点在BC 上,△ABP 的面积为y 增大,当x 在4~9之间,△ABP 的面积不变,得出BC =4,CD =5,∴矩形ABCD 的面积为4×5=20;
(2)由(1)得当点P 运动到点C 时,△ABP 的面积为10,则点M 的纵坐标为10,故点M 坐标为(4,10).∵BC =AD =4,CD =5,∴NO =13,故点N 的坐标为
(13,0);
(3)当△ABP 的面积为矩形ABCD 面积的15,则△ABP 的面积为20×15
=4. ①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x ,y =12
AB ·PB =12×5x =5x 2,令5x 2
=4,解得x =1.6; ②点P 在CD 上时,4≤x ≤9,点P 到AB 的距离为BC 的长度4,y =12
AB ·PB =12
×5×4=10(不合题意,舍去); ③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为PA 的长度13-x ,y =12AB ·PA =12×5×(13-x )=52(13-x ),令52
(13-x )=4,解得x =11.4, 综上所述,满足条件的x 的值为1.6或11.4.
方法总结:函数图象与图形面积是运用数形结合思想的典型问题,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义.
三、板书设计
1.函数的三种表示方法
(1)列表法;
(2)图象法;
(3)解析式法.
2.函数表示方法的综合运用
函数表示法这节课的难点在于针对不同的问题如何选择这三种方法进行表示.针对这个问题,可通过引导学生对例子比较来解决.这样学生通过对不同例子的比较就能很好的区分这三种方法的特点,并能选择合适的方法.这节课的另一个目标是让学生了解分段函数,通过两个例子的介绍,能理解分段函数并按要求进行求值.。