石室佳兴外国语学校2018-2019年八年级下入学考试数学试题

合集下载

2018-2019学年外国语学校八年级(下)数学期末试卷(含解析)

2018-2019学年外国语学校八年级(下)数学期末试卷(含解析)

(考试时间:120分2018-2019学年外国语学校八年级(下)期末数学试卷钟满分:150分)A 卷(共100分)1.下列图案中,既是轴对称图形又是中心对称图形的是一、选择题(本题共10个小题,每小题3分,共30分,每题只有一个选项,答案涂在答题卡上)()A.B.C.D.2.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12B.10C.8D.113.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2yC.x+3<y+3D.<4.下列因式分解正确的是()A.x 3﹣x=x(x 2﹣1)B.x 2+y 2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a 2﹣16D.m 2+4m+4=(m+2)25.方程x 2﹣4x=0的解是()A.0B.4C.0或﹣4D.0或46.下列说法中错误的是()A.“买一张彩票中奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“投掷一枚骰子点数为8”是确定事件7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算8.在▱ABCD 中,O 是AC、BD 的交点,过点O 与AC 垂直的直线交边AD 于点E,若▱ABCD 的周长为22cm,则△CDE 的周长为()A.8cm B.10cm C.11cm D.12cm9.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.10.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5C.D.二、填空题(本大题共4小题,每题4分,共16分,答案写在答题卡上)11.若式子有意义,则x的取值范围是.12.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.13.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长为.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(16分)(1)解不等式组:;(2)因式分解:(x﹣2)(x﹣8)+8;(3)解方程:+=;(4)解方程:(2x﹣1)2=3﹣6x.16.(6分)先化简,再求值:(x﹣2+)÷,其中x是不等式组的整数解.17.(6分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:(1)本次调查学生共人,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校在每班A、B、C、D 四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.18.(8分)已知k 为实数,关于x 的方程x 2+k 2=2(k﹣1)x 有两个实数根x 1,x 2.(1)求实数k 的取值范围.(2)若(x 1+1)(x 2+1)=2,试求k 的值.19.(8分)如图,已知△ABC 三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(﹣2,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标;(2)画出△ABC 绕点B 逆时针旋转90°所得到的△A 2B 2C 2,并求出S.20.(10分)已知:点A、C 分别是∠B 的两条边上的点,点D、E 分别是直线BA、BC 上的点,直线AE、CD 相交于点P.(1)点D、E 分别在线段BA、BC 上;①若∠B=60°(如图1),且AD=BE,BD=CE,则∠APD 的度数为;②若∠B=90°(如图2),且AD=BC,BD=CE,求∠APD 的度数;(2)如图3,点D、E 分别在线段AB、BC 的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE.B 卷(50分)一、填空题(本大题共5小题,每题4分,共20分,答案写在答题卡上)21.已知xy=,x+y=5,则2x 3y+4x 2y 2+2xy 3=.22.若关于x 的分式方程﹣=1无解,则m 的值为.23.已知关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2,若x 1,x 2满足3x 1=|x 2|+2,则m 的值为24.在平面直角坐标系xOy 中,点A、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D、E 分别在x 轴、y 轴的负半轴上运动,且DE=AB=10.以DE 为边在第三象限内作正方形DGFE,则线段MG 长度的最大值为.25.如图,已知边长为4的菱形ABCD 中,AC=BC,E,F 分别为AB,AD 边上的动点,满足BE=AF,连接EF 交AC 于点G,CE、CF 分别交BD 与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF 面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是.二、解答题(本大题共3小题,共30分,解答过程写在答题卡上)26.(8分)某小微企业为加快产业转型升级步伐,引进一批A,B 两种型号的机器.已知一台A 型机器比一台B 型机器每小时多加工2个零件,且一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B 两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?27.(10分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B 落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.28.(12分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO 得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分,每题只有一个选项,答案涂在答题卡上) 1.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.2.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选:A.3.【解答】解:A、在不等式x<y的两边同时减去1,不等式仍然成立,即x﹣1<y﹣1.故本选项错误;B、在不等式x<y的两边同时乘以﹣2,不等号方向改变,即﹣2x>﹣2y.故本选项正确;C、在不等式x<y的两边同时加3,不等式仍然成立,即x+3<y+3.故本选项错误;D、在不等式x<y的两边同时除以2,不等式仍然成立,即<,故本选项错误.故选:B.4.【解答】解:A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.5.【解答】解:∵x(x﹣4)=0,∴x=0或x﹣4=0,解得:x=0或x=4,故选:D.6.【解答】解:A、“买一张彩票中奖”发生的概率是0,错误,符合题意;B、“软木塞沉入水底”发生的概率是0,正确,不合题意;C、“太阳东升西落”发生的概率是1,正确,不合题意;D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;故选:A.7.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.8.【解答】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AO=CO,又∵EO⊥AC,∴AE=CE,∵▱ABCD的周长为22cm,∴2(AD+CD)=22cm∴AD+CD=11cm∴△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm故选:C.9.【解答】解:根据题意,得:.故选:C.10.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=BC=AB•tan30°=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,=EC•AD=,则S△AEC故选:D.二、填空题(本大题共4小题,每题4分,共16分,答案写在答题卡上)11.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.【解答】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为:6,1.13.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0得a+b﹣2019,所以a+b=2019.故答案为2019.14.【解答】解:在△ABN和△ADN中,,∴△ABN≌△ADN,∴AD=AB=10,BN=DN,∵M是△ABC的边BC的中点,BN=DN,∴CD=2MN=6,∴△ABC的周长=AB+BC+CA=41,故答案为:41.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)解不等式3x<5x+6,得:x>﹣3,解不等式≥,得:x≤2,则不等式组的解集为﹣3<x≤2;(2)原式=x2﹣10x+24=(x﹣4)(x﹣6);(3)两边都乘以2(x﹣2),得:1+x﹣2=﹣6,解得x=﹣5,检验:x=﹣5时,2(x﹣2)≠0,∴分式方程的解为x=﹣5;(4)∵(2x﹣1)2+3(2x﹣1)=0,∴(2x﹣1)(2x+2)=0,则2x﹣1=0或2x+2=0,解得x=0.5或x=﹣1.16.【解答】解:原式=•=,∵,∴解得:﹣3<x≤,∴整数解为﹣2,﹣1,0,根据分式有意义的条件可知:x=0,∴原式==﹣1,17.【解答】解:(1)根据题意得:120÷40%=300(人),所以本次共调查了300名学生;跳绳的有300﹣120﹣60﹣90=30人,补图如下:故答案为:300;(2)根据题意得:2000×40%=800(人),答:选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.18.【解答】解:(1)原方程变形为x 2﹣2(k﹣1)x+k 2=0.根据题意得△=4(k﹣1)2﹣4k 2≥0,∴(k﹣1)2﹣k2≥0.∴﹣2k+1≥0,∴k≤;(2)由根与系数的关系得x 1+x 2=2(k﹣1),x 1x 2=k 2,∵(x 1+1)(x 2+1)=2,∴x 1x 2+(x 1+x 2)+1=2.∴k 2+2k﹣2=1.即k 2+2k﹣3=0.解得k 1=1,k 2=﹣3,∵k≤,∴k 的值为﹣3.19.【解答】解:(1)如图,△A 1B 1C 1为所作;点A 1,B 1,C 1的坐标分别为;(3,1),(1,﹣1),(2,2)(2)如图,△A 2B 2C 2为所作,S =2×3﹣×1×3﹣×2×2﹣×1×1=2.20.【解答】解:(1)①连结AC,∵AD=BE,BD=CE,∴AD+BD=BE+CE,∴AB=BC.∵∠B=60°,∴△ABC为等边三角形.∴∠B=∠ACB=60°,BC=AC.在△CBD和△ACE中,∴△CBD≌△ACE(SAS),∴∠BCD=∠CAE.∵∠APD=∠CAE+∠ACD,∴∠APD=∠BCD+∠ACD=60°.故答案为60°;②作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠B=90°,∴∠FAD=∠B.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠FAD=90°,∠B=90,∴∠FAD+∠B=180°,∴AF∥BC.∵DB=CE,∴AF=CE,∴四边形AECF是平行四边形,∴AE∥CF,∴∠EAC=∠FCA.∵∠APD=∠ACP+∠EAC,∴∠APD=∠ACP+∠ACE=45°;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,∴∠FAD=90°.∵∠ABC=90°,∴∠FAD=∠DBC=90°.在△FAD和△DBC中,,∴△FAD≌△DBC(SAS),∴DF=DC,∠ADF=∠BCD.∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,∴∠FDC=90°,∴∠FCD=45°.∵∠APD=45°,∴∠FCD=∠APD,∴CF∥AE.∵∠FAD=90°,∠ABC=90,∴∠FAD=∠ABC,∴AF∥BC.∴四边形AECF 是平行四边形,∴AF=CE,∴CE=BD.一、填空题(本大题共5小题,每题4分,共20分,答案写在答题卡上)21.【解答】解:2x 3y+4x 2y 2+2xy 3=2xy(x 2+2xy+y 2)=2xy(x+y)2,∵xy=,x+y=5,∴原式=﹣25.故答案为﹣25.22.【解答】解:去分母得:x 2﹣mx﹣3x+3=x 2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或x==1,即m=1,综上,m 的值为﹣2或1.故答案为:﹣2或123.【解答】解:∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m 的取值范围为m≤5.∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1•x 2=m+4②.∵3x 1=|x 2|+2,当x 2≥0时,有3x 1=x 2+2③,联立①③解得:x 1=2,x 2=4,∴8=m+4,m=4;当x 2<0时,有3x 1=﹣x 2+2④,联立①④解得:x 1=﹣2,x 2=8(不合题意,舍去).∴符合条件的m 的值为4.故答案是:4.24.【解答】解:取DE 的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=AB=5.同理ON=5.∵正方形DGFE,N 为DE 中点,DE=10,∴NG===5.在点M 与G 之间总有MG≤MO+ON+NG(如图1),由于∠DNG 的大小为定值,只要∠DON=∠DNG,且M、N 关于点O 中心对称时,M、O、N、G 四点共线,此时等号成立(如图2).∴线段MG 取最大值10+5.故答案为:10+5.25.【解答】解:∵四边形ABCD 是菱形,∴AB=BC=CD=AD=4,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,∴∠EFC=60°,∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,∴∠AFC=∠AGE,故①正确;∵BE+DF=AF+DF=AD,EF=CF≤AC,∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),故②不正确;∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=2,△ECF面积的最小值为3,故③正确;如图,设AC与BD的交点为O,若AF=2,则FD=BE=AE=2,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=2,BO=AO=2,∴BD=4,∵△ABC是等边三角形,BE=AE=2,∴CE⊥AB,且∠ABO=30°,∴BE=EM=2,BM=2EM,∴BM=,同理可得DN=,∴MN=BD﹣BM﹣DN=,∴BM=MN=DN,故④正确;如图,过点E作EH∥AD,交AC于H,∵AF=BE=1,∴AE=3,∵EH∥AD∥BC,∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,∴△AEH是等边三角形,∴EH=AE=3,∵AD∥EH,∴=,∴EG=3FG,故⑤错误,故答案为:①③④.二、解答题(本大题共3小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B 型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.27.【解答】解:(1)由折叠知BE=EM,∠B=∠EMP=90°.①△AEM的周长=AE+EM+AM=AE+EB+AM=AB+AM.∵AB=4,M是AD中点,∴△AEM的周长=4+2=6(cm);②现证明EP=AE+PD方法一:取EP的中点G,则在梯形AEPD中,MG为中位线,∴MG=(AE+PD),在Rt△EMP中,MG为斜边EP的中线,∴MG=EP,∴EP=AE+PD.方法二:延长EM交CD延长线于Q点.∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,∴△AME≌△DMQ.∴AE=DQ,EM=MQ.又∵∠EMP=∠B=90°,∴PM 垂直平分EQ,有EP=PQ.∵PQ=PD+DQ,∴EP=AE+PD.(2)△PDM 的周长保持不变.设AM=x,则MD=4﹣x.由折叠性质可知,EM=4﹣AE,在Rt△AEM 中,AE 2+AM 2=EM 2,即AE 2+x 2=(4﹣AE)2,整理得:AE 2+x 2=16﹣8AE+AE 2,∴AE=(16﹣x 2),又∵∠EMP=90°,∴∠AME+∠DMP=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠DMP.又∵∠A=∠D,∴△PDM∽△MAE.∴∴C △PDM =C △MAE •=(4+x)•=8.∴△PDM 的周长保持不变.28.【解答】解:(1)如图1,在矩形ABCO 中,∠B=90°当点D 落在边BC 上时,BD 2=AD 2﹣AB 2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴P(,),∵B(a,3),∴PB的中点坐标为:(a,),∴直线PB的解析式为yPB=x,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:y=﹣x+,∵直线AD过点(a,),∴=﹣a2+,解得:a=±3,∵a≥3,∴a=3;②存在M,N;理由:∵a=3,∴直线AD的解析式为y=﹣x+9,∴∴∠DAO=60°,∴∠DAB=30°,连接AE,∵AD=OA=3,DE=OC=3,∴∠EAD=30°,∴A,B,E三点共线,∴AE=2DE=6,∴E(3,6),F(,),设M(m,0),N(0,n),∵四边形EFMN是平行四边形,∴,解得:,∴M(,0),N(0,)。

成都石室佳兴外国语学校数学整式的乘法与因式分解单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学整式的乘法与因式分解单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学整式的乘法与因式分解单元测试卷(word版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A.x+2y+1 B.x+2y﹣1 C.x﹣2y+1 D.x﹣2y﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x2﹣4xy﹣2y+x+4y2=(x2﹣4xy+4y2)+(x﹣2y)=(x﹣2y)2+(x﹣2y)=(x﹣2y)(x﹣2y+1).故选:C.【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y),将其当成整体提出,进而得到答案.3.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9【答案】C【解析】【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a2+4ab+4b2=(a+2b)2,(b>a)∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C.【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.4.若(x+y)2=9,(x-y)2=5,则xy的值为()A.-1 B.1 C.-4 D.4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y)2=x2+2xy+y2=9①,(x﹣y)2= x2-2xy+y2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..5.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是( ) A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.【详解】∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.6.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.7.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16【答案】B【解析】【分析】 直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.9.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.10.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确;62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误; 故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.12.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.13.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.15.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+16.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.17.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.19.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36;故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。

【三套打包】成都石室佳兴外国语学校人教版初中数学八年级下册第十九章一次函数单元试卷及答案

【三套打包】成都石室佳兴外国语学校人教版初中数学八年级下册第十九章一次函数单元试卷及答案

八年级数学下册第19章小专题求一次函数解析式的常见类型小专题(六)求一次函数解析式的常见类型类型1依据一次函数定义求一次函数解析式1.已知y-3与x+5成正比例,且当x=2时,y=17.求y与x的函数解析式.2.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=-1;当x=3时,y1-y2=12.求这两个正比例函数的解析式.类型2依据一次函数图象性质求一次函数解析式3.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,求一次函数的表达式.4.(益阳中考)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位长度,再向上平移2个单位长度得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的解析式;(3)若将点P2先向右平移3个单位长度,再向上平移6个单位长度得到点P3.请判断点P3是否在直线l上,并说明理由.5.(荆州中考改编)为更新果树品种,某果园计划购进A,B两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.求y与x的函数解析式.类型3依据一次函数图象变换求一次函数解析式6.已知直线y=-12x+1与直线a关于y轴对称,求出直线a的解析式,并在同一坐标系中画出它们的图象.类型4依据几何图形面积求一次函数解析式7.因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x-2的“镜子”函数:____________;(2)如果一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B,C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.8.若一次函数y =2x +b 的图象与坐标轴围成的三角形的面积是9,求b 的值.9.一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是8,且过点(0,2),求此一次函数的解析式.参考答案1.由题意,设y -3=k(x +5).把x =2,y =17代入,得14=7k ,即k =2.∴y -3=2(x +5),即y 与x 的函数解析式为y =2x +13.2.根据题意,得⎩⎪⎨⎪⎧2k 1+2k 2=-1,3k 1-3k 2=12.解得⎩⎨⎧k 1=74,k 2=-94.∴这两个正比例函数的解析式分别为:y 1=74x ,y 2=-94x. 3.由图象可知,一次函数图象经过点A(0,2),点B 的横坐标是-1.∵点B 在正比例函数y =-x 图象上,∴y =-(-1)=1.∴点B 的坐标为(-1,1).设一次函数的表达式为y =kx +b ,把A(0,2),B(-1,1)分别代入,得⎩⎪⎨⎪⎧b =2,-k +b =1.解得⎩⎪⎨⎪⎧b =2,k =1.∴一次函数的解析式为y =x +2.4.(1)P 2(3,3).(2)设直线l 所表示的一次函数的解析式为y =kx +b(k ≠0).∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3.解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的解析式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9).人教版八年级数学下册 第19章 一次函数与实际问题八年级数学一次函数与实际问题1、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和(小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?2、 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式(2)试计算:何时两车相距300千米?3、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?4、甲、乙两车从A地将一批物品匀速运往B地,已知甲出发0.5h后乙开始出发,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,请结合图中的信息解决如下问题:(1)求甲、乙两车的速度;(2)乙车到达B地后以原速立即返回.①在图中画出乙车在返回过程中离A地的距离S(km)与时间t(h)的函数图象,并求出此时S与t的函数关系式.②试求甲车在离B地多远处与返程中的乙车相遇?5、一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y(含备用零钱)的关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?6、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额与租书时间之间的关系如图所示.(1)从图中看出,办理会员卡是否需要交费?(2)使用租书卡租书,每天收费多少元?(3)使用会员卡租书,每天收费多少元?(4)若租书卡和会员卡的使用期限均为1年,则在这一年中如何选取这两种租书方式比较划算?7、某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.8、乘坐益阳市某种出租汽车.当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围.9、某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠,书包每个定价20元,水性笔每支定价5元,小丽和同学一起需买4个书包,水性笔若干支(不少于4支)(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式。

成都石室佳兴外国语学校八年级数学下册第三单元《平行四边形》检测(答案解析)

成都石室佳兴外国语学校八年级数学下册第三单元《平行四边形》检测(答案解析)

一、选择题1.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 2.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .43.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个4.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .202056.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .437.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2 B .33cm 2 C .3cm D .33cm 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .209.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .410.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF =,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a 11.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC 3D 3 12.矩形不一定具有的性质是( )A .对角线互相平分B .是轴对称图形C .对角线相等D .对角线互相垂直参考答案二、填空题13.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)14.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.15.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.16.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm . 17.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.18.如图,矩形纸片ABCD 的长AD =6cm ,宽AB =2cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长______cm .19.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.20.如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ',折痕为DE .若将∠B 沿EA '向内翻折,点B 恰好落在DE 上,记为B ',则AB =_______.三、解答题21.已知:如图,在梯形ABCD 中,//AD BC ,AB CD =,2BC AD =,DE BC ⊥,垂足为点F ,且F 是DE 的中点,联结AE ,交边BC 于点G .(1)求证:四边形ABGD 是平行四边形;(2)如果2AD AB =,求证:四边形DGEC 是正方形.22.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 23.已知:AB ⊥CD 于点O ,AB=AC=CD ,点I 是∠BAC ,∠ACD 的平分线的交点,连接IB ,ID(1)求证:IA ID =且IA ID ⊥;(2)填空:①∠AIC+∠BID=_________度;②S IBD ∆______S AIC ∆(填“﹥”“﹤”“=”)(3)将(2)小题中的第②结论加以证明.24.已知点()0,6B ,点C 为x 轴正半轴上一动点,连接BC ,分别以OC 和BC 为边长作等边ODC △和EBC ,连接DE .(1)如图(a ),当D 点在OBC 内部时,求证:BO DE =;(2)如图(b ),当D 点在OBC 外部时,上述结论是否还成立?请说明理由.(3)当D 点恰好落在EBC 的边上时,利用图(c )探究分析后,直接写出ODC △的高的长度为______.25.如图,在正方形中ABCD ,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)若点G 在AD 上,且45GCE ︒∠=,判断线段GE BE GD 、、之间的数量关系,并说明理由.26.如图,在四边形ABCD 中,90B D ∠=∠=︒,60C ∠=°,5AB =.2AD =.(1)求CD 的长;(2)求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接HF ,过点G 作GI HF 交HF 于点I ,根据甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD ,可得EFH △是等腰直角三角形,则可求得45GFI ,30GHI ,根据勾股定理,可得:1GI =,3HI,则有1FI GI ,31EF HF HI FI ,根据正方形的对角线2AC EF =可求出答案.【详解】解:如图示,连接HF ,过点G 作GI HF 交HF 于点I ,∵甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .∴根据题意,根据对称性可得EFH △是等腰直角三角形,则有:90EFH,45EHF HEF ∵45GFE ,15EHG , ∴45GFI ,30GHI ,又∵GI HF ,2MN =, ∴根据勾股定理,可得:1GI =,3HI , 则有1FIGI , ∴31EF HF HI FI , ∴正方形的对角线2231232ACEF ,故选:D .【点睛】 本题考查了正方形的性质,勾股定理,直角三角形的性质,熟悉相关性质是解题的关键. 2.B解析:B【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线, ∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 3.A解析:A【分析】由平行四边形性质和等腰三角形“三线合一”即可得ED ⊥CA ,根据三角形中位线定理可得EF =12AB ;由直角三角形斜边上中线等于斜边一半可得EG =12CD ,即可得EF =EG ;连接EG ,可证四边形DEFG 是平行四边形,即可得EH=12EG . 【详解】解:如图,连接FG ,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD =BC ,AD ∥BC ,AB =CD ,AB ∥CD ,∵BD =2AD ,∴OD =AD ,∵点E 为OA 中点,∴ED ⊥CA ,故①正确;∵E ,F ,G 分别是OA ,OB ,CD 的中点,∴EF ∥AB ,EF=12AB , ∵∠CED =90°,CG =DG=12CD , ∴EG=12CD , ∴EF =EG ,故②正确;∵EF ∥CD ,EF =DG ,∴四边形DEFG 是平行四边形,∴EH =HG ,即EH=12EG ,故③正确; 故选:A .【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.4.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A 、能用两组对角相等的四边形是平行四边形判定平行四边形;B 、不能判定平行四边形,如等腰梯形;C 、能用两组对边相等的四边形是平行四边形判定平行四边形;D 、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B .【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.5.B解析:B【分析】结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 的边长为222(5)(25)5(5)+==…∴第n 个正方形的边长为1(5)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形. ∵菱形的边长是3cm ,∴这个菱形的较短的对角线长是3cm .故选:C .【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.8.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°,∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.10.B解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF ,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.11.D解析:D【分析】首先证明△OBC是等边三角形,在Rt△EBC中求出CE即可解决问题;【详解】解:∵四边形ABCD是矩形,∴OB=OC,∠BCD=90°,由翻折不变性可知:BC=BO,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE,根据勾股定理得:故选:D.【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC是等边三角形.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.①②【分析】先证明∠ACD=∠BCE根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE ,根据三角形全等判定定理SAS 可证明△ADC ≌△BEC ;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得OB =OC ;利用三角形三边关系可得DE BC ≥;根据OB =OC 可知点O 在BC 的垂直平分线上,找到点O 的起始位置及终点位置,即可求出OA 的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D在AB边上运动时,O在线段PQ上运动,∴当O与P重合时,AO的值最小为12AB=故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O的运动路线.14.8【分析】过点A作AM⊥BC过点A作AN⊥BC交DE于N证明△AFN≌△BFE得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC∴∠B=∠C∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A作AM⊥BC,过点A作AN⊥BC交DE于N,证明△AFN≌△BFE,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC,∴∠B=∠C,∵DE BC⊥,∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD,∠B=∠C,∴∠BFE=∠AED=∠CDE,∴AD=AF,过点A作AM⊥BC,在△ABC中,∵AB=AC,∴M为BC的中点,∴BM=12BC=6,在Rt△ABM中,=∵F为AB中点,FE⊥BC,∴FE为△ABM的中位线,BF=AF=12AB=5,∴AD=AF=5,BE=132BM=,过点A作AN⊥BC交DE于N,∵AF=BF,∠AFN=∠BFE,∠ANF=∠BEF=90°,∴△AFN≌△BFE,∴AN=BE=3,在Rt△AND中,DN=2222-=-=,534AD AN∵AD=AF,AN⊥DF,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.15.或2【分析】根据菱形有一个内角为60°可以得到等边三角形分两种情况画出图形结合勾股定理求出AC的长【详解】解:∵四边形ABCD是菱形∴AC⊥BDOA=OCOB=ODAD=AB=2若∠BAD=60°∴解析:23或2【分析】根据菱形有一个内角为60°可以得到等边三角形,分两种情况,画出图形,结合勾股定理求出AC的长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AD=AB=2,若∠BAD=60°,∴△ABD是等边三角形,∴BD=2,∴OD=1,∴OA=22213-=,∴AC=23;若∠ABC=60°,∴△ABC是等边三角形,∴AC=2;故答案为:32.【点睛】此题考查了菱形的性质和勾股定理,等边三角形的判定和性质,要记住菱形的对角线互相平分且垂直,菱形的四条边都相等.16.9【分析】根据梯形中位线的长等于上底与下底和的一半可求得其下底【详解】解:由已知得下底=2×7-5=9cm故答案为9【点睛】主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半解析:9【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其下底.【详解】解:由已知得,下底=2×7-5=9cm.故答案为9.【点睛】主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.17.①②③【分析】根据SSS即可判定△ABF≌△CFB根据全等三角形的性质以及等式性质即可得到EC=EA根据∠EBF=∠EFB=∠EAC=∠ECA即可得出BF∥AC根据E不一定是BC的中点可得BE=CE解析:①②③【分析】根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立.【详解】解:由折叠可得,AD=AF,DC=FC,又∵平行四边形ABCD中,AD=BC,AB=CD,∴AF=BC,AB=CF,在△ABF和△CFB中,AB CF AF CB BF FB =⎧⎪=⎨⎪=⎩,∴△ABF ≌△CFB (SSS ),故①正确;∴∠EBF =∠EFB ,∴BE =FE ,∴BC -BE =FA -FE ,即EC =EA ,故②正确;∴∠EAC =∠ECA ,又∵∠AEC =∠BEF ,∴∠EBF =∠EFB =∠EAC =∠ECA ,∴BF ∥AC ,故③正确;∵E 不一定是BC 的中点,∴BE =CE 不一定成立,故④错误;故答案为:①②③.【点睛】本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【分析】由矩形的性质和折叠的性质以及勾股定理得出方程解方程即可【详解】由折叠的性质得:BE =DE 设DE 长为xcm 则AE =(6−x )cmBE =xcm ∵四边形ABCD 是矩形∴∠A =90°根据勾股定理得: 解析:103【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】由折叠的性质得:BE =DE ,设DE 长为xcm ,则AE =(6−x )cm ,BE =xcm ,∵四边形ABCD 是矩形,∴∠A =90°,根据勾股定理得:AE 2+AB 2=BE 2,即(6−x )2+22=x 2,解得:x =103, 即DE 长为103cm , 故答案为:103.【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.19.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,8∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键20.【分析】利用矩形和折叠的性质证明∠ADE=∠ADE=∠ADC=30°∠C=∠ABD=90°推出△DBA≌△DCA那么DC=DB设AB=DC=x在Rt△ADE中通过勾股定理可求出AB的长度【详解】解:3【分析】利用矩形和折叠的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',那么DC=DB',设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【详解】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=13×180°=60°,∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴333,设AB=DC=x ,则BE=B'E=x-233 ∵AE 2+AD 2=DE 2,∴22223232x x +=+-()() 解得,x 1=−33 (负值舍去),x 2=3 , 故答案为:3.【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.三、解答题21.(1)见解析;(2)见解析【分析】(1)连接AC 和BE ,根据垂直平分线的性质和等腰三角形的性质证明AB ∥EC 和AB EC =即可得到四边形ABEC 是平行四边形,由平行四边形的性质得12BG CG BC ==,即可证明结论; (2)先由(1)的结论证明四边形DGEC 是平行四边形,再由DC EC =得到四边形DGEC 是菱形,再根据勾股定理的逆定理得90GDC ∠=,即可证明结论.【详解】解:(1)如图,连接AC 和BE ,∵DE BC ⊥,F 是DE 的中点,∴DC EC =,由等腰三角形“三线合一”的性质得DCF ECF ∠=∠,∵AD ∥BC ,AB CD =,∴B DCF ∠=∠,∴B ECF ∠=∠,∴AB ∥EC ,∵AB EC =,∴ 四边形ABEC 是平行四边形,∴12BG CG BC ==, ∵2BC AD =,∴AD BG =,∵AD ∥BG ,∴四边形ABGD 是平行四边形;(2)∵四边形ABGD 是平行四边形,∴AB ∥DG ,AB DG =,∵AB ∥EC ,AB EC =,∴DG ∥EC ,DG EC =,∴四边形DGEC 是平行四边形,∵DC EC =,∴四边形DGEC 是菱形,∴DG DC =,由2AD AB =,即得22CG DC DG ==,∴222DG DC CG +=,∴90GDC ∠=,∴四边形DGEC 是正方形.【点睛】本题考查平行四边形的性质和判定,正方形的判定,解题的关键是熟练掌握这些性质定理.22.(1)见解析;(2)BC <AC【分析】(1)画射线BD ,以B 为端点取BC=a ,过点C 作BD 的垂线,再以点B 为圆心,c 为半径画弧,与该垂线交于点A 即可;(2)根据直角三角形的性质得到AB ,利用勾股定理求出AC ,再比较大小即可.【详解】解:(1)如图,△ABC 即为所作;(2)如图,直角三角形ABC 中,∠C=90°,D 为AB 中点,则CD=5,BC=7,∴AB=10,∴AC=22107-=51,∵7=49<51,∴BC <AC .【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.23.(1)证明见解析;(2)①180;②=;(3)证明见解析.【分析】(1)由角平分线的性质,解得ACI DCI ∠=∠,继而证明△ACI ≌△DCI(SAS),再根据全等三角形的性质可得IA=ID ,AIC DIC ∠=∠,由角平分线性质结合三角形内角和定理可得11=()904522CAI ACI CAO ACO ∠+∠∠+∠=⨯︒=︒,故135AIC DIC ∠=∠=︒,继而可证90AID ∠=︒据此解题;(2)①根据题意,由三线合一的性质可证,45AI ID AIH =∠=︒、CI IB =、45BIG CIG ∠=∠=︒,最后再计算+AIC BID ∠∠的值即可;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG S S S ==,再结合12BDI DIBG S S =即可解题; (3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG SS S ==,再结合12BDI DIBG S S =即可解题. 【详解】证明:(1)由点I 是∠BAC ,∠ACD 的平分线的交点ACI DCI ∴∠=∠在△ACI 和△DCI 中CI CI ACI DCI CA CD =⎧⎪∠=∠⎨⎪=⎩∴ △ACI ≌△DCI(SAS)IA ID ∴=由点I 是∠BAC ,∠ACD 的平分线的交点 11=()904522CAI ACI CAO ACO ∴∠+∠∠+∠=⨯︒=︒ 18045135=AIC DIC ∴∠=︒-︒=︒∠36013513590AID ∴∠=︒-︒-︒=︒即IA ID ⊥;(2)①如图,延长CI 交AD 于点H ,延长AI 交BC 于点GAI ID ⊥90AID DIG ∴∠=∠=︒AC CD CI =,平分ACD ∠,,CH AD AH DH ∴⊥=,45AI ID AIH ∴=∠=︒45CIG ∴∠=︒AC AB AI =,平分BAC ∠,,AG BC CG BG ∴⊥=CI IB ∴=45BIG CIG ∴∠=∠=︒13545180AIC BID ∴∠+∠=︒+︒=︒故答案为:180︒,=;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG S S S ∴== 12BDI DIBG SS = AIC BDI S S ∴=故答案为:=;(3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG S S S ∴== 12BDI DIBG SS = AIC BDI S S ∴=.【点睛】本题考查全等三角形的判定与性质、等腰三角形三线合一的性质、角平分线的性质等知识,是重要考点,作出正确的辅助线、掌握相关知识是解题关键.24.(1)证明见解析;(2)还成立,理由见解析;(3)3或9.【分析】(1)利用“SAS”证明BCO ECD ≅△△即可解答;(2)同(1)利用“SAS”证明BCO ECD ≅△△即可解答;(3)分当D 点恰好落在EBC 的边BC 上或边BE 上两种情况讨论,利用全等三角形的性质以及三角形中位线或含30度角的直角三角形的性质求解即可.【详解】证明:(1)在等边ODC △与等边EBC 中,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB DCB BCE ∠+∠=∠+∠,即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≅△△,∴BO DE =;(2)还成立.理由:连接DE ,与(1)同理,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB BCE DCB ∠-∠=∠-∠,即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≌△△, ∴BO DE =;(3)当D 点恰好落在EBC 的边BC 上时,如图,作DG ⊥OC 于G ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∵△EBC 是等边三角形,∴D 点恰好是边BC 的中点,∵DG ⊥OC ,∴DG 是△BOC 的中位线,∴DG=12BO=3; 当D 点恰好落在EBC 的边BE 上时,如图,作DF ⊥OC 于F ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∠ECD=∠BCO ,∵△EBC 是等边三角形,∴D 点恰好是边BE 的中点,∴∠ECD=∠BCD=∠BCO=30︒,∴BC=2BO=12,∴=∵△DOC 是等边三角形,∴DC=OC=,FC=OF=∴9=,综上,ODC △的高的长度为3或9.故答案为:3或9.【点睛】本题是三角形综合题,考查了坐标与图形的性质、全等三角形的判定和性质、等边三角形的性质、直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题. 25.(1)见解析;(2)GE=BE+GD ,理由见解析【分析】(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF ;(2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD .【详解】解:(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA ,∴∠B=∠CDF ,在△CBE 与△CDF 中, BC CD B CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△CBE ≌△CDF (SAS ),∴CE=CF ;(2)GE=BE+GD ,理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF .∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠GCF=∠DCF+∠DCG=45°,在△ECG 与△FCG 中,CE CF GCE GCF GC GC ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ),∴GE=GF ,∴GE=DF+GD=BE+GD .【点睛】本题主要考查正方形的性质以及全等三角形的判定和性质,证两条线段相等往往转化为证明这两条线段所在三角形全等,在第二问中也考查了通过全等找出和GE 相等的线段,从而得出线段GE ,BE ,GD 之间的数量关系.26.(1)2)2 【分析】(1)作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N ,易知四边形MNAB 是矩形,分别在Rt △ADN 中求出DN ,利用含60°的直角三角形求CD 即可;(2)由(1)可知,四边形ABCD 的面积就是△DCM 与梯形ADMB 的面积和.【详解】解:(1)如图作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N .∵∠B =∠NMB =∠MNA =90°,∴四边形MNAB 是矩形,∴MN =AB =5,AN =BM ,∠BAN =90°,∵∠C +∠B +∠ADC +∠BAD =360°,∠C =60°,∠B =∠ADC =90°,∴∠DAN =∠BAD ﹣∠BAN =30°,在RT △AND 中,∵AD =2,∠DAN =30°,∴DN =12AD =1,AN == 在RT △DMC 中,∵DM =DN +MN =6,∠C =60°,∴∠CDM =30°,∴CD =2MC ,设MC =x ,则CD =2x ,∵CD 2=DM 2+CM 2,∴4x 2=x 2+62,∵x >0∴x=∴CD =(2)由(1)得,11622DCM S CM DM =⨯⨯=⨯= 11()1122ADMB S AN DM AB =⨯⨯+==梯形,DCM ABCD ADMB S S S =+==四边形梯形【点睛】本题考查了勾股定理和含有30°角的直角三角形的性质,通过作辅助线,构建特殊的直角三角形是解题关键.。

成都石室佳兴外国语学校数学分式填空选择单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学分式填空选择单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学分式填空选择单元测试卷 (word版,含解析)一、八年级数学分式填空题(难)1.若x+1x ,则x-1x=____________. 【答案】±2【解析】【分析】先对等式x+1x 21()8x x +=,整理得到2216x x+=,再用完全平方公式求出21()x x-的值,再开平方求出1x x -的值. 【详解】解:∵x+1x , ∴21()8x x += ∴22128x x ++= ∴2216x x += ∴22211()2624x x x x -=+-=-= ∴12x x-=± 故答案是: ±2.【点睛】 本题考查了互为倒数的两个数的和与差的完全平方公式的应用,利用当两数互为倒数时积为1这个特征去解题是关键.2.已知210a a --=,且423223215211a xa a xa a -+=-+-,则x =______. 【答案】27【解析】【分析】先根据a 2-a-1=0,得出a 2,a 3,a 4的值,然后将等式化简求解.【详解】解:由题意可得a 2−a−1=0∴a 2=a+1∴a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2,a 3=a ⋅a 2=a(a+1)=a 2+a=a+1+a=2a+1, ∵423223215211a xa a xa a -+=-+- ∴2264321521211a a a a x x a +-+=-++- 22663151211a a x x a a +-∴=-++ ()()22116631512a a x a a x ⨯+-=-⨯++整理得()2-38110ax a +⨯+=∴381x = 27x ∴=故答案为:27.【点睛】本题主要考查了分解分式方程,通知所学知识对a 2,a 3,a 4进行变形是解题的关键.3.如果在解关于x 的方程212212x x kx x x x x ++-=+-+-时产生了增根,那么k 的值为_____________.【答案】5-或12-. 【解析】【分析】分式方程的增根是分式方程在去分母时产生的,分式方程的增根是使公分母等于0的x 值,所以先将分式方程去分母得整式方程,根据分式方程的增根适合整式方程,将增根代入整式方程可得关于k 的方程,根据解方程,可得答案.【详解】 解:原方程变形为122(1)1(2)x kx x x x x x ++-+=-+-, 方程去分母后得:(1)(1)(2)2x x x x kx -+-+=+,整理得:(2)3k x +=-,分以下两种情况:令1x =,23k +=-,5k ∴=-;令2x =-,2(2)3k -+=-,12k ∴=-, 综上所述,k 的值为5-或12-. 故答案为:5-或12-.【点睛】本题考查了分式方程的增根,利用分式方程的增根得出关于k 的方程是解题关键.4.若方程256651130x x k x x x x ---=---+的解不大于13,则k 的取值范围是__________. 【答案】15k ≤且k ≠±1.【解析】【分析】 通过去分母去括号,移项,合并同类项,求出112k x +=,结合条件,列出关于k 的不等式组,即可求解.【详解】 256651130x x k x x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=,去括号,移项,合并同类项,得:211x k =+, 解得:112k x +=, ∵方程256651130x x k x x x x ---=---+的解不大于13,且x≠6,x≠5, ∴11132k +≤且11115622k k ++≠≠,, ∴15k ≤且k ≠±1.故答案是:15k ≤且k ≠±1.【点睛】本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.5.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.【答案】m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】 x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m,由题意得,6-2m>0,解得,m<6,∵6-2m≠2,∴m≠2,∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.6.化简a bb a a b+--的结果是______【答案】﹣1【解析】分析:直接利用分式加减运算法则计算得出答案.详解:a bb a a b+--=a bb a b a---=()1a b b ab a b a---==---.故答案为-1.点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.7.若分式的值为零,则x的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.8.小明到商场购买某个牌子的铅笔x支,用了y元(y为整数).后来他又去商场时,发现这种牌子的铅笔降价20%,于是他比上一次多买了10支铅笔,用了4元钱,那么小明两次共买了铅笔________支.【答案】40或90【解析】【分析】因y元买了x只铅笔,则每只铅笔yx元;降价20%后,每只铅笔的价格是45yx元,依题意得45yx(x+10)=4,变形可得x=105yy-,即可得y<5;再由x、y均是正整数,确定y只能取3或4,由此求得x 的值,即可得小明两次所买铅笔的数量.【详解】因y 元买了x 只铅笔,则每只铅笔y x 元;降价20%后,每只铅笔的价格是 (1-20%)y x 元,即 45y x 元,依题意得:45y x(x+10)=4, ∴y (x+10)=5x∴x=105y y-, ∴5-y >0,即y <5;又∵x 、y 均是正整数,∴y 只能取3和4;①当y=3时, x=15,小明两次共买了铅笔:15+15+10=40(支)②当y=4时, x=40,小明两次共买了铅笔:40+(40+10)=90(支)故答案为40或90.【点睛】本题考查了方程的应用,解决根据题意列出方程45y x(x+10)=4确定x 、y 的值是解决问题的关键.9.某市为治理污水,需要铺设一段全长600 m 的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划多铺设20 m ,结果共用8天完成这一任务,则原计划每天铺设管道的长度为_________.【答案】60 m【解析】设原计划每天铺设x m 管道,则加快施工进度后,每天铺设(20x +)m ,由题意可得,120600120820x x -+=+,解得:60x =,或5x =-(舍去),故答案为:60 m .10.方程的解是_____________.【答案】x =2【解析】试题分析:此题是分式方程的解法问题,先把方程两边同乘以x-3,化为整式方程为2-x=(x-3)+1,再解这个整式方程求得x=2,然后把x=2代入x-3≠0,检验出x=2是原分式方程的解即可.故答案为:x=2.点睛:解分式方程的步骤为:1、确定最简公分母;2、方程两边同乘以最简公分母,化为整式方程;3、解整式方程;4、代入检验,确定是否为分式方程的解.二、八年级数学分式解答题压轴题(难)11.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.12.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立; (3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.13.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.【解析】分析:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.14.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【答案】(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;(2)工程预算的施工费用不够,需追加预算4万元.【解析】【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】(1)解:设乙队单独完成这项工程需要x天,则甲队单独完成需要2x3填;403012xx3+=解得:x90=经检验,x=90是原方程的根.则22x906033=⨯=(天)答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(160+190)=1.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.15.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?【答案】(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【解析】【分析】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得: 1551511.5x x++=.解得: 30x=,经检验,30x=是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,111()183045÷+=(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.。

成都石室佳兴外国语学校初中数学八年级下期中经典练习(提高培优)

成都石室佳兴外国语学校初中数学八年级下期中经典练习(提高培优)

一、选择题1.(0分)[ID :9927]如图,四边形ABCD 是长方形,AB=3,AD=4.已知A (﹣32,﹣1),则点C 的坐标是( )A .(﹣3,32) B .(32,﹣3) C .(3,32) D .(32,3) 2.(0分)[ID :9903]已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形 C .当90ABC ︒∠=时,它是矩形 D .当AC BD =时,它是正方形3.(0分)[ID :9897]平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( ) A .8和14B .10和14C .18和20D .10和344.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++5.(0分)[ID :9891]已知函数()()()()22113{513x x y x x --≤=-->,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0B .1C .2D .36.(0分)[ID :9879]如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得4AO =米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB 的长度为 ( )A .5米B .6米C .3米D .7米7.(0分)[ID:9858]菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A.13B.52C.120D.2408.(0分)[ID:9852]在矩形ABCD中,AB=2,AD=4,E为CD的中点,连接AE交BC的延长线于F点,P为BC上一点,当∠PAE=∠DAE时,AP的长为()A.4B.174C.92D.59.(0分)[ID:9850]如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.510.(0分)[ID:9843]下列二次根式:34,18,,125,0.4823-,其中不能与12合并的有()A.1个B.2个C.3个D.4个11.(0分)[ID:9918]如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1B.x<1C.x>2D.x<212.(0分)[ID:9917]如图所示,▱ABCD的对角线AC,BD相交于点O,AE EB=,3OE=,5AB=,▱ABCD的周长()A.11B.13C.16D.2213.(0分)[ID:9834]下列运算正确的是()A532=B822=C114293=D()22525-=-14.(0分)[ID:9869]如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若3EF ,BD=4,则菱形ABCD的周长为()A.4B.46C.47D.2815.(0分)[ID:9851]下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.2223,4,5C.53,1,44D.1.5,2,2.5二、填空题16.(0分)[ID:10029]某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:植树棵数(单位:棵)456810人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.(0分)[ID:10002]如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB 也为正方形,则△AFC的面积S为_____.18.(0分)[ID:9995]已知一个三角形的周长是48cm,以这个三角形三边中点为顶点的三角形的周长为_______cm.19.(0分)[ID:9985]如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D 与点B重合,则重叠部分(△BEF)的面积为_________cm2.20.(0分)[ID:9983]△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC =______cm .21.(0分)[ID :9981]甲、乙两人分别从A ,B 两地相向而行,匀速行进甲先出发且先到达B 地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B 地到A 地用了______h .22.(0分)[ID :9977]如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.23.(0分)[ID :9975]把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.24.(0分)[ID :9953]已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______25.(0分)[ID :9946]如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .三、解答题26.(0分)[ID :10113]计算 (11148183273(2) (2(325)4545+-27.(0分)[ID :10071]为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问采用何种购买方案可以使得每月处理污水量的吨数为最多?并求出最多吨数.28.(0分)[ID :10056]如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD ),经测量,在四边形ABCD 中,AB =3m ,BC =4m ,CD =12m ,DA =13m ,∠B =90°.(1)△ACD 是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米80元,试问铺满这块空地共需花费多少元?29.(0分)[ID :10050]观察下列各式及验证过程:11122323-=211121223232323-===⨯⨯ 1111323438⎛⎫-= ⎪⎝⎭2111131323423423438⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ 11114345415⎛⎫-= ⎪⎝⎭21111414345345345415⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ (1111456⎛⎫- ⎪⎝⎭验证.(2)针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式,不需要证明.30.(0分)[ID :10073]如图在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC= ,BC= ;(2)若点A 在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D ,并作出以A 、B 、C 、D 四个点为顶点的平行四边形,求出满足条件的D 点的坐标.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.D3.C4.A5.D6.A7.B8.B9.C10.B11.D12.D13.B14.C二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排17.2【解析】【分析】【详解】解:如图连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°∴FB∥AC∴△ABC与△AFC是同底等高的三角形∴S=2故答案为:218.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=19.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B20.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD221.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B地到A地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B22.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E23.【解析】【分析】先利用等腰直角三角形的性质求出BC=2BF=AF=1再利用勾股定理求出DF即可得出结论【详解】如图过点A作AF⊥BC于F在Rt△ABC中∠B=45°∴BC=AB=2BF=AF=AB=24.13或;【解析】第三条边的长度为25.【解析】试题分析:∵四边形ABCD是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP和BP分别平分∠DAB和∠CBA∴∠PAB=∠DAB∠PBA=∠ABC∴∠PAB+∠PBA=三、解答题26.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.D解析:D【分析】根据特殊平行四边形的判定方法判断即可. 【详解】解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误. 故答案为:D 【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.3.C解析:C 【解析】 【分析】 【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形,∴2x 、y2、6能组成三角形,令x>y ∴x-y<6<x+y 20-18<6<20+18故选C . 【点睛】本题考查平行四边形的性质.4.A解析:A 【解析】 【分析】先根据数轴上两点的位置确定1a +和2b -. 【详解】观察数轴可得,1a >-,2b >, 故10a +>,20b ->,∴()12a b =+-- 12a b =+-+3a b =-+故选:A.本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键.5.D解析:D 【解析】 【分析】 【详解】 解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k 成立的x 值恰好有三个. 故选:D.6.A解析:A 【解析】 【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度. 【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =. 在Rt AOB 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++, 22224(41)(1)x x ∴+=-++,解得3x =,22435AB ∴=+=,答:梯子AB 的长为5m . 故选:A . 【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD=利用勾股定理列方程是解题的关键.7.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,13AB∴==,故菱形的周长为52.故选B.8.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】∵∠PAE=∠DAE,∠DAE=∠F∴∠PAE=∠F∴PA=PF∵E是CD的中点∴BF=8设AP=x,则BP=8−x在RtΔABP中,4+(8−x)2=x2得x=174故选:B点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC的长是解题关键.9.C解析:C【解析】【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=12AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD可得答案.【详解】连接BD,交AC于O点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5, ∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.10.B解析:B【解析】【分析】先将各二次根式进行化简,再根据同类二次根式的概念求解即可.【详解】 1832=4333=;12555=-230.48=. 1223=, 12合并的是12518故选:B .【点睛】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念. 11.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.12.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB=,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.13.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .15.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.2【解析】【分析】【详解】解:如图连接FB∵四边形EFGB 为正方形∴∠FBA=∠BAC=45°∴FB∥AC∴△ABC 与△AFC 是同底等高的三角形∴S=2故答案为:2解析:2【解析】【分析】【详解】解:如图,连接FB∵四边形EFGB 为正方形∴∠FBA=∠BAC=45°,∴FB ∥AC∴△ABC 与△AFC 是同底等高的三角形2224ABC IEABCD IEABCD S S S =⋅=⨯=∴S=2故答案为:2.18.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB 根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF 分别是ABACBC 的中点∴DE=BCDF=ACEF=解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC ,DF=12AC ,EF=12AB ,根据三角形的周长公式计算,得到答案.【详解】解:根据题意,画出图形如图所示,点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE=12BC,DF=12AC,EF=12AB,∵原三角形的周长为48,∴AB+AC+BC=48,则新三角形的周长=DE+DF+EF=12×(AB+AC+BC)=24(cm)故答案为:24cm.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D 和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.20.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC 然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】∵AD是中线,AB=13,BC=10,∴152BD BC==.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD⊥BC.21.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B地到A地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B解析:10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度,从而可以求得乙由B地到A地所用的时间.【详解】解:由图可得,甲的速度为:36÷6=6(km/h),则乙的速度为:366 4.54.52-⨯-=3.6(km/h),则乙由B地到A地用时:36÷3.6=10(h),故答案为:10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【详解】解:∵BD=AD,BE=EC,∴DE=12AC=5,DE∥AC,∵CF=FA,CE=BE,∴EF=12AB=3,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.23.【解析】【分析】先利用等腰直角三角形的性质求出BC=2BF=AF=1再利用勾股定理求出DF即可得出结论【详解】如图过点A作AF⊥BC于F在Rt△ABC中∠B =45°∴BC=AB=2BF=AF=AB=解析:31-【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴2AB=2,BF=AF=22AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,22AD AF-3∴33,3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.24.13或;【解析】第三条边的长度为解析:13119【解析】第三条边的长度为222212+5125=119-或25.【解析】试题分析:∵四边形ABCD是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP 和BP 分别平分∠DAB 和∠CBA ∴∠PAB=∠DAB ∠PBA=∠ABC ∴∠PAB+∠PBA=解析:【解析】试题分析: ∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB=∠DAB ,∠PBA=∠ABC ,∴∠PAB+∠PBA=(∠DAB+∠CBA )=90°,∴∠APB=180°﹣(∠PAB+∠PBA )=90°;∵AB ∥CD ,∴∠PAB=∠DPA ,∴∠DAP=∠DPA ,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt △APB 中,AB=10,AP=8,∴BP==6,∴△APB 的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.三、解答题26.(132)5【解析】【分析】(1)根据二次根式的混合运算顺序,首先计算开方,再计算乘法,最后从左向右依次计算即可.(2)根据二次根式的混合运算顺序,平方差公式和完全平方公式进行计算,最后从左向右依次计算即可.【详解】(11148183273=331833 =432333(2)(2(325)4545+- 5(16-5) 5 5【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则. 27.(1)m =18;(2)两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨【解析】【分析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出关于m的分式方程,求出m的值即可;(2)设购买A型设备x台,则B型设备(10-x)台,根据题意列出关于x的一元一次不等.式,求出x的取值范围,再设每月处理污水量为W吨,则W=2200x+1800(10-x)=400x+18000,根据一次函数的性质即可求出最大值.【详解】(1)由题意得:9753 m m=-,解得m=18,经检验m=18是原方程的根,故m的值为18;(2)设购买A型设备x台,B型设备(10-x)台,由题意得:18x+15(10-x)≤165,解得x≤5,设每月处理污水量为W吨,由题意得:W=2200x+1800(10-x)=400x+18000,∵400>0,∴W随着x的增大而增大,∴当x=5时,W最大值为400×5+18000=20000,即两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨.【点睛】本题考查了一次函数与不等式的综合应用,属于方案比较问题,理解题意是解题关键.28.(1)△ACD是直角三角形,理由见解析;(2)2882元.【解析】【分析】(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;(2)分别利用三角形的面积公式求出△ABC、△ACD的面积,两者相加即是四边形ABCD 的面积,再乘以80,即可求总花费.【详解】解:(1)如图,连接AC,在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cmCD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD 是直角三角形,∠ACD =90°;(2)∵S △ABC =12×3×4=6,S △ACD =12×5×12=30, ∴S 四边形ABCD =6+30=36,费用=36×80=2882(元). 答:铺满这块空地共需花费2882元.【点睛】 本题考查勾股定理、勾股定理的逆定理的应用、三角形的面积公式.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 29.(1)见解析;(2)见解析.【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出一般规律即可求解.【详解】(111115456524⎛⎫-= ⎪⎝⎭ 21111515456456456524⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭; (221111111n n n n n n ⎛⎫-= ⎪-+-⎝⎭n 为自然数,且n ≥2) . 【点睛】本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键. 30.(1)135°,2;(2)D 1(3,-4)或D 2(7,-4)或D 3(-1,0).【解析】【分析】(1)根据图形知道CB 是一个等腰三角形的斜边,所以容易得出ABC ∠的度数,利用勾股定理可以求出BC 的长度;(2)根据A 点的坐标(1,-2),并且ABCD 为平行四边形,如图D 的位置有三种情况.【详解】解:(1)由图形可得:∠ABC=45°+90°=135°,BC=222+2=22;故答案为:135°,22;(2)满足条件的D 点共有3个,以A 、B 、C 、D 四个点为顶点的四边形为平行四边形分别是123ABCD ABD C AD BC ,,.其中第四个顶点的坐标为:D 1(3,-4)或D 2(7,-4)或D 3(-1,0)【点睛】本题考查等腰三角形的性质;勾股定理;平行四边形的判定和性质.。

成都石室佳兴外国语学校数学三角形填空选择单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学三角形填空选择单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学三角形填空选择单元测试卷 (word 版,含解析) 一、八年级数学三角形填空题(难)1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E =∠ECD −∠EBC =12∠ACD −12∠ABC =12∠A =21°. 故答案为21°.3.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.4.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.5.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.6.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.【答案】108°【解析】【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.7.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.cm.【答案】242【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=1×12×4=24cm2.2考点:1.三角形的面积;2.三角形三边关系.8.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.【答案】85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.∠__________.9.如图,五边形ABCDE的每一个内角都相等,则外角CBF【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF 等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.10.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)11.在多边形内角和公式的探究过程中,主要运用的数学思想是( )A .化归思想B .分类讨论C .方程思想D .数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n 为整数)的推导过程即可解答. 【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n 为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n 边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n 边形的内角和,体现了化归思想.故答案为A .【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.12.已知△ABC 的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为( )A .3和4B .1和2C .2和3D .4和5 【答案】D【解析】【分析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.13.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,那么∠AHE 和∠CHG 的大小关系为( )A .∠AHE >∠CHGB .∠AHE <∠CHGC .∠AHE=∠CHGD .不一定【答案】C【解析】【分析】 先根据AD 、BE 、CF 为△ABC 的角平分线可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,由三角形内角和定理可知,2x+2y+2z=180° 即x+y+z=90°在△AHB 中由三角形外角的性质可知∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,故可得出结论.【详解】∵AD 、BE 、CF 为△ABC 的角平分线∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,∴2x+2y+2z=180° 即x+y+z=90°,∵在△AHB 中,∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,∴∠AHE=∠CHG ,故选C .【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.14.适合下列条件的△ABC 中, 直角三角形的个数为 ①111345a b c ,,;===②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c = ⑦::12:13:15A B C ∠∠∠=⑹5,25,5a b c === A .2个B .3个C .4个D .5个【答案】C【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:222111+345≠()()(),故①不能构成直角三角形;当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;由三角形的三边关系,2+2=4可知⑤不能构成三角形;令a=3x,b=4x,c=5x,可知a2+b2=c2,故⑥能够成直角三角形;根据三角形的内角和可知⑦不等构成直角三角形;由a2=5,b2=20,c2=25,可知a2+b2=c2,故⑧能够成直角三角形.故选:C.点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.15.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形ABCD内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG的面积为()A.7B.8C.9D.10【答案】B【解析】分析:连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.详解:连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=7,S四边形BFOE=9,S四边形CGOF=10,∴7+10=9+S四边形DHOG,解得,S四边形DHOG=8.故选B.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.16.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.17.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.18.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.19.如果一个多边形的内角和是1800°,这个多边形是()A.八边形B.十四边形C.十边形D.十二边形【答案】D【解析】【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=12.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.20.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75°B.135°C.120°D.105°【答案】D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选。

成都石室佳兴外国语学校数学全等三角形单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学全等三角形单元测试卷 (word版,含解析)

成都石室佳兴外国语学校数学全等三角形单元测试卷(word版,含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C ,∠BAC=∠ABD ,∠BDC=∠C ,∵∠BDC=∠A+∠ABD=2∠BAC ,∴∠ABC=∠C=2∠BAC ,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC ,当AD=BD ,CD=BC ,∴∠ABC=∠C ,∠BAC=∠ABD ,∠CDB=∠CBD ,∵∠BDC=∠BAC+∠ABD=2∠BAC ,∴∠ABC=∠C=3∠BAC ,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180()7︒ . 综上所述,∠A 的最小度数为:180()7︒. 故答案是:180()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.3.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.4.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】 根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01 2122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】 解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.5.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵BD BAABE DBCBE BC∠∠=⎧⎪=⎨⎪=⎩,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.6.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】 先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】 ∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.7.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB -∠ACD=50°,即∠DCB=50°,∵DB=DC ,∴∠DBC=∠DCB ,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.8.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM垂直于OA于M,作PN垂直于OB 于点N,证明△PMD≌△PND,进而求出DF长度,从而求出OF的长度.【详解】如图所示,作DM垂直于OA于M,作PN垂直于OB于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP,∠PND=∠PMD=90°,∴△PND≌△PMD,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm.【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A (3,2),点B (1,0),以线段AB 为边作等腰三角形ABP ,使得点P 在坐标轴上.则这样的P 点有( )A .4个B .5个C .6个D .7个【答案】D【解析】【分析】 本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.13.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5【答案】C【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,14.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=12,得出△A 1B 1A 2的边长为12,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.【详解】解:∵△A 1B 1A 2为等边三角形, ∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=12, ∴△A 1B 1A 2的边长为12, 同理得:∠OB 2A 2=30°, ∴OA 2=A 2B 2=OA 1+A 1A 2=12+12=1, ∴△A 2B 2A 3的边长为1, 同理可得:△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.故选:C .【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.15.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-134632⨯=673﹣3点A 2019的坐标为:(673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.16.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD∠=∠=︒,∵PO OC,∴OPC∆是等边三角形,故③正确;在AB上找到Q点使得AQ=OA,则AOQ∆为等边三角形,则120BQO PAO∠=∠=︒,在BQO∆和PAO∆中,BQO PAOQBO APOOB OP∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS∆∆≌(),∴PA BQ=,∵AB BQ AQ=+,∴AB AO AP=+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO∆∆≌是解题的关键.17.如图,Rt ACB∆中,90ACB∠=︒,ABC∠的平分线BE和BAC∠的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF AD⊥交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.下列结论:①45APB∠=︒;②PB垂直平分AF;③BD AH AB-=;④2DG PA GH=+;其中正确的结论有()A.4个B.3个C.2个D.1个【答案】A【解析】【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=12∠ABC,然后利用三角形的内角和定理整理即可得解;②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;④求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后根据2PA即可得到2DG PA GH=+.【详解】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=12∠ABC,∠CAP=12(90°+∠ABC)=45°+12∠ABC,在△ABP中,∠APB=180°−∠BAP−∠ABP,=180°−(45°+12∠ABC+90°−∠ABC)−12∠ABC,=180°−45°−12∠ABC−90°+∠ABC−12∠ABC,=45°,故本小题正确;②∵PF⊥AD,∠APB=45°(已证),∴∠APB=∠FPB=45°,∵∵PB为∠ABC的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴故DG GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.18.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.6个B.5个C.4个D.3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB为等腰三角形,∴可分为:PA=PB,PA=AB,PB=AB三种情况,如图所示:∴符合条件的点P共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.19.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷
成都石室佳兴外国语学校八年级下期数学入学考试题
(考试时间90分钟,总分120分)
A 卷(共100分)
一、选择题(每小题3分,共30分)
每小题给出的四个选项中,只有一项是符合要求的,把符合要求的选项的代号填入题后的答题卡内. 1. 9的平方根是( )
(A )81 (B )3± (C )3 (D )3-
2. 已知⎩⎨⎧-==1
1
y x 是方程32=-ay x 的一个解,那么a 的值是( )
(A )1 (B )3 (C )3- (D )4
3.若三角形三边长为a ,b ,c ,且满足等式ab c b a 2)(2
2
=-+,则此三角形是( ) (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 4.在实数:3.14159,
,1.010010001…,∙
∙12.4,π,
7
22
中,无理数有( ) (A )1个 (B )2个 (C )3个 (D )4个 5. 下列说法正确的是( )
(A )三角形的三个内角中,小于90的角不能少于两个(B )三角形的一个外角大于任何一个内角 (C )同旁内角一定互补 (D )凡是定理都可以作为公理 6.若10<<a ,则点M (1-a ,a )在( )
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
7.已知:一次函数b kx y +=(0≠k )的图像经过(12-,)、(4,3-)两点,则它的图象不经过( ) (A )第一象限
(B )第二象限
(C )第三象限
(D )第四象限
8. 下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( ) (A )甲比乙的成绩稳定 (B )乙比甲的成绩稳定 (C )甲、乙两人的成绩一样稳定 (D )无法确定谁的成绩更稳定
9.用图象法解方程组⎩
⎨⎧=+=-424
2y x y x 时,下图中正确的是( )
10. △ABC 中,AB=7,BC=24,AC=25.在△ABC 内有一点P 到各边的距离相等,则这个距离为( ) (A )2 (B )3 (C )4 (D )5 得 分 评卷人
11. 若一个数的平方根是它本身,则这个数的立方根是 . 12.若正比例函数y =-3mx 的图像过点A (
3
1
,1),则m=_______. 13.已知:在平面直角坐标系中,若点M (1,0)与点N (a ,0)之间的距离是5,则a 的值是 . 14.在△ABC 中,AB=AC=17cm ,BC=16 cm ,AD ⊥BC 于点D ,则AD=_______. 得 分 评卷人
15. (本小题满分12分,每题6分)
(1)计算:1
212122
18-⎪⎭⎫ ⎝⎛+-+- (2)解方程组:⎪⎩

⎨⎧=+--=--2322)1(3)1(4y x y y x
16.(本小题满分6分)
如图,在直角坐标系中:
(1)描出下列各点,并将这些点用线段依次连接起来:(﹣2,4),(﹣3,8),(﹣8,4),(﹣3,1),(2,4);(2)作出(1)中的图形关于y 轴的对称图形.
二、填空题(每小题4分,共l6分)
三、解答题(本大题共6个小题,共54分)
(A ) x
y O 4 2
2 4 x
y
O
4 4
-2 -2 (B ) x
y
O 4
4 2 -2
(C ) x
y
O
4
4 -2
(D )
x
y O 1 2 3 4 5
6 7 8
9
1 2 3 4 5 6 7 8 9
-9 -8 -7 -6 -5 -4 -3 -2 -1
17.(本小题满分8分)
某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目
测试成绩/分
甲 乙 丙 笔试
92 90 95 面试
85 95 80 图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题: (1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
18.(本小题满分8分)
已知:如图所示,AB ∥CD ,∠A =∠F ,∠D =∠E .
求证:AF ⊥DE .
19.(本小题满分10分)
如图,在平面直角坐标系中,一次函数5+=kx y 的图象经过点A (1,4),点B 是一次函数5+=kx y 的图象与正比例函数x y 3
2
=
的图象的交点. (1)求点B 的坐标. (2)求△AOB 的面积.
20. (本小题满分10分)
小明的妈妈在菜市场买了3斤萝卜、2斤排骨,准备做萝卜排骨汤,回到家中后,一家人之间发生了如下的对话:
妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”; 小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”
请你根据以上对话中蕴含的信息,通过列方程(组)分别求出这天萝卜、排骨的单价(单位:元/斤).
B 卷(共20分)
得 分 评卷人
21. 三元一次方程组⎪⎩

⎨⎧-=-+=++=+-342310329
2z y x z y x z y x 的解为 .
22. 如右图所示,点A 的坐标为(1,0),点B 在直线x y -= 上运动,当线段AB 最短时,点B 的坐标为 . 23. 若0121322=++++-b b a a ,则b a
a -+22
1
= 得 分 评卷人
26.(本小题满分8分)
如图所示,直线l :22
1
+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4)
,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.
(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 为何值时△COM ≌△AOB ,并求此时M 点的坐标.
一、填空题(每小题4分,共12分)
二、解答题
A D
F
H C
B
E
G O
(图一) 甲 34% 丙 28% 乙 ______ 其他
甲 乙 丙
竞选人
100 95 90 85 80 75 70
分数 笔试 面试 (图二) A B
O
x
y
A
B
O
x
y
A
M
C B O
x
y
l。

相关文档
最新文档