1.7 函数的表示法 教学设计 教案

合集下载

函数的表示法教案

函数的表示法教案

1.2.2 函数的表示法一、教材分析:函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.二、学习目标:①了解函数的一些基本表示法(列表法、图象法、解析法);②会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.三、教学重点:掌握函数的三种表示方法:解析法、图象法、列表法.四、教学难点:会根据不同的需要选择恰当方法表示函数.五、课时安排:2课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境语言是沟通人与人之间联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为生日快樂!英文为Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute zum Geburtstag!西班牙文为Feliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd metjeverj aardag!在俄语中则是С днемрождения!……问题1:我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么对于函数,又有什么不同的表示方法呢?这节课我们就来研究这个问题(板书课题).2、自主探索,尝试解决结合研究函数概念时生活中的三个例子,以及初中学过的函数的表示方法,老师根据同学们分组讨论(回答)情况,带领学生总结出函数的三种不同表示方法.并作讲解介绍:函数的三种表示方法:解析法: 用数学表达式表示两个变量之间的对应关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.如:1.2.1的实例(1);图象法: 图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间的对应关系的方法叫做图象法.如:1.2.1的实例(2);列表法: 列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的对应关系的方法叫做列表法.如:1.2.1的实例(3).问题2:分析对比三种不同表示方法的优缺点.现提出问题让学生思考,之后根据具体实例提示并和学生一起总结得出结论:解析法能够准确表达出两个变量之间的关系,简明扼要,给自变量求函数值;不足之处,比较抽象.图象法形象直观表示两个变量之间的关系,较好地反映了两个变量的变化趋势;不足之处,变量关系不够精确.列表法通过表格直接得出函数值,没有计算过程;不足之处,不能列出定义域为区间范围的所有函数值,仅能表示有限个.(二)、合作学习让学生合作做练习,教师巡视指导【例1】某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.【例2】下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图所示.由图可看到,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀.张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.【例3】画出函数y=|x|的图象.分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图所示.解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例4.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x ∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如上图所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦;(ⅲ)求平方;(ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”是什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例5.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f: A→B是从集合A到集合B的一个映射,⑷中的对应f: A →B不是从集合A到集合B的一个映射.(三)、当堂检测1.教师引导学生对函数的三种表示法进行对比,并让学生归纳然后说出它们各自的的优缺点.2.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1);第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)3.已知函数f(x)=2000x xx⎧>⎨≤⎩,,,,求f(2),f(-3)的值.解:∵2>0,∴f(2)=22=4.∵-3≤0,∴f(-3)=0.(四)、课堂小结请同学们回想一下,本节课我们学了哪些函数的表示方法?在具体的实际问题中如何恰当地选择?理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.这节课学习的主要内容及要掌握的知识点:①分段函数的表示,求值等问题.②表示函数的三种方法,映射的概念.七.课外作业课本P24习题1.2 A组第7,8,9题.八、教学反思:。

《函数的表示法》(第1课时)教学设计

《函数的表示法》(第1课时)教学设计

函数的表示法(第1课时)教学设计一、内容和内容解析1.内容函数的表示法.2.内容解析在“对应关系”说的基础上建立了函数概念之后,随即而来的任务就是研究函数本身.而函数的呈现形式就是“函数的表示”问题.学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所必须的,而且是加深理解函数概念,以及向学生渗透数形结合方法的过程.函数的表示法是在已有函数概念的基础上进行学习的,是对函数知识的深化.这部分内容也是函数内容的重要基础.本节的主要内容是在初中已经接触过函数的三种表示法——解析法、列表法和图象法的基础上,明确三种表示法各自的优点及适用对象;通过函数y=|x|引出分段函数的概念,并通过具体实例(例6)熟悉分段函数概念,掌握研究分段函数的一般思想和方法.基于以上分析,确定本节课的教学重点:使学生面对数学问题时,会根据不同的需要选择恰当的方法(解析法、列表法、图象法)表示函数;掌握分段函数概念.二、目标和目标解析1.目标(1)了解解析法、列表法、图象法各自的优点及适用对象;使学生面对数学问题时,会根据不同的需要选择恰当的方法表示函数.(2)了解分段函数的概念,明确分段函数是一个函数,掌握研究分段函数的一般思想和方法.2.目标解析达成上述目标的标志是:(1)学生通过教科书第67页例4,以及之前的学习经验,能自主总结出解析法、列表法、图象法各自的特点;能举出具体实例说明三种表示法的适用情况.(2)学生能理解绝对值函数向分段函数的转化过程,通过具体实例体会分段函数是一个函数而不是几个函数.三、教学问题诊断分析学生在初中学习函数概念时,接触过函数的三种表示法:解析法、列表法、图象法,但是对其并没有深入研究.尤其是在高中阶段“对应关系”说意义下重新建立了函数概念的基础上,函数的三种表示法又有怎样的特点呢?这就是本节课第一个教学问题.针对这一问题,教科书引入了一个实际问题,其本质为离散的一次函数模型,此问题三种表示法均适用,进而可直观地比较出三种表示法各自的特点.而后可根据不同表示法各自的适用范围,选择恰当的方法表示函数.三种表示法各自的特点清楚了,那么它们在研究具体函数问题时,是如何起到相应的作用的呢?于是教科书中举出了绝对值函数的例子(例5),从而引出了高中阶段非常重要的、实际问题中广泛应用的一类函数——分段函数.这是本节课第二个教学问题.通过例5、例6的学习,可让学生体会解析法、图象法在处理连续函数问题时的威力,同时也体现出研究函数的一个非常重要思想——数形结合.正所谓“数缺形时少直观,形少数时难入微”,数形结合研究函数是贯穿整个高中的思想方法.四、教学支持条件分析在研究绝对值函数(分段函数,例5)和最大值函数(例6)的过程中,可借助图形计算器、几何画板、Geogebra等技术工具画出函数图象,观察得出结论,体现信息技术在数学教学和学习过程中的辅助探究与检验作用.五、教学过程设计引导语:我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1,2.列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4.图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3.这三种方法是常用的函数表示法.(一)函数的表示法问题1:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.(1)你能用函数的三种表示法分别表示函数y=f(x)吗?(2)比较函数的三种表示法,它们各自的特点是什么?(3)所有函数都能用解析法表示吗?列表法与图象法呢?请你举出实例加以说明.师生活动:教师给出问题(1)后,让每位学生自己写出函数表达式、列表格、画图象,注意再次强调“研究函数,先看定义域”.之后让同桌互相核对结果,尤其注意函数图象是否为五个离散的点.然后出示问题(2),小组讨论,总结归纳三种表示法各自的优点,最后与教师一起总结出结论(可用PPT展示):出示问题(3),找学生代表回答,例如可回答:不是,3.1.1的问题3、问题4就不能用解析法表示;3.1.1的问题1不能用列表法表示;3.1.1的问题4不能用图象法表示.答案均可从教科书中找到,如果学生理解了3.1.1的知识,回答此问题并不困难.设计意图:问题(1)是让学生回忆并熟悉三种表示法的具体呈现过程,并再次强调定义域的决定作用;问题(2)是为了让学生总结归纳三种表示法各自的优点,明确特征,方可合理运用;问题(3)是突出三种方法各自的局限性,从而在处理实际问题挑选方法时合理回避不需要的表示法.问题2:(教科书第69页练习1)如图,把直截面半径为25 cm的圆形木头锯成矩形木料,如果矩形的一边长为x(单位:cm),面积为y(单位:cm2),你能把y表示为x的函数吗?师生活动:学生阅读题目后,自主从三种表示法中选择恰当可行的方法解决此问题. 之后教师可利用多媒体手段将答案进行呈现,与其他同学一起点评结果.设计意图:考察学生对三种表示法的特点的理解与把握,以及在实际问题中选择恰当的表示法解决问题的能力.(二)分段函数问题3:(1)你了解函数y=|x|吗?(2)你会画函数y=|x|的图象吗?师生活动:教师出示问题(1),先让学生独立思考,之后可引导学生对不熟悉的绝对值函数y=|x|进行变形,去掉绝对值,转化成熟悉的一次函数,然后规范写法,写成分段函数形式.之后出示问题(2),学生即可很自然地画出相应图象.最后教师引入分段函数概念,强调分段函数是一个函数,而不是几个函数,并介绍其普遍性与应用价值;并总结思路:绝对值函数可转化为分段函数进行研究;对于分段函数的图象,只需分别画出每段的函数图象,并注意端点的开闭即可.教科书中对分段函数给出的是描述性定义,学生只需能判断什么样的函数是分段函数即可,不必纠结于分段函数的确切定义.追问:(教科书第69页练习2)有了问题3的基础,你会画函数y=|x-2|的图象吗?教师让学生自主研究,然后利用多媒体手段将典型作答图象投到屏幕上,叫同学回答解题过程,寻找问题所在,纠正错误,落实正确解题思路.对于中上等水平的班级,可根据时间情况,适当借助图形计算器、几何画板、Geogebra等技术工具,设计参数a,制作动态演示课件,介绍函数y=|x-a|的图象变化情况.设计意图:问题(1)是让学生从解析式入手,转化成熟悉的函数,为问题(2)解决画函数图象问题做铺垫,体现了转化与化归思想;问题(2)则是考查学生对图象法表示函数的掌握程度.追问是对问题3举一反三,考查学生的理解、掌握程度.师生活动:给学生充分画图的时间,有初中的基础,学生基本都可画出图3.1-4,然后对最大值函数M(x)做适当解读:当x每取一个值时,f(x)与g (x)各有唯一一个函数值与之对应,而M(x)对应的则是两个函数值中的较大者,由函数定义可知,M(x)是x的函数.当最大值函数解释清楚后,学生可很自然地对图3.1-4进行处理,得到图3.1-5所示的函数M(x)的图象;利用图象和解方程知识,学生一般可顺利求出M(x)的解析式.追问:你能用其他方法求出M(x)的解析式吗?先小组讨论,然后找有想法的同学分享思路,最终达成共识.设计意图:问题4是训练学生同时研究两个函数的能力,以及对新概念的分析理解能力,感受分段函数的另一种构造方式及其图象和解析式的求法,加深对分段函数的理解与运用.追问是引导学生从不同的角度分析问题,解决问题,进一步加深对分段函数的理解.问题5:(教科书第69页练习3)给定函数f(x)=-x+1, g(x)=(x-a)2,x ∈R(1)你能画出函数f(x),g(x)的图象吗?师生活动:学生自主完成练习,然后找代表分享思路与结果.有了问题4的铺垫,学生对最小值函数的理解应比较到位,解决此问题会相对顺利.设计意图:创设熟悉的情境,提出类似的问题,对学生的知识与解题技能进行再巩固.(三)课堂小结、布置作业教师引导学生回顾本节课的学习内容,并引导学生回答下列问题:(1)函数的三种表示法分别是什么?其各自的特点是什么?(2)什么样的函数称为分段函数?分段函数是几个函数还是一个函数?(3)如何画分段函数的图象?师生活动:教师出示问题后,先由学生思考后再进行全班交流,最后教师再进行总结。

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

函数的表示方法》教案

函数的表示方法》教案

函数的表示方法》教案缺点:对于非常复杂的函数,解析式可能很难得到或者很难处理.2)用列表法表示函数关系优点:适用于简单的函数,易于列出表格,易于找出自变量和函数值之间的对应关系.缺点:难以处理连续变化的函数,也难以处理非常复杂的函数.3)用图象法表示函数关系优点:通过图像可以直观地看出函数的性质,能够帮助我们更好地理解函数的变化规律.缺点:图象法只适用于可视化的函数,不适用于非常复杂的函数或者无法可视化的函数.个人看法:三种表示函数的方法各有其优缺点,需要根据具体情况选择合适的方法来表示函数关系.在实际应用中,可以根据问题的性质和需要,选择最适合的方法来解决问题.四.拓展应用1、分段函数的概念;2、设计掷骰子游戏的分段函数;3、小结.函数的表示方法》教案教学目标:1.知识目标:1) 掌握函数的三种常见表示方法;2) 了解函数表示形式的多样性,以及如何进行转化;3) 能够根据要求求出函数的解析式,了解分段函数及其简单应用。

2.能力目标:1) 使学生掌握函数的三种常用表示方法的选用;2) 使学生初步认识如何用函数的知识解决具体问题;3) 使学生初步了解数形结合的思想方法。

3.情感目标:通过本节课的教学,使学生认识到数学源于生活,数学也可应用于生活,能够解决生活中的实际问题。

教学重难点:重点:对函数图象的分析。

难点:通过函数的解析式分析函数的图象。

教学过程:一.复引入1.复函数的概念和定义域对应法则;2.回顾初中时如何作函数y=2x+1的图象。

二.概念形成1.引入人口普查实例,讨论列表法表示函数关系的优缺点;2.探讨图象法表示函数关系的优缺点;3.解析法表示函数关系的定义和优缺点。

三.概念深化1.讨论三种表示函数的方法各自的优缺点;2.总结如何根据问题的性质和需要选择最适合的方法来表示函数关系。

四.拓展应用1.引入分段函数的概念;2.设计掷骰子游戏的分段函数;3.小结。

改写后的教案通过删除明显有问题的段落,剔除了格式错误,同时对每段话进行了小幅度的改写,使其更加简洁明了,易于理解。

示范教案(函数的表示法

示范教案(函数的表示法

示范教案(函数的表示法)第一章:函数的基本概念1.1 函数的定义教学目标:1. 了解函数的定义及功能;2. 掌握函数的表示方法。

教学内容:1. 函数的定义:函数是一种关系,在数学中,我们称一个非空数集A到另一个非空数集B的规则f:x→y(x属于A,y属于B)为从A到B的一个函数,简称函数。

2. 函数的表示方法:(1)列表法:将函数的输入值和输出值一一对应地列出来;(2)解析法:用数学公式表示函数的关系;(3)图象法:在平面直角坐标系中,将函数的输入值和输出值对应的点依次连接起来,得到函数的图象。

教学活动:1. 引入函数的概念,引导学生理解函数的定义及功能;2. 讲解函数的表示方法,并通过实例让学生掌握列表法、解析法和图象法的具体应用;3. 布置练习题,让学生巩固所学知识。

教学评价:1. 课堂问答:检查学生对函数定义的理解程度;2. 练习题:评估学生对函数表示方法的掌握情况。

第二章:函数的列表法2.1 列表法的概念及应用教学目标:1. 掌握列表法的概念;2. 学会使用列表法表示函数。

教学内容:1. 列表法的概念:将函数的输入值和输出值一一对应地列出来,称为列表法;2. 列表法的应用:通过列表法表示函数,可以直观地了解函数的值域和函数的单调性等性质。

教学活动:1. 引导学生回顾上一章的内容,了解函数的表示方法;2. 讲解列表法的概念,并通过实例让学生掌握列表法的具体应用;3. 布置练习题,让学生巩固所学知识。

教学评价:1. 课堂问答:检查学生对列表法概念的理解程度;2. 练习题:评估学生对列表法的掌握情况。

第三章:函数的解析法3.1 解析法的概念及应用教学目标:1. 掌握解析法的概念;2. 学会使用解析法表示函数。

教学内容:1. 解析法的概念:用数学公式表示函数的关系,称为解析法;2. 解析法的应用:通过解析法表示函数,可以方便地研究函数的性质和变化规律。

教学活动:1. 引导学生回顾上一章的内容,了解函数的表示方法;2. 讲解解析法的概念,并通过实例让学生掌握解析法的具体应用;3. 布置练习题,让学生巩固所学知识。

《函数的表示方法》教案

《函数的表示方法》教案

《函数的表示方法》教案教学目标1、知识目标:(1) 掌握函数的三种常见的表示方法;(2) 了解函数表示形式的多样性用其转化;(3)根据要求求函数的解析式、了解分段函数及其简单应用.2、能力目标:(1) 使学生掌握函数的三种常用表示方法的选用;(2) 使学生初步认识用函数的知识解决具体问题;(3) 使学生初步了解数形结合的思想方法.3、情感目标:通过本节课的教学,使学生认识到数学源于生活,数学也可应用于生活,能够解决生活中的实际问题.教学重难点:重点:对函数图象的分析.难点:通过函数的解析式分析函数的图象.教学过程:一.复习引入1、函数的概念;2、函数的定义域和对应法则;问题1:初中时我们是如何作函数y = 2x + 1的图象的?师生互动:教师提出问题,学生思考后回答问题.设计意图:通过对旧知识的回顾,为新知识的学习做好认知铺垫.二.概念形成投影出P38人口普查实例.问题2:所列表格能否表示一个函数?为什么?1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法.问题3:y = 2x + 1的图象能否表示一个函数?为什么?2、图象法:如果图形F是函数y=f(x)的图象,则图象上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图象上.这种由图形表示函数的方法叫做图象法.问题4:我们在作作函数y = 2x + 1的图象时,先列表,后描点作图.这实际上就是函数的列表法表示和图象法表示,而y = 2x + 1这种表示方法则叫做解析法.你能给解析法下个定义吗?3、解析法:如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法. 师生互动:教师逐一提出问题,学生思考后回答,依次引入函数的三种常见的表示方法. 设计意图:通过生活中的实际问题,使学生进一步认识到,数学源于生活;通过对学生熟悉的问题1引入函数的三种常见的表示方法,使学生感受到本课所学的知识仅仅是以前所学知识的概括与深化.三.概念深化问题5:三种表示函数的方法各有优缺点.请你认真思考、对比,或与周围的同学研究、探讨一下,然后谈谈你的看法,供其他同学参考和借鉴.4、三种表示函数的方法各有优缺点:(1) 用解析法表示函数关系优点:简间明了.能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算.缺点:在求对应值时,有进要做较复杂的计算.(2) 用列表法表示函数关系优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便.缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律.(3) 用图象法表示函数关系优点:形象直观.可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化.缺点:从自变量的值常常难以找到对应的函数的准确值.师生互动:教师提出问题,让学生充分思考、探讨、交流,然后发表意见.设计意图:通过对函数三种表示方法的优缺点比较,使学生进一步理解概念,并在今后的学习中学会根据情况选择恰当的表示方法.四.应用举例例1作函数y 的图象.例2 购买某种饮料x 听,所需钱数为y 元。

1.7-函数的表示法-教学设计-教案

1.7-函数的表示法-教学设计-教案

教学准备1. 教学目标1.知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.;3.情感态度与价值观让学生感受到学习函数表示的必要性,渗透数形结合思想方法.2. 教学重点/难点教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”分段函数的表示及其图象.3. 教学用具投影仪4. 标签[函数的表示法教学过程(一)创设情景,揭示课题.我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢这一节课我们研究这一问题.(二)研探新知1.函数有哪些表示方法呢(表示函数的方法常用的有:解析法、列表法、图象法三种)(2.明确三种方法各自的特点(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值;图像法的特点是:能直观形象地表示出函数的变化情况)(三)质疑答辩,排难解惑,发展思维.例1.某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数.分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域;、③图象法:是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么怎么分析借助什么工具注意:①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:!②本例能否用解析法为什么例3.画出函数的图象。

函数的表示法 教案

函数的表示法 教案

函数的表示法(一)执教人:王玉立教学目标:1.掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数.会用描点法画一些简单函数的图象,并能通过几何直观得到函数的有关信息。

会用待定系数法求函数的解析式。

2.使学生经历知识生成的过程,同时渗透数形结合的数学思想方法。

3.使学生体会函数知识的应用价值,培养学生良好的观察品质和小组合作意识。

教学重难点:重点:掌握函数的三种表示法,会画函数的图像,会用待定系数法求函数的解析式。

难点:会根据不同的需要选择恰当的方法表示函数。

教学流程:一、复习导入上节课我们研究过三个例子,一个是发射炮弹的例子,这个函数是用数学表达式来表示两个变量之间的对应关系,我们把这种表示函数的方法叫做解析法;第二个例子是南极臭氧层空洞的例子,这个函数是通过图像表示两个变量之间的对应关系,这种方法叫图象法,第三个例子是恩格尔系数,这个函数是通过列出表格来表示两个变量之间的对应关系,这种方法我们叫它列表法。

函数可以通过以上这三种方法来表示(解析法、图象法、列表法),这三种方法呢,同学们在初中的时候也已经初步接触过,这节课呢我们将进一步学习函数的这三种表示法。

(板书题目)二、探究新知1. 课本例题3:同学们首先来看这个例题。

读题目。

同学们先自己在练习本上独立完成。

找一个学生代表(具有问题一或者问题二)到台前来汇报做法。

我们让某某同学来汇报他的做法,同学们仔细听。

你们有不同的看法吗。

(要相信自己啊,你的想法或许才是正确的。

)加上定义域,加还是不加?你到黑板上给大家解释一下。

为什么?(提意见的同学到黑板上解释。

(板书:y=x 和 y=x 加还是不加,现在问题就转化成了判断这两个函数是否相等。

前面这个函数的定义域是R,而题目中的定义域是 。

所以得加上。

)如果学生代表只具有问题之一,教师提前从学生手中搜集到另一个问题再来展示。

让学生纠错。

为什么?纠错的同学解释为什么。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学准备
1. 教学目标
1.知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数;
(3)通过具体实例,了解简单的分段函数及应用.
2.过程与方法:
学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.情感态度与价值观
让学生感受到学习函数表示的必要性,渗透数形结合思想方法.
2. 教学重点/难点
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
3. 教学用具
投影仪
4. 标签
函数的表示法
教学过程
(一)创设情景,揭示课题.
我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.
(二)研探新知
1.函数有哪些表示方法呢?
(表示函数的方法常用的有:解析法、列表法、图象法三种)
2.明确三种方法各自的特点?
(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,
便于用解析式来研究函数的性质,还有利于我们求函数的值域;列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值;图像法的特点是:能
直观形象地表示出函数的变化情况)
(三)质疑答辩,排难解惑,发展思维.
例1.某种笔记本的单价是5元,买个笔记本需要元,试用
三种表示法表示函数.
分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
注意:
①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域;
③图象法:是否连线;
④列表法:选取的自变量要有代表性,应能反映定义域的特征.
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班
级平均分表:
请你对这三位同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
注意:
①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成
绩的变化特点:
②本例能否用解析法?为什么?
例3.画出函数的图象。

例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义.
注意:
①本例具有实际背景,所以解题时应考虑其实际意义;
②像例3、例4中的函数,称为分段函数.
③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达
式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
(四)巩固深化,反馈矫正.
(1)课本P23 练习第1,2,3题
(2)国内投寄信函(外埠),假设每封信函不超过20,付邮资80分,超过20而不超过40付邮资160分,每封(0<≤100的信函应付邮资
为y(单位:分)
课堂小结
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示
函数,注意分段函数的表示方法及其图象的画法.
课后习题
板书。

相关文档
最新文档