九年级数学圆的有关概念及性质
九年级圆知识点归纳总结

九年级圆知识点归纳总结九年级数学中的圆是一个重要的知识点,它不仅在基础知识中占有一席之地,同时也在高中数学中扮演着重要的角色。
本文将对九年级的圆知识点进行归纳总结,帮助同学们更好地理解和掌握这一内容。
一、圆的基本概念圆是平面上的一个点到另一个点距离恒定的轨迹。
在圆上取任意两点,以这两点为直径的线段被称为圆的直径,直径的中点为圆心,圆心到圆上任意一点的线段称为半径。
圆的边界称为圆周,圆周上的任意一段弧称为圆弧。
二、圆的性质1. 圆的直径是半径的两倍。
2. 圆的直径和周长以及面积之间的关系:- 周长:C = 2πr,其中r为圆的半径;- 面积:S = πr²。
3. 对于同一条弧来说,圆心角和弧长成正比,即圆心角α所对的弧长l与圆周长C之间有l/ C = α/360度。
三、弧长与扇形面积弧长是弧所对的圆周的长度。
根据上述性质可知,圆心角所对的弧长l与圆周长C之间成正比,因此可以用以下公式计算:l = C × (α/360度)。
扇形是由圆心和圆周上的两点围成的图形,其面积可以用以下公式计算:S = (α/360度) × πr²。
四、切线和切点切线是与圆相切于一个点的直线,切点是切线与圆的交点。
切线与半径的关系有以下性质:1. 切线与半径垂直;2. 半径与切点之间的连线垂直于切线。
五、相交弦和弦长弦是圆上任意两点之间的线段。
相交弦是指两条不经过圆心的弦相交于一点。
弦长与半径和弦之间的关系有以下性质:1. 等弧长的两条弦,离圆心的距离越远,弦长越长;2. 等圆心角的两条弦,离圆心的距离越远,弦长越长。
六、相切圆和公切线两个圆如果内切于同一直线,我们称它们为相切圆,相切圆之间的直线称为公切线。
与相切圆的公切线垂直于相切点连线,并且两圆心连线垂直于公切线。
七、圆与三角形圆与三角形之间有着多个重要的关系:1. 角平分线相交于圆上的一点;2. 三角形外切圆与三角形内切圆的圆心在一条直线上。
九年级数学圆的基本性质

九年级数学圆的基本性质九年级数学:圆的基本性质及其应用圆的性质是九年级数学中的一个重要内容,它在实际生活和后续数学知识中都具有重要的地位。
本文将详细介绍圆的基本性质,并通过实例阐述其应用。
一、圆的基本定义圆是一种几何图形,由一条固定长度的线段(称为半径)围绕一个定点(称为圆心)旋转一周所形成的封闭曲线。
圆具有如下基本元素:1、圆心:定义圆的中心点,用符号“O”表示。
2、半径:连接圆心与圆上任意一点的线段,用符号“r”表示。
3、直径:通过圆心的线段,其长度为半径的两倍,用符号“d”表示。
4、周长:圆的所有边界点组成的封闭曲线长度,用符号“C”表示。
5、面积:圆所占平面的大小,用符号“S”表示。
二、圆的基本性质1、圆的确定:到一个定点距离等于定长的所有点组成的图形是一个圆。
2、圆心与半径的关系:在同圆或等圆中,半径等于直径的一半。
3、圆的基本性质:圆是轴对称图形,其对称轴有无数条,任何一条直径所在的直线都是其对称轴。
4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
5、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
6、圆周角定理:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
7、弦切角定理:在圆中,与圆相交的直线被圆截得的线段相等。
三、圆的性质的应用1、日食和月食:当月球绕地球运动时,太阳、地球和月球在同一直线上,太阳照射在月球的背面,地球上的观察者会看到月偏食或月全食。
这是由于太阳照射在月球的背面,使得月球背面的影子投射在地球上,形成了月食。
2、汽车轮胎:汽车轮胎的设计考虑了圆的性质。
因为车轮是由一个圆柱体和两个半圆形组成的,所以当车轮转动时,可以平稳地行驶。
3、计算圆的周长和面积:圆的周长和面积是圆的两个基本量,可以用于计算圆的周长和面积,也可以用于计算球体、圆柱、圆锥等几何形体的体积和表面积。
4、工程设计:在工程设计中,经常需要用到圆的性质。
例如,在设计桥梁时,需要考虑桥墩之间的距离以及桥墩的形状;在设计房屋时,需要考虑窗户和门的形状和大小。
九年级数学圆知识点总结

九年级数学圆知识点总结在九年级数学学习的过程中,我们接触到了许多关于圆的知识。
圆是几何学中的重要概念之一,它有着特殊的性质和应用价值。
接下来,本文将对九年级数学中的圆知识点进行总结。
一、圆的定义与性质1. 圆的定义:圆是由平面上所有到一个给定点距离相等的点组成的图形。
这个给定点称为圆心,到圆心的距离称为半径。
2. 相关性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径长度的两倍。
- 圆的半径相等,且平行于任意切线。
- 圆的弦是连接圆上任意两点的线段,直径是最长的弦。
- 相等弧所对的圆心角相等,且圆心角大于它所对的弧上任意角。
二、圆的周长与面积1. 周长:- 弧长:圆的周长也被称为圆的周长,用C表示。
弧长是圆上一段弧的长度,计算公式为:C = 2πr,其中r是圆的半径。
- 弧度制:弧度制是角度的一种衡量方式,常用的单位是弧度(radian)。
一个完整的圆周对应的弧度数为2π。
2. 面积:- 圆的面积:用A表示,计算公式为:A = πr^2,其中r是圆的半径。
三、圆的位置关系1. 内切与外切:- 内切:当一个圆的圆心与另一个圆的圆心重合,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为内切圆。
- 外切:当一个圆的圆心与另一个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为外切圆。
2. 切线与割线:- 切线:从圆外一点引出的与圆相切的直线称为切线,切线与半径垂直。
- 割线:与圆相交于两点的直线称为割线。
四、圆的常见定理和应用1. 切线定理:如果一条直线与一个圆相切,那么它与半径的垂直角都是直角。
2. 弧长与圆心角关系:弧长等于半径与对应圆心角的乘积。
3. 弧度制与角度制的转换关系:一周的弧度数为360°。
4. 圆心角、弦与弧的关系:圆心角的度数是对应的弧度数的两倍。
5. 弦切角定理:一个弦与切线所夹的角等于被切割的弧所对的圆心角。
九年级数学圆的基本性质

一、基础知识(一)圆的有关概念:圆:在同一平面内,到定点的距离等于定长的点的集合。
其中,定点为圆心,定长为半径。
弦:连接圆上任意两点的线段。
经过圆心的弦是直径。
弧:圆上任意两点间的部分叫弧。
圆上任一条直径的两个端点把圆分成的两条弧,每一条弧都叫做半圆。
大于半圆的弧角做优弧,小于半圆的弧叫劣弧。
(二)圆的性质:1.同圆或等圆中:半径、直径都相等。
2.圆有无数条弦,其中最长的弦为直径。
3.圆是轴对称图形,对称轴为直径所在的直线,有无数条。
圆是中心对称图形,并且无论绕圆心旋转多少度,都可以和原图形重合。
二、重难点分析本课教学重点:弦和弧的概念、弧的表示方法和点与圆的位置关系.本课教学难点:点和圆的位置关系及判定。
通过日常生活在生产中的实例引导学生对学习圆的兴趣。
三、典例精析:例1:(2014•长春二模)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°∴∠DAO=∠AOC=70°例2.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是。
四、感悟中考1、(2013•温州)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作BAC ,如图所示.若AB =4,AC =2,S 1-S 2=4π,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π2、如图,已知同心圆O ,大圆的半径AO 、BO 分别交小圆于C 、D ,试判断四边形ABDC 的形状.并说明理由.∠A五、专项训练。
(一)基础练习1、已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.2、如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.【点评】本题考查圆的基本性质、全等三角形判定。
九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。
人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:
•
垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O
•
r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质
•
垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.
圆的概念及性质知识点梳理

圆的概念及性质知识点梳理一、圆的基本概念 1. 圆的定义:圆是由平面上到一定点的距离相等的所有点组成的集合。
2. 圆的符号表示:以大写字母O表示圆心,小写字母r表示半径,圆可以表示为O(r)。
3. 圆的元素:圆心、半径、直径。
二、圆的性质 1. 对称性: a. 圆心对称:圆内任意一点都可以通过圆心的对称变换到另外一个点。
b. 直径对称:圆内任意一点都可以通过圆的直径对称变换到另外一个点。
2. 圆与直线的关系: a. 圆与直线的交点:一条直线与圆相交的点数可能为0、1、2个。
b. 切线:一条直线切圆的条件是直线与圆有且仅有一个交点。
c. 弦:一条直线与圆有两个交点,这两个交点与圆心连接形成的线段称为弦。
3.圆与角的关系: a. 圆心角:圆内的两条半径所对应的角称为圆心角,圆心角的度数等于弧度的两倍。
b. 弧度:弧长等于半径的弧对应的角的度数称为弧度。
c. 弧度制与度数制转换:弧度 = 度数× π / 180。
4. 圆与面积的关系: a. 圆的面积公式:圆的面积等于半径的平方乘以π,即A = πr^2。
b. 圆周长与面积的关系:半径一样的两个圆,周长较大的圆面积也较大。
5. 圆与体积的关系:a. 圆柱的体积公式:圆柱的体积等于底面积乘以高,即V = πr^2h。
b. 圆锥的体积公式:圆锥的体积等于底面积乘以高再除以3,即V = (1/3)πr^2h。
c. 球体的体积公式:球体的体积等于(4/3)πr^3。
三、圆的应用 1. 圆的几何应用: a. 轮胎:轮胎通常采用圆形设计,便于车辆转向和行驶。
b. 钟表:钟表上的指针转动的轨迹是一个圆弧。
2. 圆的物理应用: a.运动:物体在做圆周运动时,其运动轨迹是一个圆。
b. 电子:电子的轨道运动也是一个圆形的。
c. 光学:光学中的透镜和曲率半径有关,曲率半径越小,透镜越强。
3. 圆的数学应用: a. 数学公式:圆的周长和面积的计算公式是数学中的基本公式之一。
数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.借助在同圆或等圆中,同弧或等弧所对的圆周 角或圆心角相等进行角的等量代换;也可在同圆或等 圆中,由相等的圆周角所对的弧(或弦)相等,进行弧(或 弦)的等量代换.
考点一 垂径定理及其推论 例 1 (2016·黄石)如图所示,⊙O 的半径为 13, 弦 AB 的长度是 24,ON⊥AB,垂足为 N,则 ON=( )
2.圆上任意两点间的部分叫做弧;小于半圆的弧 叫 劣弧 ;大于半圆的弧叫 优弧 .
3.连接圆上任意两点的线段叫做 弦 ;经过圆心 的弦叫做 直径 ;直径是圆内最长的弦;直径等于半 径的 2 倍.
4.圆的对称性 (1)圆是轴对称图形,经过圆心的每一条直线都是 它的对称轴; (2)圆是以圆心为对称中心的中心对称图形; (3)圆绕圆心旋转任意角度,都能和原来的图形重 合,这就是圆的旋转不变性.
考点二 垂径定理及其推论 1.垂径定理 垂直于弦的直径 平分 弦,并且 平分 弦所对的 两条弧.
如图,CD 是⊙O 的直径,AB 为弦,CD⊥AB, ︵,AC=BC.
2.推论:平分弦(不是直径)的直径 垂直于 弦, 并且平分弦所对的两条弧.
温馨提示: 不重合的两条直径一定互相平分,但不一定互相 垂直,只有被平分的弦不是直径时才互相垂直.
∠A=50°,∠BOC=( )
A.40°
B.45°
C.50°
D.60°
【点拨】在⊙O 中,OA=OB,∴∠B=∠A=50°,
︵ ∴∠AOB=180°-∠A-∠B=80°.∵点 C 是AB的中
︵︵ 点 ,∴AC = CB ,∴∠
COB=
∠ AOC=1
∠ AOB=
40°.
2
故选 A.
【答案】 A
方法总结: 在圆中证明两条弧、两条弦、两个圆心角中的一 组相等时,可以考虑通过说明其他两组量中的一组相 等来证明.
考点五 圆内接四边形性质定理 1.性质定理 1:圆内接四边形的对角 互补 . 2.性质定理 2:圆内接四边形的外角等于它的 内 对角 .
如图,四边形 ABCD 内接于⊙O,则∠A+∠BCD= ∠ B+ ∠ D= 180°,∠ DCE=∠ A.
考点六 圆的性质的应用 1.垂径定理的应用 用垂径定理进行计算或证明,常需作出圆心 到弦的垂线段(即弦心距),则垂足为弦的中点, 再解由半径、弦心距和弦的一半组成的直角三角 形来达到目的.
第八章 圆 第29讲 圆的有关概念及性质
考点一 圆的有关概念及性质 1.圆的两种定义 (1)定义 1:在一个平面内,线段 OA 绕它固定的 一个端点 O 旋转一周,另一个端点 A 所形成的图形叫 做圆.固定的端点 O 叫做 圆心 ,线段 OA 叫做 半径 . (2)定义 2:圆是到定点的距离等于定长的点的 集 合.
【答案】 B
考点四
垂径定理的应用
例 4 (2016·绍兴)如图 1,小敏利用课余时间制作
了一个脸盆架,图 2 是它的截面图,垂直放置的脸盆
与架子的交点为 A,B,AB=40 cm,脸盆的最低点 C
到 AB 的距离为 10 cm,则该脸盆的半径为 cm.
【点拨】如图,设脸盆的圆心 为点 O,连接 OA,OC 交 AB 于点 D,则 OC⊥AB,所以 AD=BD= 1AB=20 cm,CD=10cm,设圆 O的 2 半径为 r cm,则 OD=(r-10) cm. 在 Rt△AOD 中,由勾股定理可得,OA2=AD2+OD2, 即 r2=202+(r-10)2,解得 r=25.
上,且两边都与圆相交的角叫做圆周角.
2.圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,
都等于这条弧所对的圆心角的 一半 .
︵ 如图,圆周角∠C 和圆心角∠AOB 都对着AB,则 ∠ C=1∠ AOB.
2
3.推论:半圆(或直径)所对的圆周角是 直角 , 90°的圆周角所对的弦是 直径 .
温馨提示: 1.圆周角定理的意义在于把圆周角和圆心角这两 类不同的角联系在一起. 2.同一条弧所对的圆周角相等;同一条弦所对的 圆周角相等或互补. 3.当已知条件中有直径时,常常作直径所对的圆 周角,这是圆中常添加的辅助线.
A.①②③
B.②③④
C.①②④
D.仅有①②
2.(2016·海南)如图,AB 是⊙O 的直径,直线 PA 与⊙O 相切于点 A,PO 交⊙O 于点 C,连接 BC,若 ∠P=40°,则∠ABC 的度数为( B )
【答案】 25
方法总结: 有关在半圆、优弧、劣弧中求相关数量的题目常 通过连接半径、作出弦心距,从而利用垂径定理构造 直角三角形解答.
1.如图,在⊙O 中,半径
OD⊥弦 AB 于点 C,则下列结
论:①AC=BC;②AD=DB;
③∠DAB=1∠AOD;④∠OAB= 2
∠DAB.其中正确的结论是( A )
考点三
圆心角、弧、弦之间的关系
1.定理:在同圆或等圆中,相等的圆心角所对的
弧 相等,所对的 弦 相等.
2.推论:在同圆或等圆中,如果两条弧相等,那
么它们所对的 圆心角 相等,所对的 弦 相等;在同
圆或等圆中,如果两条弦相等,那么它们所对的 圆心
角 相等,所对的 弧 相等.
考点四
圆心角与圆周角
1.定义:顶点在圆心的角叫做圆心角;顶点在圆
考点三
圆周角定理及其推论
例 3 (2016·乐山)如图,C,D 是以线段 AB 为直
径的⊙O 上两点,若 CA=
CD , 且 ∠ACD = 40°, 则
∠CAB=( )
A.10°
B.20°
C.30°
D.40°
【点拨】因为 CA=CD,∠ACD=40°,所以∠ADC= ︵
∠DAC=70°.又因为∠ADC 和∠ABC 都是AC所对 的圆周角,所以∠ADC=∠ABC=70°.因为 AB 是⊙O 的 直径,所以∠ACB=90°,所以∠CAB= 180°-90°- ∠ABC=180°-90°-70°=20°.故选 B.
A.5 B.7 C.9 D.11
【点拨】因为 ON⊥AB,所以 AN=BN=1AB= 2
12.又在 Rt△ OAN 中, OA= 13,由勾股定理可得
ON= 132-122 =5.故选 A. 【答案】 A
考点二 圆心角、弧、弦的关系
例 2 (2016·兰州)如图,
︵ 在⊙O中,点 C 是AB的中点,