Mopfv_m高速铁路精测控制网的布设和测量
高速铁路精密控制测量平面网的复测

高速铁路精密控制测量平面网的复测作者:萧鑫来源:《科技资讯》 2012年第1期萧鑫(铁道第三勘察设计院集团有限公司天津 300251)摘要:高速铁路的精密控制网作为施工和轨道精调的测量控制网,其精度对后续各项工作的顺利开展至关重要,而定期开展精密控制网的复测是保证控制网精度的必要工作。
本文结合津秦客专精密控制测量平面网的复测,对复测中的复测原则、复测施测、技术指标、成果处理及分析做出阐述,对其他各类铁路的控制网布网及复测均有一定的参考价值。
关键词:高速铁路精测网复测津秦客专中图分类号:U212.2 文献标识码:A 文章编号:1672-3791(2012)01(a)-0058-01高速铁路对轨道的平顺度提出了更高的要求,也对测量工作的精度提出了更高的要求。
高速铁路的精密控制网作为施工和轨道精调的测量控制网,其精度对后续各项工作的顺利开展至关重要。
而定期开展精密控制网的复测是保证控制网精度的必要工作。
津秦客运专线正线全长261公里,设计时速350公里。
正线轨道长度257.429km(双线),无砟轨道铺设长度为162.344km,有砟轨道铺设长度为95.085km。
本文以津秦客运专线精密控制网复测为例,对精测网复测相关问题进行分析,对其他各类铁路的控制网布网及复测均有一定的参考价值。
1 平面网复测原则本次复测的总体原则是:同网形、同精度分级复测,复测时对遭到破坏、丢失的点按照原网标准进行选点、埋标和测量,经复测,对复测坐标精度不满足《高速铁路工程测量规范》(TB10601-2009)要求的点进行分析,修正平面点的坐标成果,使全线各级平面控制网保持完整。
根据现场核查,有多个点由于道路扩建或者铁路施工导致点位破坏,对遭破坏的点予以补设,并对其重新编号(在原点名后加A)。
2 平面网施测本次复测采用16台Trimble R8 GPS接收机,标称精度(5mm+0.5ppm)。
所用GPS接收机均经测绘仪器计量定点单位检定合格,并在有效期内。
某高速铁路精密测量控制网复测与构筑物变测技术书

XX高速铁路精密测量控制网复测及构筑物变测技术书高速铁路是由性质迥异的构筑物(桥、隧、涵、路基等)和轨道组成,它们相互依存、相互补充,共同构成刚度均匀的线路结构。
为确保高速铁路线桥设备状态良好和动车组持续安全、平稳运行,需要在设计阶段建立并维持一套满足设计、施工、运营维护需要的高精度精密测量控制网。
投入运营的西高速铁路在施工阶段已经进行了精密测量控制网的复测、构筑物沉降变形监测等系统性的工作,在运营阶段还须继续开展此项工作。
(一)方案编制依据依据《高速铁路工程测量规》(TB10601-2009)以及部运输局颁发的《高速铁路运营沉降监测管理办法》(运基线路【2010】554号)等技术文件,编制局西高速铁路精密测量控制网复测及构筑物沉降变形监测技术方案。
(二)工作围至高速铁路全长458.88公里,设计行车速度为350km/h,按双线建设,全线铺设CRTSⅡ型双块式无砟轨道,2010年2月6日正式开通运营。
(三)工作容工作容包含两个方面:1、基础平面控制网(CPⅠ)、线路平面控制网(CPⅡ)、轨道控制网(CP Ⅲ)、线路水准控制网的复测,保证各级控制网的完整性和可靠性。
2、基于精密测量控制网建立、完善沉降变形监测网,对线路构筑物进行沉降变形监测,建立变形监测数据库,并对监测数据进行分析、评估,指导运营维护。
二、工程概况(一)概况至高速铁路在省境,线路自华阴市华山北站开始,出站跨过长涧河后依县道X319西行,跨柳叶河、罗夫河、方山河、沟岭河、罗纹河,抵达华县城北。
跨石堤河、遇仙河并两次跨越渭河后,在市北郊设北高架站,后向西跨戏河、零河、侯西铁路,到临潼东站,继续向西跨灞河后抵市北郊,新建北站。
西高速铁路主要技术标准为:铁路等级为高速铁路,双线,最小曲线半径:7000m,正线线间距:5.0m,最大坡度:20‰,到发线有效长度:650m,电力牵引,机车类型为动车组,列车运行自动控制,行车指挥综合调度集中。
在建的大西高速铁路从北至北站与西高速铁路并行,两线间距为18m~400m。
高速铁路精测网布设及复测实操

高速铁路精测网布设及复测一、布网原理1.轨道控制网CPⅢ:沿线路布设的三维控制网,起闭于基础平面控制网(CPⅠ)或线路控制网(CPⅡ),一般在线下工程施工完成后进行施测,为轨道施工和运营维护的基准。
CPⅢ网控自由设站边角交会方法测量。
点间距为纵向60m左右、横行为线路结构物宽度,测量精度为相邻点位的相对点位中误差小于1mm。
2.CPⅢ控制网区段:CPⅢ控制网独立平差计算的控制网长度。
一条高速铁路的CPⅢ控制网可分区段进行平差计算,并且每一CPⅢ控制网的区段长度不应短于4km。
3.CPⅢ平面网的纵横向闭合差:CPⅢ点间沿线路方向和垂直线路方向的长度闭合差,可用于评定CPⅢ平面网的外业观测精度、探测CPⅢ网中观测值的粗差等。
4.自由测站边角交会:在线路中线附近架设全站仪,测量线路两端多对轨道控制网CPⅢ点的方向和距离,并联测就近的CPⅠ或CPⅡ,以获得轨道控制网CPⅢ平面坐标的测量方法。
6.自由设站:在线路中线附近架设全站仪,测量线路两端多对轨道控制网CPⅢ点的方向和距离,以确定仪器中心点的平面和高程位置。
5.三网合一:高速铁路工程测量的平面、高程控制网,按施测阶段、施测目的功能可分勘测控制网、施工控制网、运营维护控制网。
为了保证勘测、施工、运营维护各阶段平面测量成果的一致性,应该做到三网合一。
也就是各阶段平面控制测量应以基础框架平面控制网(CP0)为起算基准,高程控制测量应以线路水准基点控制网为起算基准。
二、CPⅢ控制网测量设备的配置和精度,应满足下列要求:1、CPⅢ网测量的全站仪,应具有自动目标照准和程序控制自动测量的功能,其标称精度应满足:方向测量中误差不大于±1″,距离测量中误差不大于±(1mm+2ppm)。
2、与全站仪配套的棱镜,重复性安装误差和各标志点之间的互换性安装误差,在X、Y、H三方向的误差均应小于±0.3mm。
用于进行气象改正的温度计,其测量精度应不低于±0.5℃。
高速铁路精密工程控制网测量关键技术

高速铁路精密工程控制网测量关键技术摘要:高精度控制网测量基准是轨道交通及高速铁路高质量建设的重要前提,具有“兼容性要求严、精度要求高、稳定性好”等特点。
鉴于部分高速铁路控制网建立已有十年之久,为检验其稳定性及精度,以高速铁路建设为背景,阐述平面测量的基本要求,并结合现阶段的工程状况,分析其中的精密工程控制网测量关键技术及作业要点。
对合理开展轨道施工作业具有促进作用。
关键词:高速铁路;施工精度;控制网;关键技术中图分类号:U238文献标识码:A引言高铁凭借其安全性高、稳定性好、速度快的优势迅速在我国交通运输中占领重要地位,要想继续提升高铁运行的平稳舒适,则需要在轨道的平整度、施工工艺、材质和尺寸的精准上精益求精,而传统的测量技术已无法满足发展的需求,一定程度上阻碍了高铁的发展。
因此需要运用精密工程测量技术来弥补方法与精度上的缺陷。
本文对高铁工程建设中精密工程测量技术的内容、要求和具体应用进行简要分析,了解精密工程测量技术在高铁工程建设中的重要性。
1高速铁路精密工程测量的特点1.1高速铁路精密工程测量控制网按分级布网的原则布设我国目前高速铁路精密工程测量控制网的整体布设可以分为基础平面控制网、线路平面控制网和轨道控制网3个层次,各自均有其特定的功能。
例如,基础平面控制网可提供坐标基准,以便有效开展勘测、施工、运行维护等工作;线路平面控制网可以作为控制基准,更有利于勘测和施工;轨道控制网的服务功能主要侧重后期的轨道铺设和运营,能够为此类工作提供控制基准。
对这3个层次的布设,工作人员必须按照分级布网的原则进行设置,以此确保能够充分发挥其功能。
1.2高速铁路精密工程测量“三网合一”的测量体系如果想要做到“三网”高程系统统一,就需要在高铁建设工程的设计阶段、勘探阶段、施工阶段以及后期运营和维护阶段使用统一的坐标定位,才能保证高铁建设的顺利进行。
如果不能达到统一,则会造成高铁施工的线位偏离预计设计好的坐标高程和位置,轨道工程出现偏差不能和线下工程相交,导致铺设好的高铁轨道出现线路的偏离问题。
谈高速铁路精测控制网的测量

On t e s e e fHi h pe d he M a ur m nto g -s e R lNe wo k o g l e ie a c a e Co t o t r fHi h y Pr c s nd Ac ur t n r l
Ab t a t T e h g — p e al y c n t c in i t e t s i h rl td t h oo s l i r e o e e t ey p oe tt e h g - sr c : h ih s e d r i wa o sr t s h a k wh c e ae o te c ls a , n o d r t f c v l r tc h ih u o i s e d r i r n i g h g — p e ,hg e ibl y a d h g i e c mf r t n u e t e s ft fh g - p e ali p r t n d rn p e al u n n ih s e d ih r l i t n ih r o ot o e s r a ey o ih s e d r i n o e ai u g a i d , h o i h o s u t n i e u r i h s e d r i t e c n t c o , trq ie h g — p e alme s r me tmo e p e ie t c i v ih p e iin c n r lme s r o e s r h t r i a u e n r r cs , o a h e e h g - r cso o to a u e t n u e t a
高速铁路测量实施方案

高速铁路施工测量实施方案一、高速铁路精测网简介1.1高速铁路精测网为一次布设、统一测量、整网平差;1.2按铁道部的要求为“三网合一”,即勘测、施工、运营维护三个阶段的控制网合用一个控制网,满足勘测设计、建设施工、运营管理等各方面应用;1.3平面位置基准;1.4高程位置基准。
二、项目概况及测量范围2.1项目概况合肥铁路枢纽新建合肥北城至合肥站工程位于安徽省中部,北起合肥长丰县,南至合肥火车站。
合肥铁路枢纽与合宁、合武铁路相衔接,是京沪高速铁路与沪汉蓉快速客运通道间快速连通线,也是京福高速铁路的重要组成部分。
本标段为合肥铁路枢纽新建合肥北城至合肥站工程,合蚌线与合福线并线设计,我单位施工管段位于长丰县双墩集境内施工范围为:DK110+149.14~DK113+199.4,正线长度3.05km,施工范围为特大桥的下部工程、涵洞和路基工程。
主要工程数量为:路基共计1段,涵洞1座,路基临近既有线;桥梁工程:设计为三桥四线型,合福上行刘大郢特大桥与合福下行刘大郢特大桥位于合蚌刘大郢特大桥的两侧。
2.2测区地理位置合肥铁路枢纽新建合肥北城至合肥站工程位于安徽省中部,本标段线路起于合肥长丰县境内,向南基本与淮南线并行至标段终点。
测区位于东经117°07′~117°17′之间,北纬31°58′~32°34′之间。
2.3测量范围测量范围为中铁四局联合体HFSN-1标项目部二分部的施工范围,位于长丰县双墩集境内测量范围为: DK110+000~DK113+300,施工范围为特大桥的下部工程、涵洞和路基工程。
2.4地形地貌概述管段线路位于长丰县境内,地貌单元属淮河平原与沿江平原之间的江淮岗地丘陵区,岗地波状起伏,位于二、三级阶地上,由岗、塝、冲组成。
岗塝和冲沟地貌发育较完整,一般标高25~50m,相对高差5~10m,坡度5°~10°。
平岗、缓岗一般分布于丘陵与平原交会处及河流下游缓坡地区,坡度较小,多在1°~3°间,土地利用率较高,一般岗顶辟为旱地,冲沟多为水田。
高速铁路精密控制网(CPIII)测量

♦ 精度要求高。每个控制点与相邻5个控制点的相对 点位中误差均要求小于1mm;
♦ 控制的范围长。线路有多长,控制网的长度就有多 长;
♦ 是一个平面和高程位置共点的三维控制网。目前 CPⅢ三维网平面和高程是分开测量后合并形成共点 的三维网,但其使用时却是平面和高程同时使用;
♦ 采用测站间距120m的标准网形测量过程中 如某CPⅢ点由于障碍物被挡,可以考虑采 用由测站间距120m转测站间距60m的测量 网形,如下图所示。
Page: 20
CPIII平面控制网的测量网形(5)
♦ 在实际测量过程中,如果CPⅠ或者CPⅡ点离线路较 远,可以在线路外合适位置设置辅助点,在辅助点 上架设仪器,观测临近的CPⅢ点和CPⅠ或者CPⅡ 点。此时其测量网形示意图如下图所示。
CPIII高程控制网的测量网形(2)---德国方法 ♦ 德国中视法CPⅢ高程网观测采用往返观测
的方式进行,其往测水准路线如下图所示 。
Page: 37
德国CPIII高程控制网的测量方法
♦ 德国中视法CPⅢ高程网观测采用往返观测 的方式进行,其返测水准路线如下图所示。
♦ 测站和测点均强制对中,测点标志要求具有互换性 和重复安装性,X、Y、Z三维互换性和重复安装性 误差要求小于0.3mm;
Page: 27
CPIII平面控制网的特点(3)
♦ 图形规则对称,多余观测数多,可靠性强; ♦ 是一个标准的带状控制网,其纵向精度高、横
向精度略差。 ♦ 控制网的使用较传统方法有很大不同。首先是
CPIII网为智能型全站仪自由测站边角交会 的三维控制网,其点间距为纵向60m左右一 对控制点,点对的横向间距为10~20m, CPIII的精度要求很高,要求相邻点位的相 对中误差≤1mm。CPIII的网形、测量方法、 控制点数量、控制网的使用和精度要求,06 年前在我国都是闻所Pag未e: 14 闻的。
高速铁路轨道控制网(CPIII)测量方案

XX高速铁路XXXX-X标段X工区CPⅢ控制网测量方案审批:校核:编制:XXXXXXXX高速铁路土建工程X标段项目经理部X工区X零XX年X月目录1编制依据 (3)2 工程概况 (3)2.1工程概况 (3)2.2地理环境 (4)2.3坐标高程系统 (4)2.4既有精测网情况 (4)2.5 CPⅢ轨道控制网测量主要内容 (5)3 CPⅢ网测量前准备工作 (6)3.1线下工程沉降和变形评估 (6)3.2 CPⅢ网测量工装准备 (6)3.3人员培训 (8)4 CPⅢ网测量标志选用和埋设 (8)4.1 CPⅢ网点测量标志选择 (8)5. CPⅢ点号编制原则 (10)6 CPⅡ控制网加密测量 (10)6.1.桥梁CPⅡ控制网加密测量 (10)6.2高程测量 (13)7 CPⅢ点的埋标与布设 (15)7.1CPⅢ标志 (15)7.2CPⅢ点和自由设站编号 (19)7.3CPⅢ点的布设 (21)8 CPⅢ网测量与数据处理 (22)8.1CPⅢ网网形 (23)8.2 CPⅢ网平面测量 (26)8.3CPⅢ网高程测量 (31)9数据整理归档 (36)10 CPⅢ网的复测与维护 (37)10.1CPⅢ网的复测 (37)10.2CPⅢ网的维护 (37)七工区CPⅢ控制网测量方案1编制依据《客运专线无砟轨道铁路工程测量暂行规定》(铁建设[2006]189号)《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号)《精密工程测量规范》(GB/T15314-94)《国家一、二等水准测量规范》(GB12897-2006)《全球定位系统(GPS)铁路测量规程》(TB10054-1997)《全球定位系统(GPS)测量规范》(GB/T18314-2001)铁道部2008[42]、2008 [80]、2008 [246]、2009[20]号文。
《京沪高速铁路CPIII网测量作业指导书》(试行版)2 工程概况2.1工程概况XX高速铁路土建工程XXXX-X标段X工区施工作业段起点为XXX桥,正线起点里程DKXXX+112.1,终点XX特大桥里程为DKXXX+229.73,全长10117.62m,路基全长4407.14米;桥梁5座,总长5320.49米;隧道1座390米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|_~吾尝终日而思矣,不如须臾之所学也;吾尝而望矣,不如登高之博见也。
--《荀子·劝学》1 高速铁路控制网精度控制标准为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。
轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。
高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。
线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。
不能依线路平顺度的要求作为控制测量的精度标准。
因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。
1.1短波平顺度对线路位置的影响现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。
每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。
短波不平顺累计误差示意图1.2 长波平顺度对线路位置的影响长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。
设AB为900米,则 Mβ=147㎜。
虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。
由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。
1.3 CPⅠ和CPⅡ误差计算通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。
CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为:《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示:对于CPⅡ,取S=800m,则可计算得 M K=3.7㎜;对于CPⅠ,取S=4000m,则可计算得 M K=11.6㎜。
假定导线纵向误差等于横向误差,则可计算最弱点点位中误差分别约为5㎜和15㎜。
相邻两点的相对中误差计算:《客运专线无砟轨道铁路工程测量暂行规定》中GPS测量的精度要求规定如下表所示:CPI 相邻两点的相对中误差边长:4000000×1/170000=23.5㎜方向:4000000×1.3″/206265=25㎜相邻两点的相对点位中误差为34.3㎜CPⅡ 相邻两点的相对中误差边长:800000×1/100000=8㎜方向:800000×1.7″/206265=6.6㎜相邻两点的相对点位中误差为10.4㎜2 平面控制网《客运专线无砟轨道铁路工程测量暂行规定》中规定:平面控制分三级布设:第一级为基础平面控制网(CPI),为勘测、施工、运营维护提供坐标基准。
第二级为线路控制网(CPⅡ),为勘测和施工提供控制基准。
第三级为基桩控制网(CPⅢ),为铺设无渣轨道和运营维护提供控制基准。
2.1 CPI、CPⅡ布测方法CPI沿线路走向,每4千米一个或一对点,按铁路B级GPS测量要求施测。
基线边方向中误差不大于1.3″,最弱边相对中误差1/170000。
CPⅡ在CPI的基础上采用GPS测量或导线测量方法施测。
点间距离800~1000米。
GPS 测量按铁路C级要求施测。
基线边方向中误差不大于1.7″,最弱边相对中误差1/100000;导线测量等级为四等,测角中误差 2.5″,相对闭合差1/40000。
2.2 CPⅢ控制点的布测方法2.2.1 CPⅢ控制点的元器件:采用工厂精加工元器件(要求采用数控机床),用不易生锈及腐蚀的金属材料制作,CPⅢ控制点标志重复安置精度应达0.3㎜。
CPⅢ器件完整示意图2.2.2 CPⅢ控制点的布设(1)CPⅢ控制点距离布置一般为60 m左右,且不应大于80 m,CPⅢ控制点布设高度应与轨道面高度保持一致的高度间距。
隧道内CPⅢ控制点位置示意图注:标记点设置在内衬上,位距电缆槽边墙表面约100cm左右。
路基地段CPIII控制点位置示意图桥梁上CPIII控制点位置示意图2.2.3 CPⅢ控制点的定位精度要求CPⅢ控制点的定位精度要求表(㎜)2.2.4 CPⅢ控制点的测量(1)仪器要求全站仪必须满足如下精确度要求:角度测量精确度:≤1″距离测量精确度:1㎜+2ppm使用带目标自动搜索及测量的自动化全站仪。
每台仪器应至少配13套棱镜,使用前应对棱镜进行检测。
(2)测量方法CPⅢ控制网采用自由设站交会网(《客运专线无碴轨道铁路工程测量暂行规定》称为“后方交会网”)的方法测量,自由测站的测量,从每个自由测站,将以2 x 3个CP Ⅲ-点为测量目标,每次测量应保证每个点测量3次,测量方法见下图。
●测站(自由站点)○ CPⅢ控制点→向CPⅢ点进行的测量(方向、角度和距离)←→ CPⅢ控制点距离为60m左右,且不应大于80m,观测CP Ⅲ点允许的最远的目标距离为120m左右,最大不超过180m。
每次测量开始前在全站仪初始行中输入起始点信息并填写自由测站记录表,每一站测量3组完整的测回。
应记录于每个测站的:T温度、气压以及CPI、CPⅡ-点上的目标点的棱镜高测量,并将温度、气压改正输入每个测站上。
对于线路有长短链时,应注意区分重复里程及标记的编号。
(3)水平角测量的精度应按如下要求进行:①测量水平方向:3测回;②测量测站至CPⅢ标记点间的距离:3测回。
③方向观测各项限差根据《精密工程测量规范》(GB/T 15314-1994)的要求不应超过下表的规定,观测最后结果按等权进行测站平差。
注:DJ05为一测回水平方向中误差不超过±0.5″的经纬仪。
④每个点应观测3个全测回。
⑤距离的观测应与水平角观测同步进行,并由全站仪自动进行。
(4)平面测量可以根据测量需要分段测量,其测量范围内的CPⅡ点应联测。
2.2.5 与上一级CPⅡ控制点联测与上一级CPⅡ控制点联测时应保证800—1000米的间隔联测一个。
(1)与上一级CPⅡ控制点联测,一般情况下应通过2个或以上线路上的自由测站,见下图。
联测高等级控制点时,应最少观测3个完整测回数据(其精确度应在5毫米误差以下)。
与CPⅡ控制点联测示意图●测站(自由站点)○ CPⅢ控制点→向CPⅢ点进行的测量(方向、角度和距离)(2)为了使相邻重合区域能够满足CPⅢ网络的测量高均匀性和高精确度,每个重合区域至少要有3到4对CPⅢ点(约为180米的重合)一起测量,并且考虑平差,每个区域不小于4公里为宜。
桥梁、隧道段须与已有的独立的隧道施工控制网相连接。
通过选取适当的CPⅡ点和CPⅢ 特殊网点,来保证形成均匀的过渡段。
(3)CPⅢ控制网应与线下工程竣工中线进行联测。
2.2.6 内业数据处理在自由设站CPⅢ测量中,测量时必须使用与全站仪能自动记录及计算的专用数据处理软件,采用软件必须通过铁道部相关部门正式鉴定。
观测数据存储之前,必须对观测数据的质量进行检核。
包括如下内容:观测者、记录者、复核者签名;观测日期、天气等气象要素记录。
检核方法可以采用手工或程序检核。
观测数据经检核不满足要求时,及时提出重测,经检核无误并满足要求时,进行数据存储,提交给数据计算、平差处理。
数据计算、平差处理必须是经采用通过铁道部相关部门正式鉴定软件,在计算报告中要说明软件名称。
自由设站点、CPⅢ点进行整体平差。
平差计算时,要对各项精度作出评定。
3 高程控制网的建立《客运专线无砟轨道铁路工程测量暂行规定》中规定:高程控制测量分为勘测高程控制测量、水准基点高程控制测量和CPⅢ控制点高程控制测量。
各等级水准测量精度4812注:表中L为往返测段、附和或环线的水准路线长度,单位为㎞。
3.1 高程控制测量勘测高程控制测量、水准基点高程控制测量依照国家相关技术规范进行。
CPⅢ控制点高程控制测量又分为两种:导线网CPⅢ控制点、后方交会网CPⅢ控制点高程控制测量。
CPⅢ控制点高程控制测量采用的水准等级为精密水准。
现对后方交会网CPⅢ控制点高程控制测量作详细说明。
3.1.1 测量方法每一测段应至少与3个二等水准点进行联测,形成检核。
联测时,往测时以轨道一侧的CPⅢ水准点为主线贯通水准测量,另一侧的CPⅢ水准点在进行贯通水准测量摆站时就近观测。
返测时以另一侧的CPⅢ水准点为主线贯通水准测量,对侧的水准点在摆站时就近联测。
往测水准路线示意图水准返测示意图3.1.2 CPⅢ高程控制点精度要求CPⅢ控制点水准测量应按《客运专线无碴轨道铁路工程测量技术暂行规定》中的“精密水准”测量的要求施测。
CPⅢ控制点高程测量工作应在CPⅢ平面测量完成后进行,并起闭于二等水准基点,且一个测段联测不应少于三个水准点。
精密水准测量采用满足精度要求的水准仪,配套因瓦尺。
使用仪器设备应在鉴定期内,有效期最多为一年,每年必须对测量仪器精确度进行一次校准,每天使用该仪器之前,对仪器进行检验和校准。
精密水准测量的主要技术标准要求8注:①结点之间或结点与高级点之间,其路线的长度,不应大于表中规定的0.7倍。
②L为往返测段、附合或环线的水准路线长度,单位km。
(2)精密水准观测应符合以下要求注:①L为往返测段、附合或环线的水准路线长度,单位km。
②DS05表示每千米水准测量高差中误差为±0.5㎜。
(3)测站观测限差因水准路线较短,故不设间歇点。
视距长≤60m;前后视距差≤1.0m;前后视距累计差≤3.0m。
上述观测限差超限时,重新观测。
测站数为偶数,一般为6或8个。
由往测转往返测时,两支标尺应互换位置,并应重新整置仪器。
3.1.4 CPⅢ控制点高程测量数据处理CPⅢ控制点高程测量应严密平差,平差计算取位下表中精密水准测量的规定执行。
精密水准测量计算取位4 CPⅢ测量所使用的仪器4.1 全站仪适合于进行CPⅢ测量的全站仪有Leica (徕卡)系列的:TCA1201+,TCRP1201+,TCA1800,TCA2003等TCA2003 TCA1800TCRP1201+ TCA1201+每台仪器应至少配13套棱镜,使用前应对棱镜进行检测。
注:使用前应对配合全站仪使用的所有棱镜进行检测,所有棱镜的棱镜常数都必须相同。
4.2 水准仪在进行CPⅢ精密水准测量时应该使用精密水准仪,徕卡满足使用需求的光学水准仪是NA2;NA2精密光学水准仪相关技术指标CPⅢ控制点因为点数繁多,水准测量工作量大,故推荐使用精密电子水准仪。
徕卡DNA03数字水准仪凭借其卓越的性能,稳定的表现获得了多家高铁施工单位的青睐与肯定,在已建成和在建的高速铁路工程中都有着广泛的应用。
DNA035 结语徕卡测量仪器因为其卓越的测量精度与稳定性,获得了广大测量人员的充分肯定。