圆的有关概念及性质

合集下载

圆的基本概念与性质

圆的基本概念与性质

圆的基本概念与性质圆是几何学中的一个基本概念,在我们的日常生活中也经常出现。

对于圆的概念和性质,我们需要进行深入的探究。

本文将从圆的定义、圆的性质以及圆相关的计算方法等方面进行阐述。

一、圆的定义圆是由一个平面上的所有到一个固定点的距离都相等的点组成的图形。

这个固定点称为圆心,用O表示;到圆心距离相等的点与圆心之间的距离称为半径,用r表示。

圆的边界称为圆周,圆周上的任意两点与圆心之间的距离都相等。

二、圆的性质1. 圆的直径与半径圆的直径是指通过圆心的一条线段,它的两个端点都在圆上。

直径的长度等于半径的两倍,即d=2r,其中d代表直径的长度。

2. 圆的周长圆的周长是圆周的长度,通常用C表示。

周长的计算公式为C=2πr,其中π是一个数学常数,取近似值3.14。

3. 圆的面积圆的面积是指圆所包围的区域的大小,通常用A表示。

面积的计算公式为A=πr²,即圆的面积等于半径的平方乘以π。

4. 圆的弧长圆的弧长是圆周上一部分的长度,通常用L表示。

弧长的计算公式为L=2πr,其中r是弧所对应的半径,即弧长等于弧所对应的圆心角的度数除以360度再乘以周长。

5. 圆的扇形面积圆的扇形是由一个圆心角和与其所对应的弧组成的图形,通常用S 表示。

扇形的面积计算公式为S=πr²θ/360°,其中θ是圆心角的度数,r 是半径。

6. 圆的切线与法线圆上的切线是与圆周只有一个交点的直线,切线的斜率等于半径的斜率。

圆上的法线是与切线垂直,并通过圆心的直线。

三、圆的应用圆在日常生活中具有广泛的应用。

以下是几个常见的应用场景:1. 圆形运动:物体在圆周上做匀速运动时,我们可以利用圆的性质来计算物体的位移、速度、加速度等。

2. 圆的建筑:许多建筑设计中都会使用圆形的建筑物,比如圆形剧场、圆形广场等,给人以艺术美感。

3. 圆的通信:在无线通信中,天线辐射出的信号范围就是一个圆形的区域,我们可以通过圆的性质来计算信号的传播距离与强度。

初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质圆是初中数学中的一个重要概念,它具有独特的性质和应用。

本文将对圆的概念及其性质进行归纳总结,以帮助读者更好地理解和掌握这一数学知识点。

一、圆的定义与基本概念圆是由平面上与一个确定点的距离相等的所有点组成的图形。

这个确定点称为圆心,距离称为半径。

圆可以用符号表示为O(A,r),其中O为圆心,A为圆上的任意一点,r为半径。

二、圆的性质1. 圆的直径圆上的任意两点连线,经过圆心,则称为圆的直径。

直径的长度是半径的两倍,用符号表示为d=2r。

2. 圆的弦圆上的任意两点连线,不经过圆心,则称为圆的弦。

圆的直径是一条特殊的弦,它同时也是最长的弦。

3. 圆的弧圆上的部分曲线,是由两个弦之间的交点所夹的部分,称为圆的弧。

同一个圆上的两个弧可以互补称为对称弧。

4. 圆的周长圆的周长是圆上所有点与圆心的距离之和,也就是圆的一周的长度。

圆的周长公式为C=2πr,其中π取约等于3.14。

5. 圆的面积圆的面积是圆内部的所有点与圆心的距离之和,也就是圆所围成的区域的大小。

圆的面积公式为A=πr²。

6. 圆的切线与切点从圆外一点引一条直线与圆相交,该直线在圆上的切点和与圆相切的直线称为圆的切线。

7. 圆的切圆两个圆相切于一点,称为圆的切圆。

8. 圆的切线定理如果一条直线与一个圆相切,那么与这条直线相垂直的半径也是与这条直线相切的。

9. 圆的相交性质两个圆相交于两个点,这两个点到各自的圆心的距离相等,且此两点不在任一圆内部。

10. 弧长与弧度圆的弧长是指圆心角所对应的弧的长度。

弧度是表示弧长与半径之比,记作θ,弧度大小等于圆心角大小的弧长除以半径,即θ=弧长/半径。

11. 弧长公式圆的弧长公式为L=θr,其中L表示弧长,θ表示圆心角的大小(弧度制),r表示半径。

12. 扇形的面积公式扇形是由圆心角和半径所夹的弧围成的区域,扇形的面积公式为S=1/2θr²,其中S表示扇形的面积。

圆的有关概念及性质

圆的有关概念及性质

①形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫,线段OA叫做.②描述性定义:圆是到定点的距离等于的点的集合.定点叫,定长叫.(1)弦:连结圆上任意两点的叫做弦.(2)弧:圆上任意两点间的叫做弧,大于半圆的弧叫,小于半圆的弧叫.(3)弦心距:到的距离.(4)等圆:相等的圆叫等圆,半径和圆心都相同的圆叫.(5)等弧:在中,能够的弧叫.(6)同心圆:圆心,半径的两个圆叫同心圆.①圆心角定义:顶点在的角叫做圆心角.②圆周角定义:顶点在,并且两边都和圆的角叫圆周角.①轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴.②中心对称性:圆是中心对称图形,对称中心是.圆具有旋转性,即绕圆心旋转任意角度都与原来的图形重合.垂直于弦的直径,并且平分弦所对的.①垂径定理及其推论实质是指一条直线满足:I、过圆心;II、垂直于弦;III平分弦;IV、平分弦所对的优弧;V、平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用.②圆中常作的辅助线是过圆心作弦的线.BOCA DAB CO ⋅⋅⋅⋅M⋅DOCBA在中,如果两个圆心角、两个圆周角、两条弧、两条弧所对的弦、弦心距中有一组量,那么它们所对应的其余各组量都分别.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的.推论1.在同圆或等圆中,如果两个圆周角,那么它们所对的弧.推论2.半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是.【名师提醒】:作直径所对的圆周角是直角是圆中常作的辅助线.①圆内接四边形的对角;②圆内接四边形的任意一个外角等于它的.例1:如图1,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.C.∠ACD=∠ADC D.OM=MD例2:如图2,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为.例3:如图3,AB是⊙O的弦,OC⊥AB于C.若AB=32,0C=1,则半径OB的长为.例4:如图4,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.例5:如图5,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.图4⋅OFDCEBA图5FAB CO ⋅⋅⋅⋅EAB C图6OO ⋅AB CD图7图1 图2图3BDBC=例6:如图6,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且8==CD AB , 则OP 的长为 .例7:如图7,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧上一点,则APB ∠的度数为( )例8:如图8,⊙O 是ABC ∆的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,AC OD ⊥,垂足为E ,连结BD ,032=∠A ,则=∠CBD .例9:如图9,OA ,OB 是⊙O 的两条半径,且OB OA ⊥,点C 在⊙O 上,则ACB ∠的度数为 .例10:如图10,AB 、CD 是⊙O 的两条弦,连接AD 、BC .060=∠BAD ,则B CD ∠的度数为 . 例11:如图11,在ABC ∆中,AB 为⊙O 的直径,060=∠B ,0100=∠BOD ,则C ∠的度数为 .例12:如图12,在半径为5的⊙O 中,弦6=AB ,点C 是优弧AB 上一点(不与A ,B 重合), 则cosC 的值为.例13:如图13,四边形ABCD 内接于⊙O,0110=∠C ,则=∠A,BOD ∠= .AMB 图9图10图11图6图4图5图8图7例14:如图14,AB 是⊙O 的直径,弦CD ⊥AB 于点N ,点M 在⊙O 上,∠1=∠C 若BC=4,32sin =M ,则⊙O 的直径AB 的长是 .例15:如图15,△ABC 内接于⊙O ,AB 、CD 为⊙O 直径,DE ⊥AB 于点E ,sinA=12, 则∠D 的度数是 .例16:如图16,⊙O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P ,OP=32,则⊙O 的半径为 . 例17:如图17,△ABC 中,BC=3,以BC 为直径的⊙O 交AC 于点D ,若D 是AC 中点,∠ABC=120°. 则(1)∠ACB 的度数是 .(2)点A 到直线BC 的距离是 .例18:如图18,ABC ∆内接于⊙O ,AB 是⊙O 的直径,030=∠A ,CE 平分ACB ∠交⊙O 于E ,交AB 于点D ,连结BE ,则=∆∆CD A BD E S S : .例19:如图19,AD 是ABC ∆的高,AE 是ABC ∆的外接圆⊙O 的直径,24=AB ,5=AC ,4=AD ,则的直径=AE .例20:如图20,以ABC ∆的边BC 为直径的⊙O ,点A 在⊙O 上,过点A 作BC AD ⊥于D ,53cos =∠CAD ,4=AB,则=AC . 图15图16图17CBAO图20ED∙AEO B DC 图18D ABC图19∙O图12图14⋅ABC图13D O例21:⊙O 的半径为17cm ,弦CD AB //,cm AB 30=,cm CD 16=,则AB 与CD 之间的距离是 .。

圆的概念与性质

圆的概念与性质

圆的概念与性质圆是几何学中最基本也是最重要的图形之一。

它具有独特的概念与性质,对于几何学研究和实际生活应用都具有重要的意义。

一、圆的概念圆可以通过平面上的一点(圆心)和与这个点距离相等的所有点构成,这个相等的距离称为圆的半径。

圆的边界称为圆周,圆周上的所有点到圆心的距离都相等。

二、圆的性质1. 圆心和半径:圆心是圆的核心位置,半径是从圆心到任意一个点的距离。

所有半径的长度都相等。

2. 直径:直径是通过圆心的一条线段,且两个端点都在圆上。

直径是圆的最长线段,其长度等于半径的两倍。

3. 弧长:弧长是圆上的一段弧对应的圆周长度。

弧长和圆的半径以及所对应的圆心角有关。

4. 弧度:弧度是弧长和半径之间的比值。

一个完整圆的弧长等于2π倍的半径。

角度和弧度之间的转换关系是180°=π弧度。

5. 扇形:扇形是由圆心、圆周上的两个点以及连接这两个点的弧段所构成的图形。

6. 弦:弦是连接圆周上的两个点的线段。

7. 切线:切线是与圆周只有一个交点的直线,切线与半径的夹角是直角。

8. 正切线:正切线是过圆上一点并且与该点的切线垂直相交的直线。

9. 圆的面积:圆的面积是指圆所包围的平面区域。

圆的面积公式是πr²,其中r为圆的半径。

三、圆的应用1. 圆在建筑设计中的应用:圆形的建筑物,例如圆形剧场、圆形体育馆等,不仅美观而且具有良好的音响效果和观看体验。

2. 圆在交通规划中的应用:交通圆环的设计可以提高交通效率,减少交通事故的发生。

3. 圆在制造业中的应用:例如车轮、电机转子等,圆形的设计可以提高工作效率和产品的稳定性。

4. 圆在数学研究中的应用:圆的概念和性质是数学研究中的基础,广泛应用于数学的各个分支,如几何学、代数学等。

总结:圆是几何学中的基本图形,具有独特的概念和性质。

圆的应用广泛存在于我们的生活中,不仅美观而且具有很多实际价值。

对于几何学的学习和实际应用,深入理解圆的概念和性质是非常重要的。

圆的概念和性质

圆的概念和性质

圆的概念和性质圆是我们数学中重要的几何概念之一,广泛应用于各个领域。

无论是日常生活中的测量、建筑设计,还是工程技术、科学研究中的模型和计算,都离不开圆的概念和性质。

本文将从圆的定义、常见性质以及应用等方面进行详细的探讨。

一、圆的定义圆可以定义为平面上一组到一个定点的距离都相等的点的集合。

这个定点称为圆心,到圆心的距离称为半径。

以圆心为中心、以半径为半径的线段称为圆的半径。

圆内的任意两点到圆心的距离都小于半径,而圆外的任意一点到圆心的距离都大于半径。

二、圆的性质1. 圆的直径圆的直径是通过圆心并且两端点都在圆上的线段。

直径是圆中最长的线段,并且它的长度等于半径的两倍。

2. 圆的周长圆的周长是圆上一周的长度,也称为圆周。

圆周的长度可以通过圆的直径或者半径与圆周率之间的关系来计算。

根据定义,圆周的长度等于直径乘以π(圆周率)。

3. 圆的面积圆的面积是圆内部的所有点与圆心之间的连线围成的区域。

圆的面积也是通过圆的半径与圆周率之间的关系来计算。

根据定义,圆的面积等于半径平方乘以π。

4. 圆的切点两个圆相切时,它们有一个共同的切点。

切点是两个圆相切时,位于两个圆的切线上的点。

5. 圆的切线圆的切线是与圆只有一个公共点的直线。

圆的切线与半径垂直,并且切线的斜率等于半径与圆心连线的斜率的相反数。

三、圆的应用1. 圆在日常生活中的应用圆在日常生活中有很多应用,比如钟表中的表盘、轮胎的设计、圆桌的使用等。

同时,圆的性质也可以用来解决一些实际问题,比如判断一个物体是否能通过一个洞的尺寸、计算环形花坛的面积等。

2. 圆在几何图形中的应用圆在几何图形中也有广泛的应用。

例如,圆可以用来构造其他几何图形,比如正多边形、扇形、圆锥等。

同时,圆也可以与其他几何图形相交,形成复杂的图形结构。

3. 圆在科学与工程中的应用圆的概念和性质在科学与工程领域中也有重要的作用。

例如,在物理学中,圆的运动轨迹和碰撞规律可以用来描述天体运动、粒子动力学等现象。

圆的概念及性质知识点梳理

圆的概念及性质知识点梳理

圆的概念及性质知识点梳理一、圆的基本概念 1. 圆的定义:圆是由平面上到一定点的距离相等的所有点组成的集合。

2. 圆的符号表示:以大写字母O表示圆心,小写字母r表示半径,圆可以表示为O(r)。

3. 圆的元素:圆心、半径、直径。

二、圆的性质 1. 对称性: a. 圆心对称:圆内任意一点都可以通过圆心的对称变换到另外一个点。

b. 直径对称:圆内任意一点都可以通过圆的直径对称变换到另外一个点。

2. 圆与直线的关系: a. 圆与直线的交点:一条直线与圆相交的点数可能为0、1、2个。

b. 切线:一条直线切圆的条件是直线与圆有且仅有一个交点。

c. 弦:一条直线与圆有两个交点,这两个交点与圆心连接形成的线段称为弦。

3.圆与角的关系: a. 圆心角:圆内的两条半径所对应的角称为圆心角,圆心角的度数等于弧度的两倍。

b. 弧度:弧长等于半径的弧对应的角的度数称为弧度。

c. 弧度制与度数制转换:弧度 = 度数× π / 180。

4. 圆与面积的关系: a. 圆的面积公式:圆的面积等于半径的平方乘以π,即A = πr^2。

b. 圆周长与面积的关系:半径一样的两个圆,周长较大的圆面积也较大。

5. 圆与体积的关系:a. 圆柱的体积公式:圆柱的体积等于底面积乘以高,即V = πr^2h。

b. 圆锥的体积公式:圆锥的体积等于底面积乘以高再除以3,即V = (1/3)πr^2h。

c. 球体的体积公式:球体的体积等于(4/3)πr^3。

三、圆的应用 1. 圆的几何应用: a. 轮胎:轮胎通常采用圆形设计,便于车辆转向和行驶。

b. 钟表:钟表上的指针转动的轨迹是一个圆弧。

2. 圆的物理应用: a.运动:物体在做圆周运动时,其运动轨迹是一个圆。

b. 电子:电子的轨道运动也是一个圆形的。

c. 光学:光学中的透镜和曲率半径有关,曲率半径越小,透镜越强。

3. 圆的数学应用: a. 数学公式:圆的周长和面积的计算公式是数学中的基本公式之一。

初中数学知识归纳圆的概念和性质

初中数学知识归纳圆的概念和性质

初中数学知识归纳圆的概念和性质圆是初中数学中的一个重要概念,它有许多独特的性质。

下面将对圆的概念和性质进行归纳。

一、圆的概念圆是由平面上所有到一个固定点的距离都相等的点的集合。

固定点叫做圆心,等距离叫做半径。

圆可以用圆心和半径表示,通常表示为∠O(r),其中O表示圆心,r表示半径。

二、圆的性质1. 圆上任意两点的距离都相等。

即圆上的任意两点A和B,都有AB = r,其中r为圆的半径。

2. 圆的直径是圆上任意两点间的最大距离。

直径d等于半径的两倍,即d = 2r。

3. 相交弧:圆上的两条弧如果有一个公共点,则称它们为相交弧。

4. 弧度:圆心角对应的弧长与圆的半径的比值叫做弧度。

常用弧度符号表示为θ。

5. 弧长:圆周上任意两点间的弧长等于该圆心角的弧度数乘以圆的半径。

即L = θr。

三、圆的相关公式1. 圆的面积公式:S = π * r²,其中S表示圆的面积,r表示半径。

π是一个常数,约等于3.14。

2. 圆的周长公式:C = 2π * r,其中C表示圆的周长,r表示半径。

3. 弓形的面积公式:A = 1/2 * θ * r²,其中A表示弓形的面积,θ表示圆心角的弧度数,r表示半径。

4. 弦与弦的关系公式:如果两条弦相交,且其中一条被另一条平分,则两条弦的乘积等于交叉部分之间的弦的乘积。

即AB * CD = BC * AD。

四、圆的常见问题类型1. 判断关系:判断两个图形是否为圆,判断是否为同心圆等。

2. 计算问题:根据已知条件计算圆的面积、周长等。

3. 推理问题:利用圆的性质进行推理,解决几何问题。

4. 证明问题:根据已知条件进行推导,证明一个几何命题。

5. 应用问题:将圆的概念和性质应用于生活实际,解决实际问题。

五、常见解题思路1. 利用定义:根据圆的定义进行判断或运用相关公式进行计算。

2. 运用性质:根据圆的性质推导出结论,解决几何问题。

3. 运用变换:将圆的问题转化为其他图形的问题,通过转换求解。

初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质圆是初中数学中的重要概念,在本文中将对圆的概念与性质进行归纳和总结。

文章将从圆的定义开始,逐步介绍圆的基本要素、圆心角、内接外接等重要性质,并辅以相关的定义、公式和图示,以便读者更好地理解和掌握。

1. 圆的定义圆是由平面上所有距离固定点(圆心)的点构成的集合。

圆的平面被称为圆面,圆上的每一个点到圆心的距离都相等,这个相等的距离被称为圆的半径。

2. 圆的基本要素(1)圆心:圆心是圆的中心点,通常用字母O表示。

(2)半径:圆心到圆上任一点的距离为圆的半径,通常用字母r表示。

(3)直径:直径是通过圆心且两端在圆上的线段,直径的长度为半径的两倍。

(4)弦:连接圆上两点的线段被称为弦,弦的长度可以小于或等于直径。

3. 圆的性质(1)圆的周长:圆的周长是圆上一周的长度,用C表示,可通过公式C = 2πr计算,其中π是一个常数,近似值为3.14。

(2)圆的面积:圆的面积是圆内部的所有点构成的区域,用S表示,可通过公式S = πr²计算。

(3)圆心角:以圆心为顶点的角被称为圆心角,圆心角所对的弧称为圆心角所对的弧。

(4)弧长:弧长是圆的一部分,通常通过弧度来度量,弧长的计算公式是L = rθ,其中θ是圆心角的弧度数。

(5)切线和法线:切线是与圆相切于一点并且与圆的切点的切线垂直的直线,而法线是与切线垂直的直线。

4. 圆的内接和外接(1)内接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为内接多边形,内接多边形的顶点都落在圆上。

(2)外接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为外接多边形,外接多边形的每个顶点都在圆上。

综上所述,圆是一种特殊的几何图形,其定义、基本要素、性质和内接外接等概念是初中数学中必须掌握的内容。

通过对圆的学习,我们可以应用圆的性质解决实际问题,如计算圆的周长、面积,进行内接外接多边形的相关计算等。

深入理解和掌握圆的概念和性质能够夯实数学基础,为进一步学习和应用提供坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
.
7
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
性质4: 900的圆周角所对的弦是圆的直径.
∵AB是⊙O的直径
C∴ ∠ACB=900AOB
.
8
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半径的直 线是圆的切线。
.
21
考点六 圆的性质的应用 1.垂径定理的应用 用垂径定理进行计算或证明,常需作出圆心到弦的 垂线段(即弦心距),则垂足为弦的中点,再解由半径、 弦心距和弦的一半组成的直角三角形来达到目的.
.
17
考点四 圆心角与圆周角 1.定义:顶点在圆心的角叫做圆心角;顶点在圆 上,且两边都与圆相交的角叫做圆周角. 2.圆周角定理:在同圆或等圆中,同弧或等弧所 对的圆周角相等,都等于这条弧所对的圆心角的一半.
.
18
如图,圆周角∠C 和圆心角∠AOB 都对着 AB , 则∠C=12∠AOB.
3.推论:半圆(或直径)所对的圆周角是直角,90° 的圆周角所对的弦是直径.
4.与圆有关的概念 (1)弦:连结圆上任意两点的线段. (2)直径:经过圆心的弦. (3)弧:圆上任意两点间的部分. (4)优弧:劣弧、半圆. (5)等弧:在同圆或等圆中,能够完全重合的孤. (6)圆心角:顶点在圆心,角的两边与圆相交. (7)圆周角:顶点在圆上,角的两边与圆相交. (8)三角形外心及性质.
中,相等的圆周角所对的弧也相等.
推论2:半圆(或直径)所对的圆周角是直角;90°的圆
周角所对的弦是直径.
推论3:如果三角形一边上的中线等于这边的一半,
那么这个三角形是直角三角形.
.
6
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
3.连接圆上任意两点的线段叫做弦;经过圆心 的弦叫做直径;直径是圆内最长的弦;直径等于半径 的2倍.
.
13
4.圆的对称性 (1)圆是轴对称图形,经过圆心的每一条直线都是 它的对称轴. (2)圆是以圆心为对称中心的中心对称图形. (3)圆绕圆心旋转任意角度,都能和原来的图形重 合,这就是圆的旋转不变性.
推论3:平分弦所对的一条弧的直径,垂直平分 弦,并平分弦所对的另一条弧.
.
5
➢ 要点、考点聚焦
(3)圆心角、弧、弦、弦心距.
定理:在同圆或等圆中,相等的圆心角所对的弧 相等,所对的弦相等,所对弦的弦心距相等.
(4)圆周角
定理:一条弧所对圆周角等于它所对的圆心角的一半.
推论1:同弧或等弧所对的圆周角相等;同圆或等圆
有被平分的弦不是直径时才互相垂直.
.
15
1、如图,已知⊙O的半径OA长 为5,弦AB的长8,OCA⊥C=ABBC于C,则
OC的长为 _____3__.
O
半径
弦心距
A
C 半弦长 B
1.常利用弦心距,弦的一半及半径构成直角三角形.
2.遇直径条件时,常构造直径所对的圆周角,得到90°
的角.
.
16
考点三 圆心角、弧、弦之间的关系 1.定理:在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦相等. 2.推论:在同圆或等圆中,如果两条弧相等,那 么它们所对的圆心角相等,所对的弦相等;在同圆或 等圆中,如果两条弦相等,那么它们所对的圆心角相 等,所对的弧相等.
.
4
➢ 要点、考点聚焦
5.有关定理及推论 (1)定理:不在同一直线上的三个点确定一个圆. (2)垂径定理及其推论.
垂径定理:垂直于弦的直径平分弦,并且平分弦 所对的两条弧.
推论1:平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧.
推论2:弦的垂直平分线经过圆心,并且平分弦 所对的两条弧.
第29章 圆知识体系复习(一)
圆的有关概念及性质
.
1
本章知识结构图
圆的基本性质
与圆有关的位置关系

正多边形和圆
圆的对称性
弧、弦圆心角之间的关系
同弧上的圆周角与圆心角的关系
点和圆的位置关系
三角形的外接圆
直线和圆的位置关系 切线 三角形内切圆
圆和圆的位置关系
等分圆
弧长
有关圆的计算
扇形的面积
圆锥的侧面积和全面积
.
10
.
11
考点一 圆的有关概念及性质 1.圆的概念有两种方式 (1)在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆.固定 的端点O叫做圆心,线段OA叫做半径. (2)圆是到定点的距离等于定长的点的集合.
.
12
2.圆上任意两点间的部分叫做弧;小于半圆的 弧叫劣弧;大于半圆的弧叫优弧.
.
2
➢ 要点、考点聚焦
1.本课时重点是垂径定理及其推论,圆心角、 圆周角、弦心距、弧之间的关系.
2.圆的定义 (1)是通过旋转. (2)是到定点的距离等于定长的点的集合.
3.点和圆的位置关系(圆心到点的距离为d)
(1)点在圆上 d=r. (2)点在圆内 d<r. (3)点在圆外 d>r.
.
3
➢ 要点、考点聚焦
.
19
温馨提示: 1.圆周角定理的意义在于把圆周角和圆心角这两 类不同的角联系在一起. 2.同一条弧所对的圆周角相等;同一条弦所对的 圆周角相等或互补. 3.当已知条件中有直径时,常常作直径所对的圆 周角,这是圆中常添加的辅助线.
.
20
考点五 圆内接四边形性质定理 1.性质定理 1:圆内接四边形的对角互补. 2.性质定理 2:圆内接四边形的外角等于它的 对角. 如图,四边形 ABCD 内接于⊙O,则∠A+∠BCD =∠B+∠D=180°,∠DCE=∠A.
3.经过半径的外端且垂直于这条半径的直 线是圆的切线。


O A
∵OA是半径,OA⊥ l
l ∴直线l是⊙O的切线.
.
9
➢ 要点、考点聚焦
(5)圆内接四边形性质定理:圆内接四边形的对角互补, 并且任何一个外角都等于它的内对角.
6.中考题型:这部分题目变化灵活,在历年各地中考 试题中均占有较大比例,就考查的形式来看,不仅可 以单独考查,而且往往与几何前几章知识以及方程、 函数等知识相结合.
.
14
考点二 垂径定理及其推论
1.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的 两条弧.
如图,CD 是⊙O 的直径,AB 为弦,CD⊥AB,垂足为 E,
则 AE=EB, AD = DB , AC = BC .
2.推论:平分弦(不是直径)的直径垂直于弦,
并且平分弦所对的两条弧.
温馨提示:
不重合的两条直径一定互相平分,但不一定互相垂直,只
相关文档
最新文档