高速铁路精测控制网的布设和测量

合集下载

高速铁路道控制网

高速铁路道控制网

高速铁路轨道控制网客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,客运专线铁路的平顺件要求非常高,轨道测量精度要达到毫米级。

其测量方法、测量精度与传统的铁路工程测量完全不同。

通常把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。

把客运专线铁路精密工程测量控制网简称“精测网”。

客运专线铁路精密工程测量的内容有:线路平面高程控制测量、线下工程施公告测量、轨道施工测量、运营维护测量。

一、客运专线精测网特点1.传统的铁路工程测量方法初测:初测导线、初测水准;定测:交点、直线、曲线控制桩(五大桩);线下程施工测量:以定测控制作为施工测量基准;铺轨测量:穿线法、弦线支距法或偏角法测量。

2传统的铁路测量方法的缺点(l)平而坐标系投影误差大;(2)不利于采GPS、RTK、全站仪等新技术采用坐标法定位法进行勘测和施工放线;(3)没有采用逐级控制的方法建立施工控制网,线路测量可重复性较差;中线控制桩连续丢失后,很难进行恢复;(4)测量精度低:导线测角中误差12.5″、方位角闭合差25″Vn;全长相对闭合差:1/6000;施工单值复测经常出现曲线偏角超限;改变设计偏角施工,设计线形被改;(5)轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设。

由于测量误差的积累,轨道的几何参数与设计参数不一致。

3.客运专线铁路精密工程测量的特点(1)确定了客运专线铁路精街T程测量“三网合一”的测量休系:勘测控制网CP I、CPⅡ、准基点;施工控制网CPI、CPU、水准基点、CPⅢ;运营维护控制网:CPⅢ、加密维护基桩。

并要求:勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一;勘测控制网、施工控制网、运营维护控制网起算基准的统一;线下工程施工控制网与轨道施工控制网、运营维护控制网的坐标高程系统和起算基准的统一;勘测控制网、施工控制网、运营维护控制网测量精度的协调统一;(2)确定了客运专线铁路工程平面控制测量分三级布网的布设原则;(3)提出了客运譬线铁路工程测带平面坐标系统应采用边长投影变形值≤l0mm/km(无砟)/25mm/km(有砟)的工程独立坐标系;(4)确定了客运专线铁路轨道必须采用绝对定位与相对定位测量相结合的铺轨测量定位模式;(5)确定了客运专线无砟轨道铁路工程测量高程控制网的精度等级;(6)提出客运专线无砟轨道铁路工程控制测量完成后,应由建设单位组织评估验收的要求,并制定了评估验收内容和要求。

高速铁路精测网布设及复测实操

高速铁路精测网布设及复测实操

高速铁路精测网布设及复测一、布网原理1.轨道控制网CPⅢ:沿线路布设的三维控制网,起闭于基础平面控制网(CPⅠ)或线路控制网(CPⅡ),一般在线下工程施工完成后进行施测,为轨道施工和运营维护的基准。

CPⅢ网控自由设站边角交会方法测量。

点间距为纵向60m左右、横行为线路结构物宽度,测量精度为相邻点位的相对点位中误差小于1mm。

2.CPⅢ控制网区段:CPⅢ控制网独立平差计算的控制网长度。

一条高速铁路的CPⅢ控制网可分区段进行平差计算,并且每一CPⅢ控制网的区段长度不应短于4km。

3.CPⅢ平面网的纵横向闭合差:CPⅢ点间沿线路方向和垂直线路方向的长度闭合差,可用于评定CPⅢ平面网的外业观测精度、探测CPⅢ网中观测值的粗差等。

4.自由测站边角交会:在线路中线附近架设全站仪,测量线路两端多对轨道控制网CPⅢ点的方向和距离,并联测就近的CPⅠ或CPⅡ,以获得轨道控制网CPⅢ平面坐标的测量方法。

6.自由设站:在线路中线附近架设全站仪,测量线路两端多对轨道控制网CPⅢ点的方向和距离,以确定仪器中心点的平面和高程位置。

5.三网合一:高速铁路工程测量的平面、高程控制网,按施测阶段、施测目的功能可分勘测控制网、施工控制网、运营维护控制网。

为了保证勘测、施工、运营维护各阶段平面测量成果的一致性,应该做到三网合一。

也就是各阶段平面控制测量应以基础框架平面控制网(CP0)为起算基准,高程控制测量应以线路水准基点控制网为起算基准。

二、CPⅢ控制网测量设备的配置和精度,应满足下列要求:1、CPⅢ网测量的全站仪,应具有自动目标照准和程序控制自动测量的功能,其标称精度应满足:方向测量中误差不大于±1″,距离测量中误差不大于±(1mm+2ppm)。

2、与全站仪配套的棱镜,重复性安装误差和各标志点之间的互换性安装误差,在X、Y、H三方向的误差均应小于±0.3mm。

用于进行气象改正的温度计,其测量精度应不低于±0.5℃。

谈高速铁路精测控制网的测量

谈高速铁路精测控制网的测量
几何线性参数。 关键词 : 高铁 ; 精测控 制网; 测量 中图分 类号 : P 2 文献标识码 : A 文章编号 : 2 9 — 8 2 (0 2 7 0 8 — 3 0 5 0 0 一2 1) — 0 4 0 0
On t e s e e fHi h pe d he M a ur m nto g -s e R lNe wo k o g l e ie a c a e Co t o t r fHi h y Pr c s nd Ac ur t n r l
Ab t a t T e h g — p e al y c n t c in i t e t s i h rl td t h oo s l i r e o e e t ey p oe tt e h g - sr c : h ih s e d r i wa o sr t s h a k wh c e ae o te c ls a , n o d r t f c v l r tc h ih u o i s e d r i r n i g h g — p e ,hg e ibl y a d h g i e c mf r t n u e t e s ft fh g - p e ali p r t n d rn p e al u n n ih s e d ih r l i t n ih r o ot o e s r a ey o ih s e d r i n o e ai u g a i d , h o i h o s u t n i e u r i h s e d r i t e c n t c o , trq ie h g — p e alme s r me tmo e p e ie t c i v ih p e iin c n r lme s r o e s r h t r i a u e n r r cs , o a h e e h g - r cso o to a u e t n u e t a

高铁论文

高铁论文

高速铁路无砟轨道精测网控制测量技术的运用摘要:高速铁路无砟轨道对线路稳定性平顺性及工程测量中平面高程控制网的要求及高从而决定了精测网的基准布设和测设的重要性。

所以在此对无砟轨道基准网的布设进行详述并将在施工作业过程中所运用的测量技术和注意事项进行解析说明。

键词关:无砟轨道、精测网、平面及高程控制网前言:为解决无砟轨道高平顺和稳定性要求,目前我国已在高速铁路线路勘察、施工、运行维护期间建立统一的平面、高程控制网和计算基准。

高速铁路无砟轨道精测网分为平面控制网和高程控制网。

其按照施测阶段施测目的及功能可分为勘测控制网、施工控制网、运营维护控制网。

各阶段平面控制测量均以基础平面控制网(CPI)为基准,高程控制测量则应以线路水准基点控制网为基准。

通过平面、高程控制网的布设从而决定了整条高铁线路逐级施工的精密性和安全性,这是工程建设的基础,也是施工运营的保证,严重制约了后期工程的发展。

所以作为工程的基准核心,我们必须加以严格控制,精密布设。

其中,高速铁路工程测量平面控制网应在框架控制网(CP0)基础上分三级布设。

第一级为基础平面控制网(CPI)主要为勘测施工、运营维护提供坐标基准。

第二级为线路平面控制网(CPII)主要为勘测和施工提供控制基准。

第三级为轨道控制网(CPIII)主要为轨道铺设和运营维护提供控制基准。

而高速铁路工程测量高程控制网则分两级布设。

第一级为线路基准点控制网,为高速铁路工程勘测设计施工提供高程基准;第二级是轨道控制网(CPIII)为高速铁路轨道施工维护提供高程基准。

通过平面、高程的双方面结合构成了无砟轨道三维立体控制体系,对工程的基本框架奠定了良好、精准、完善的特性。

一、框架控制网(CP0)测量和数据处理1布网框架控制网(CP0)应在初测前采用GPS测量方法建立,全线一次性布网,统一测量,整体平差。

通过大地控制网点作为基准点,控制点的布设应沿线路走向每50km左右布设一个点,在线路起点、终点或与其他线路线接地段,应至少有1个CPO控制点。

论我国高速铁路精密工程测量技术体系及特点

论我国高速铁路精密工程测量技术体系及特点

论我国高速铁路精密工程测量技术体系及特点论我国高速铁路精密工程测量技术体系及特点论我国高速铁路精密工程测量技术体系及特点卢建康摘要:本文对我国高速铁路精密工程测量技术体系的特点进行研究,重点对高速铁路精密工程测量的内容,高速铁路轨道的内部几何尺寸定位精度,高速铁路精密工程测量的布网原则、坐标基准,“三网合一”的测量体系进行了体系的论述。

提出了高速铁路测量平面控制网应在框架控制网(CPO)基础上分三级布设、高程控制网分二级布设的方法,平面坐标系统应采用边长投影变形值≤10mm/km的工程独立坐标系以及应按“三网合一”的原则进行高速铁路精密工程测量的观点。

关键词:高速铁路;精密测量;技术体系前言我国的高速铁路工程测量技术体系是伴随着我国高速铁路无砟轨道工程的建设而逐步建立完善的。

202*年,中铁二院与西南交大合作在遂渝线开展了无砟道铁路工程测量技术的研究,并建立了遂渝无线无砟道综合试验段精密工程测量控制网。

202*年随着京津城际、武广、郑西客运专线无砟轨道铁路的全面开工建设,原有的铁路测量体系和技术标准已不能适应客运专线无砟轨道建设的形势,根据铁建设函【202*】1026号《关于编制202*年铁路工程建设标准计划的通知》的要求,在铁道部建设管理司和铁道部经济规划院主持下,由中铁二院主编完成了《客运专线无碴轨道铁路工程测量暂行规定》,由铁道部于202*年10月16日发布实施。

初步形成了我国高速铁路精密工程测量的技术标准体系。

202*年根据铁道部经济规划院《关于委托编制202*年铁路工程建设标准及标准设计的函》(经规计财函【202*】8号)的要求,由中铁二院主编,中铁一院、铁三院、中铁四院、中铁咨询院、中铁二局、中铁大桥勘测设计院、西南交通大学等单位参编,在现行《客运专线无碴轨道铁路工程测量暂行规定》的基层上,以近年来高速铁路工程测量科研成果为支撑,认真总结京津、武广、郑西、哈大、京泸、广深等高速铁路高速工程测量的实践经验,于202*年8月完成了《高速铁路工程测量规定》(TB10601-202*)的编制,由铁道部于202*年12月1日发布实施。

高速铁路精密工程测量技术

高速铁路精密工程测量技术

• 客运专线无碴轨道铁路测量
•2. 平面控制测量
2.6 GPS基础平面控制网测量(CPⅠ)
GPS基础平面控制网(CPⅠ)主要为
勘测设计、施工、运营维护提供坐标基准,
按B级GPS网精度要求测量,全线(段)一次
布网,统一测量,整体平差。GPS基础平面
控制网(CPⅠ)沿线路每4km布设1对GPS点
,GPS点间距不小于1000m,采用大地四边形
3、客运专线铁路精密工程测量的特点
3.4、确定了客运专线铁路轨道必须采用绝对
定位与相对定位测量相结合的铺轨测量 定位模式 •+3mm
•-3mm
•F
•弦长C
=20m
•曲线外矢距F=C²/8R • C为弦长,R为半径
•R=3365m F’=F-3mm •R=2800m •R=2397 m F’=F+3mm
• (2)CPⅡ控制测量:一般在定测时完成,作为客运专 线无碴轨道铁路工程施工平面控制网。
• (3)CPⅢ平面控制测量:在施工测量时施测,线下工 程施工时作为施工加密平面控制网,铺设无碴轨道时作为无 碴轨道铺设基桩控制网。
• 客运专线无碴轨道铁路测量
•2. 平面控制测量
• 2.5 平面控制测量方法 • (1)GPS测量:用于建立CPⅠ、CPⅡ控制网 ; • (2)导线测量:用于建立CPⅡ、CPⅢ平面控制网; • (3)后方交会网测量:用于建立无碴轨道铺设基桩控 制网。
控制点
CPⅠ CPⅡ CPⅢ导线测量 CPⅢ后方交会测量
可重复性测量 精度
相对点位精度
10mm
8+D×10-6mm
15mm
10mm
6mm
5mm
5mm
1mm

高速铁路工程施工控制网加密测量指导意见.pdf

高速铁路工程施工控制网加密测量指导意见.pdf

施工控制网加密测量指导意见目前《高速铁路工程测量规范》的规定精测网除CPⅠ、CPⅡ、CPⅢ外,对于线下工程施工级的精测网施工加密测量没有明确考虑;一级的精测网施工加密测量没有明确考虑;只在其中对提到需要移设或增设导线点、水准点时,其点位设置、测量方法以及精度要求同CPⅡ及勘测高程控制测量。

对施工过程中的加密测量工作的指导性程控制测量对施工过程中的加密测量工作的指导性和操作性不明显。

铁四院沪昆客运专线(湖南段)精测网评估项目部施工控制网加密测量指导意见加密测量的必要性的点间距一般为水准点间距一般 由于CPⅡ的点间距般为600~800m,水准点间距般为2km左右,且由于勘测时地形条件所限,在CPⅡ上直接进行施工放样,使用不方便,而且有的点放样距离太远,影响放样精度。

施工放样测量及检测工作量很大,需要经常后视和检核已知点,只使用CPⅡ后视、检核将增大工作量,且核已知点只使用后视检核将增大工作量且使用不方便。

铁四院沪昆客运专线(湖南段)精测网评估项目部施工控制网加密测量指导意见加密测量的必要性点及水准点少施工时应该进行加密这样既可 CPⅡ点及水准点少,施工时应该进行加密,这样既可保证有效施工控制点的数量,而且增加了检核条件。

增加精测网施工加密测量工作可方便后续施工测量,节约放样作时间,保放样精度节约施工放样工作时间,保证放样精度。

铁四院沪昆客运专线(湖南段)精测网评估项目部施工控制网加密测量指导意见加密点的布设要求及勘测水准点基础上进行加密在CPⅠ、CPⅡ及勘测水准点基础上进行加密。

点位选在距线路中线较近、稳固可靠且不易被施工破坏的范围内,便于长期保存,方便测设中线。

平面和高程点可以共用,共用时的标石埋设标准同精测的要求测网CPⅠ的要求。

点间距离在300m左右为宜,且点间互相通视。

铁四院沪昆客运专线(湖南段)精测网评估项目部施工控制网加密测量指导意见加密点号编排要求“JM”加标段号再加平面施工控制网加密点号由JM加标段号,再加3位流水号组成,如“JM1×××”、“JM2×××”;高程施工控制网加密点号由“JMB”加标段号,再加3位流水号组成,如J,自长沙至昆明方向连“JMB2×××”续编号。

高速铁路CPIII精测控制网的布设和测量

高速铁路CPIII精测控制网的布设和测量

高速铁路CPIII精测控制网的布设和测量发布日期:2012-03-09 来源:网络作者:未知浏览次数:871 高速铁路控制网精度控制标准为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。

轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。

高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。

线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。

不能依线路平顺度的要求作为控制测量的精度标准。

因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。

1.1短波平顺度对线路位置的影响现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。

每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB为150米,则 =127㎜。

短波不平顺累计误差示意图1.2 长波平顺度对线路位置的影响长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。

设AB为900米,则 Mβ=147㎜。

虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。

由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。

1.3 CPⅠ和CPⅡ误差计算通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。

CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为:《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示:对于CPⅡ,取S=800m,则可计算得 M K=3.7㎜;对于CPⅠ,取S=4000m,则可计算得 M K=11.6㎜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高速铁路控制网精度控制标准为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。

轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。

高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。

线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。

不能依线路平顺度的要求作为控制测量的精度标准。

因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。

1.1短波平顺度对线路位置的影响现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。

每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。

短波不平顺累计误差示意图1.2 长波平顺度对线路位置的影响长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。

设AB为900米,则 Mβ=147㎜。

虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。

由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。

1.3 CPⅠ和CPⅡ误差计算通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。

CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为:《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示:控制网级别测量方法测量等级点间距备注CPⅠGPS B级≥1000m≤4㎞一对点CPⅡGPS C级800~1000m 导线四等对于CPⅡ,取S=800m,则可计算得 M K=3.7㎜;对于CPⅠ,取S=4000m,则可计算得 M K=11.6㎜。

假定导线纵向误差等于横向误差,则可计算最弱点点位中误差分别约为5㎜和15㎜。

相邻两点的相对中误差计算:《客运专线无砟轨道铁路工程测量暂行规定》中GPS测量的精度要求规定如下表所示:CPI 相邻两点的相对中误差边长:4000000×1/170000=23.5㎜方向:4000000×1.3″/206265=25㎜相邻两点的相对点位中误差为34.3㎜CPⅡ 相邻两点的相对中误差边长:800000×1/100000=8㎜方向:800000×1.7″/206265=6.6㎜相邻两点的相对点位中误差为10.4㎜2 平面控制网《客运专线无砟轨道铁路工程测量暂行规定》中规定:平面控制分三级布设:第一级为基础平面控制网(CPI),为勘测、施工、运营维护提供坐标基准。

第二级为线路控制网(CPⅡ),为勘测和施工提供控制基准。

第三级为基桩控制网(CPⅢ),为铺设无渣轨道和运营维护提供控制基准。

2.1 CPI、CPⅡ布测方法CPI沿线路走向,每4千米一个或一对点,按铁路B级GPS测量要求施测。

基线边方向中误差不大于1.3″,最弱边相对中误差1/170000。

CPⅡ在CPI的基础上采用GPS测量或导线测量方法施测。

点间距离800~1000米。

GPS 测量按铁路C级要求施测。

基线边方向中误差不大于1.7″,最弱边相对中误差1/100000;导线测量等级为四等,测角中误差 2.5″,相对闭合差1/40000。

2.2 CPⅢ控制点的布测方法2.2.1 CPⅢ控制点的元器件:采用工厂精加工元器件(要求采用数控机床),用不易生锈及腐蚀的金属材料制作,CPⅢ控制点标志重复安置精度应达0.3㎜。

CPⅢ器件完整示意图2.2.2 CPⅢ控制点的布设(1)CPⅢ控制点距离布置一般为60 m左右,且不应大于80 m,CPⅢ控制点布设高度应与轨道面高度保持一致的高度间距。

隧道内CPⅢ控制点位置示意图注:标记点设置在内衬上,位距电缆槽边墙表面约100cm左右。

路基地段CPIII控制点位置示意图桥梁上CPIII控制点位置示意图2.2.3 CPⅢ控制点的定位精度要求CPⅢ控制点的定位精度要求表(㎜)控制点可重复性测量精度相对点位精度CPⅢ后方交会测量 5 12.2.4 CPⅢ控制点的测量(1)仪器要求全站仪必须满足如下精确度要求:角度测量精确度:≤1″距离测量精确度:1㎜+2ppm使用带目标自动搜索及测量的自动化全站仪。

每台仪器应至少配13套棱镜,使用前应对棱镜进行检测。

(2)测量方法CPⅢ控制网采用自由设站交会网(《客运专线无碴轨道铁路工程测量暂行规定》称为“后方交会网”)的方法测量,自由测站的测量,从每个自由测站,将以2 x 3个CP Ⅲ-点为测量目标,每次测量应保证每个点测量3次,测量方法见下图。

●测站(自由站点)○ CPⅢ控制点→向CPⅢ点进行的测量(方向、角度和距离)离为120m左右,最大不超过180m。

每次测量开始前在全站仪初始行中输入起始点信息并填写自由测站记录表,每一站测量3组完整的测回。

应记录于每个测站的:T温度、气压以及CPI、CPⅡ-点上的目标点的棱镜高测量,并将温度、气压改正输入每个测站上。

对于线路有长短链时,应注意区分重复里程及标记的编号。

(3)水平角测量的精度应按如下要求进行:①测量水平方向:3测回;②测量测站至CPⅢ标记点间的距离:3测回。

③方向观测各项限差根据《精密工程测量规范》(GB/T 15314-1994)的要求不应超过下表的规定,观测最后结果按等权进行测站平差。

经纬仪类型电子经纬仪两次读数差半测回归零差一测回内2C互差同一方向值各测回互差DJ05 0.5 4 12 4DJ07 1 5 12 5DJ1 1 6 12 6注:DJ05为一测回水平方向中误差不超过±0.5″的经纬仪。

④每个点应观测3个全测回。

⑤距离的观测应与水平角观测同步进行,并由全站仪自动进行。

(4)平面测量可以根据测量需要分段测量,其测量范围内的CPⅡ点应联测。

2.2.5 与上一级CPⅡ控制点联测与上一级C PⅡ控制点联测时应保证800—1000米的间隔联测一个。

(1)与上一级CPⅡ控制点联测,一般情况下应通过2个或以上线路上的自由测站,见下图。

联测高等级控制点时,应最少观测3个完整测回数据(其精确度应在5毫米误差以下)。

与CPⅡ控制点联测示意图●测站(自由站点)○ CPⅢ控制点→向CPⅢ点进行的测量(方向、角度和距离)(2)为了使相邻重合区域能够满足CPⅢ网络的测量高均匀性和高精确度,每个重合区域至少要有3到4对CPⅢ点(约为180米的重合)一起测量,并且考虑平差,每个区域不小于4公里为宜。

桥梁、隧道段须与已有的独立的隧道施工控制网相连接。

通过选取适当的CPⅡ点和CPⅢ 特殊网点,来保证形成均匀的过渡段。

(3)CPⅢ控制网应与线下工程竣工中线进行联测。

2.2.6 内业数据处理在自由设站CPⅢ测量中,测量时必须使用与全站仪能自动记录及计算的专用数据处理软件,采用软件必须通过铁道部相关部门正式鉴定。

观测数据存储之前,必须对观测数据的质量进行检核。

包括如下内容:观测者、记录者、复核者签名;观测日期、天气等气象要素记录。

检核方法可以采用手工或程序检核。

观测数据经检核不满足要求时,及时提出重测,经检核无误并满足要求时,进行数据存储,提交给数据计算、平差处理。

数据计算、平差处理必须是经采用通过铁道部相关部门正式鉴定软件,在计算报告中要说明软件名称。

自由设站点、CPⅢ点进行整体平差。

平差计算时,要对各项精度作出评定。

3 高程控制网的建立《客运专线无砟轨道铁路工程测量暂行规定》中规定:高程控制测量分为勘测高程控制测量、水准基点高程控制测量和CPⅢ控制点高程控制测量。

控制网级别测量等级点间距勘测高程控制测量二等水准测量≤2000m 四等水准测量水准基点高程控制测量二等水准测量≤2000m CPⅢ控制点高程控制测量精密水准测量≤800m 各等级水准测量精度水准测量等级每千米水准测量偶然中误差M△每千米水准测量全中误差M W限差监测以测段高差之差往返测不符值附和路线或环线闭合差左右线路高差不符值二等水准≤ 1.0≤ 2.0 644-精密水准≤ 2.0≤ 4.012884三等水准≤ 3.0≤ 6.02012128注:表中L为往返测段、附和或环线的水准路线长度,单位为㎞。

3.1 高程控制测量勘测高程控制测量、水准基点高程控制测量依照国家相关技术规范进行。

CPⅢ控制点高程控制测量又分为两种:导线网CPⅢ控制点、后方交会网CPⅢ控制点高程控制测量。

CPⅢ控制点高程控制测量采用的水准等级为精密水准。

现对后方交会网C PⅢ控制点高程控制测量作详细说明。

3.1.1 测量方法每一测段应至少与3个二等水准点进行联测,形成检核。

联测时,往测时以轨道一侧的CPⅢ水准点为主线贯通水准测量,另一侧的CPⅢ水准点在进行贯通水准测量摆站时就近观测。

返测时以另一侧的CPⅢ水准点为主线贯通水准测量,对侧的水准点在摆站时就近联测。

往测水准路线示意图水准返测示意图3.1.2 CPⅢ高程控制点精度要求CPⅢ控制点水准测量应按《客运专线无碴轨道铁路工程测量技术暂行规定》中的“精密水准”测量的要求施测。

CPⅢ控制点高程测量工作应在CPⅢ平面测量完成后进行,并起闭于二等水准基点,且一个测段联测不应少于三个水准点。

精密水准测量采用满足精度要求的水准仪,配套因瓦尺。

使用仪器设备应在鉴定期内,有效期最多为一年,每年必须对测量仪器精确度进行一次校准,每天使用该仪器之前,对仪器进行检验和校准。

精密水准测量的主要技术标准要求(㎜)(km)(㎜)与已知点联测附合或环线精密水准 4 2 DS1 因瓦往返往返8注:①结点之间或结点与高级点之间,其路线的长度,不应大于表中规定的0.7倍。

②L为往返测段、附合或环线的水准路线长度,单位km。

(2)精密水准观测应符合以下要求等级水准尺类型水准仪等级视距(m)前后视距差(m)测段的前后视距累积差(m)视线高度(m)精密水准因瓦DS1 ≤60≤2.0≤4.0下丝读数≥0.3 DS05 ≤65注:①L为往返测段、附合或环线的水准路线长度,单位km。

②DS05表示每千米水准测量高差中误差为±0.5㎜。

(3)测站观测限差等级上下丝读数平均值与中丝读数的差基辅分划读数的差基辅分划所测高差的差检测间歇点高差的差精密1.5 0.5 0.7 1.0因水准路线较短,故不设间歇点。

视距长≤60m;前后视距差≤1.0m;前后视距累计差≤3.0m。

上述观测限差超限时,重新观测。

测站数为偶数,一般为6或8个。

由往测转往返测时,两支标尺应互换位置,并应重新整置仪器。

相关文档
最新文档