高中数学函数的表示法教案
人教版高中数学必修一《函数的表示法》教案设计

1.2.2函数的表示法一、教材分析教材从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.教材将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.二、三维目标1.知识与技能(1)理解函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,掌握简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法.三、教学重点:函数的三种表示方法,映射的概念.四﹑教学难点:分段函数的概念,分段函数的表示及其图象.五﹑教学策略:通过实例分析比较三种函数表示法的特点,分析比较映射与函数的区别与联系.六﹑教学准备教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率七﹑教学环节1、课堂导入⑴.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是Сднемрождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.⑵.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).2、课堂讲授⑴提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:①解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.②图象法:以自变量x 的取值为横坐标,对应的函数值y 为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.③列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.⑵明确三种方法各自的特点?解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况. 总结为下表:⑶例题讲解:例3.1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素. 解:这个函数的定义域是数集{1,2,3,4,5}, 用解析法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1例4.2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势. 解:把“成绩”y 看成“测试序号”x 的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大; 赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高. 例5.1.画出函数y=|x|的图象. 分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图1-2-2-10所示.图1-2-2-10解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例6.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:图1-2-2-13y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如图1-2-2-13所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦; (ⅲ)求平方; (ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例7.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f : A →B 是从集合A 到集合B 的一个映射,⑷中的对应f : A →B 不是从集合A 到集合B 的一个映射.课堂练习:1.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1); 第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)2.已知函数f (x )=2000x x x ⎧>⎨≤⎩,,,,求f (2),f (-3)的值.解:∵2>0,∴f (2)=22=4.∵-3≤0,∴f (-3)=0. 3.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ).(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. 【探究提升】求下列函数解析式.(1)已知2f ⎝ ⎛⎭⎪⎫1x +f (x )=x (x ≠0),求f (x );(2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,将原式中的x 与1x互换,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .3﹑课堂活动:1.教师引导学生完成三种函数表示法的比较,并且归纳它们的优缺点. 2.教师引导学生完成教材例3﹑例4﹑例5﹑例6. 4﹑课堂小结:①分段函数的表示,求值等问题. ②表示函数的三种方法,映射的概念.5﹑作业布置:课本P 28 习题1.2(A 组) 第7题 (B 组)第3题 四、板书设计函数及其表示1.2.2函数的表示法一﹑教材分析二﹑三维目标三﹑教学重点四﹑教学难点五﹑教学策略六﹑教学准备七﹑教学环节九﹑教学反思:1.通过5个例题让学生体会三种表示函数的方法,掌握分段函数及其的概念.2.通过例5例6逐步培养学生分类讨论的数学思想,通过例4培养学生分析问题的能力.。
高中数学《函数的表示法》教案1北师版必修

函数的表示方法教学目标:1.掌握函数的三种表示方法(列表法、解析法、图象法),会根据不同的需要选择恰当的方法表示函数。
2.根据实际问题中的条件列出函数解析式,然后解决实际问题.3.了解简单的分段函数,并能简单的应用。
一 课题引入与教材认知:1.以引入函数概念的三个问题为背景,引入函数的表示方法。
2.教材认知。
函数的三种表示方法:(1)列表法:用列表来表示两个变量之间函数关系的方法。
(2)解析法:用等式来表示两个变量之间函数关系的方法.(3)图象法:用图象表示两个变量之间函数关系的方法。
列表法优点:不必通过计算就知道当自变量取某些值时函数的对应值。
缺点:只用于自变量为有限个的函数。
解析法优点:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质。
缺点:一些实际问题很难找到它的解析式。
图象法优点:能直观形象地表示出函数的变化情况。
缺点:只能近似地反映函数的变化情况。
二 典型例题例1、购买某种饮料x 听,所需钱数为y 元。
若每听2元,试分别用解析法、列表法、图象法将y 表示x ({}4,3,2,1∈x )的函数,并指出该函数的值域。
小结:同一个函数可以用不同的方法表示,在实际情境中,能根据不同的要求选择恰当的方法表示函数。
中学阶段研究的函数主要是用解析式表示的函数。
例2、某市出租汽车收费标准如下:在3km 以内(含3km )路程按起步价7元收费,超过3km以外的路程按2.4元/km 收费,试写出收费关于路程的函数解析式.例2中的函数具有如下特点:在定义域内不同部分上,有不同的解析式。
像这样的函数通常叫做分段函数 (注:分段函数是一个函数,而不是几个函数。
)小结:(1)在解决实际问题时,求出函数解析式后,一定要写出定义域。
(2) 回顾初中所学内容,如正比例,一次,二次,反比例函数等若已知函数类型,求函数解析式时常用待定系数法其基本步骤是设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
函数的表示方法教学设计

《函数的表示方法》教学设计钱蒙娜一、教材分析本节内容为苏教版《数学必修1》中2.1.2“函数的表示方法”。
在初中学生已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。
函数学习要“多次接触、反复体会、螺旋上升,逐步加深对函数概念的理解。
”在苏教版《数学必修4》中还会继续学习的三角函数,也是非常重要的一类函数模型。
学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。
同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。
学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。
在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。
函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。
特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。
因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。
二、教学目标根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识与技能、过程与方法和情感态度与价值观三个维度制订教学目标。
知识与技能:掌握函数常用的三种表示方法(列表法、图象法、解析法),了解函数不同表示方法的优缺点并能根据不同需要选择恰当的方式表示函数;掌握分段函数、复合函数的概念;能根据不同情况求出函数的表达式和定义域。
过程与方法:通过实例,分析比较函数三种不同的表示方法;通过分段函数改变的形成过程,培养学生观察、归纳和抽象的能力,培养数形结合和分类讨论的数学思想。
情感态度与价值观:通过对函数不同表示方法的学习,从中体会数学的简洁统一美;通过探究函数的表达式,激发学生的学习热情。
函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。
o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。
o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。
2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。
o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。
o通过小组合作探究,培养学生的合作学习能力和问题解决能力。
3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。
o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。
o通过解决问题,培养学生的耐心、细致和严谨的科学态度。
二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。
●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。
三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。
●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。
2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。
●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。
●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。
3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。
●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。
高中数学必修一 函数的表示方法(第二课时)教案

1.2.2 函数的表示方法(第二课时)教学目标:1.进一步理解函数的概念;2.使学生掌握分段函数及其简单应用。
教学重点:分段函数的理解教学难点:分段函数的图象及简单应用教学方法:自学法和尝试指导法教学过程:(Ⅰ)引入问题1.函数有几种常用的表示方法?它们分别是哪几种?2.如何作出函数y x =的图象?(II )讲授新课例1.作出函数y x =的图象和1y x =-的图象,并分别求出函数的值域。
注:分段函数的定义域和值域分别是各段函数的定义域和值域的并集。
例2.国内投寄信函(外埠),假设每封信函不超过20g 时付邮资80分;超过20g 不超过40g 时付邮资160分;依次类推,每封xg(100x 0≤<)的信函付邮资为:()(](](](]⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈=)100,80x (400)80,60x (320)80,60x (240)40,20x (160)20,0x (80y , 画出这个函数的图象。
说明:表示函数的式子也可以不止一个(如例1与例2),对于这类分几个式子表示的函数称为分段函数。
注意它是一个函数,不要把它误认为是“几个函数”。
例3.(教材24P 例6)例4.作出下列各函数的图象:(1)1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩; (2)222(0)()2(0)x x x f x x x x ⎧+≥=⎨--<⎩ 对第(2)小题的函数,试根据a 的取值讨论方程()f x a =的根的个数问题。
练习:1.在函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()3f x =,则x 的值为 。
2.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= 。
作业:课本P 28习题1.2第10、11、12、13题。
1.2.2 函数的表示方法(第三课时)教学目标:1.使学生了解映射的概念、表示方法;2.使学生了解象、原象的概念;3.使学生通过简单的对应图示了解一一映射的概念;4.使学生认识到事物间是有联系的,对应、映射是一种联系方式。
高一数学函数的教案优秀5篇

高一数学函数的教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高一数学函数的教案优秀5篇作为一位不辞辛劳的人·民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 函数的表示法教学设计
安徽省宿州市第二中学 柏长胜
教学目标:
1.使学生掌握函数的常用的三种表示法;
2.使学生能根据不同的需要选择恰当的方法表示函数,了解函数不同表示法的优缺点;
3.使学生理解分段函数及其表示法,会处理某些简单的分段函数问题;
4.培养学生数形结合与分类讨论的数学思想方法,激发学生的学习热情。
教学重点:
函数的三种表示法及其相互转化,分段函数及其表示法
教学难点:
根据不同的需要选择恰当的方法表示函数,分段函数及其表示法。
教学过程:
一、新课引入
复习提问:函数的定义及其三要素是什么?
函数的本质就是建立在自变量x的集合A上对应关系,在研究函数的过程中,我们常用不同的方法表示函数,可以从不同的角度帮助我们理解函数的性质,是研究函数的重要手段。
请同学们回忆一下函数有哪些常用的表示法? 答:列表法是、图像法、解析法 二、新课讲解
请同学们阅读课本P28-P29例2以上部分内容,思考下列问题: 1. 列表法是、图像法、解析法的分别是怎样定义的? 2. 这三种表示法各有什么优、缺点?
函数的三种表示法并不是相互独立的,它们可以相互转化,是有机的一个整体,像我们非常熟悉的一次函数、二次函数,我们都可以用列表法是、图像法、解析法来表示和研究它们。
下面我们再通过几个具体实例来研究函数的列表法是、图像法、解析法的相互转化和应用。
例1、 请画出下列函数的图像。
,0
,0x x y x x x ≥⎧==⎨-≤⎩
解:图像为第一和第二象限的角平分线, y 如图2-5所示
0 x
图2-5
本题体现的是由数到形的变化,是数形结合的数学思想方法。
问1.如何作出函数1y x =-的图像? 2.如何作出函数1y x =-的图像? 3. 如何作出函数23y x =+-的图像?
4.思考:如何由函数y x =的图像得到函数y x a b =++的图像?
5.试求函数y x =与函数y=1的图像围成的图形的面积。
例2、 国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如表2-5:
(多媒体课件显示)
表2-5
信函质量(m)/g
邮资(M)/元
1.20
2.40
3.60
4.80
6.00
画出图像,并写出函数的解析式。
分析:要让学生明白当信函质量020m <≤时邮资M=1.20是信函质量m 的函数,是一种典型的多对一的函数,可以通过多媒体动画演示让学生体会。
解:邮资M 是信函质量m 的函数,函数图像如图2-6所示
图2-6
2040m <≤4060m <≤6080
m <≤80100
m <≤020
m <≤
函数解析式为:
1.20,020
2.40,2040
3.60
,4060
4.80,60806.00
,80100
m m M m m m <≤⎧⎪<≤⎪⎪
=<≤⎨⎪<≤⎪<≤⎪⎩
注:像这样在定义域内的不同区间上对应着不同的解析式的函数叫分段函数
1. 分段函数是一个函数,而不是几个函数;
2. 分段函数的定义域是所有区间的并集,值域是各段函数值域的并集;
3. 分段函数的求解策略:分段函数分段解。
例3、 某质点在30s 内运动速度v 是时间t 的函数,它的图像如图2-7。
用解析法表示这个函数,并求出9s 时质点的速度。
(多媒体课件显示)
解:速度是时间的函数,且在不同的区间上对应这不同的解析式,因此速度是时间的分段函数,我们应当分段处理。
1.当05t ≤≤时,可设 (0)v kt b k =+≠,将(0,10)和(5,15)代入,得
10155b
k b
=⎧⎨
=+⎩ 10v t ∴=+
请同学们拿出笔和纸算出 510t ≤≤,1020t ≤≤,2030t ≤≤时所对应的解析式。
∴ 10,053,510
()30,1020390,2030
t t t t v t t t t +≤<⎧⎪≤<⎪=⎨
≤<⎪⎪-+≤≤⎩ 由上式可得,t=9s 时,质点的速度是 (9)3927(/)v cm s =⨯=
问1.如何求质点在t=19s 、20s 、0.2s 时的速度呢? 2.求((9))v v 的值;
3.当()27(/)v t cm s =时,对应的时间t 是多少? 3解法1:(分段函数分段解)
①当05t ≤<时,
()1027v t t =+= 解得17t =(舍)
②当510t ≤<时,
()327v t t == 解得9t =
③当1020t ≤<时,
()3027v t =≠ 无解
④当2030t ≤≤时,
()39027v t t =-+= 解得21t =
综上可知9t =或21
解法2:(数形结合)由v 与t 图像可知只有510t ≤<和2030t ≤≤时,()27(/)v t cm s =才可能成立,故()39027v t t =-+=或 ()327v t t == 解得9t =或21 三、思考交流
P30第1、2题。
四、课堂练习
P31第1、2、3题。
五、课堂小结
师生共同归纳本节主要内容
1. 函数的三种表示法和各自的优缺点;
2. 分段函数及其解法;
3. 函数解析式的求法。
六、布置作业
P34习题2-2 A 组 第1、2题。