细胞的总蛋白质提取全过程及经验
蛋白质的分离纯化

蛋白质的分离纯化蛋白质是生命体中最基本的分子之一,它在细胞内发挥着重要的功能。
由于蛋白质的复杂性和多样性,研究人员通常需要从复杂的混合物中分离和纯化蛋白质。
蛋白质的分离纯化是生物化学和生物技术领域中非常重要的一项工作,它为我们深入研究蛋白质的结构和功能提供了必要的条件。
蛋白质的分离纯化可以通过多种不同的方法实现,这些方法包括离心法、凝胶过滤法、电泳法、层析法等。
在选择合适的方法时,研究人员需要考虑到蛋白质的特性以及实验的要求。
离心法是最常用的分离方法之一,在离心过程中,通过调整离心力和离心时间,可以实现不同密度的蛋白质的分层。
这种方法适用于分离大分子量的蛋白质。
凝胶过滤法是利用孔径不同的凝胶将蛋白质分离开来。
通常使用的凝胶有琼脂糖凝胶和聚丙烯酰胺凝胶,这些凝胶具有不同的孔径,可以根据蛋白质的分子量选择合适的凝胶进行分离。
电泳法是基于蛋白质的电荷和分子量差异而进行分离的方法。
最常用的电泳方法是SDS-PAGE电泳,通过使用SDS(十二烷基硫酸钠)对蛋白质进行解性和蛋白质间的形成复合物,使得蛋白质在电泳过程中仅仅受到电场力的影响,从而实现蛋白质的分离。
层析法是一种利用物质在载体上的分配和吸附性质进行分离的方法。
常见的层析方法有凝胶层析、亲和层析、离子交换层析等。
凝胶层析是通过利用载体颗粒的孔径进行分离,亲和层析是将特定配体固定在载体上,与目标蛋白质结合,从而实现分离,而离子交换层析是利用载体表面电荷与目标蛋白质的电荷相互作用进行分离。
在进行蛋白质的分离纯化时,需要注意以下几个关键步骤。
首先是样品制备,通常样品要经过细胞破碎、蛋白质提取等步骤,使得目标蛋白质从复杂的混合物中提取出来。
其次是样品的处理,包括去除杂质、调整蛋白质的溶液环境等。
然后是选择合适的分离方法,根据蛋白质的特性和实验要求来确定最适合的方法。
最后是纯化过程中的监测和分析,通过使用各种蛋白质分析方法,如SDS-PAGE、Western blot等,来确定目标蛋白质的纯化程度和鉴定其存在。
蛋白质提取

蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。
但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。
因此可采用不同溶剂提取、分离及纯化蛋白质和酶。
蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。
故分子结构性质是不同蛋白质溶解差异的内因。
温度、pH、离子强度等是影响蛋白质溶解度的外界条件。
提取蛋白质时常根据这些内外因素综合加以利用。
将细胞内蛋白质提取出来。
并与其它不需要的物质分开。
但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。
蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。
这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。
水适用于白蛋白类蛋白质的抽提。
如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。
如球蛋白类能溶于稀盐溶液中,脂蛋白可用稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。
其它不溶于水的蛋白质通常用稀碱溶液抽提。
蛋白质类别和溶解性质白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。
真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。
拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液精蛋白: 溶于水和稀酸,易在稀氨水中沉淀组蛋白: 溶于水和稀酸,易在稀氨水中沉淀硬蛋白质: 不溶于水、盐、稀酸及稀碱缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如脂肪部分露于外,则脂溶性占优势,如脂肪部分被包围于分子之中,则水溶性占优势。
蛋白的制备

蛋白的制备全文共四篇示例,供读者参考第一篇示例:蛋白是生物体内不可或缺的重要分子,它们参与了身体的生长发育、免疫防御、组织修复等多种生理功能。
在科学研究和工业生产中,制备纯净的蛋白是基础工作之一。
本文将介绍蛋白制备的基本原理、常用技术方法以及相关注意事项。
一、蛋白的结构和功能蛋白是由不同种类的氨基酸残基通过肽键连接而成的长链状分子。
它们可以折叠成特定的空间结构,从而实现各种功能。
蛋白的结构可以分为四个层次:一级结构是氨基酸序列的线性排列;二级结构是α螺旋或β折叠等局部结构;三级结构是各个结构域的整体折叠;四级结构是多个蛋白互相组装而成的复合体。
蛋白具有多种功能,如酶的催化作用、抗体的免疫防御、激素的信号传递等。
研究蛋白的结构和功能对于认识生物体的生命活动至关重要。
二、蛋白的制备原理蛋白的制备过程一般包括以下几个步骤:提取、纯化、结构鉴定和功能分析。
首先是蛋白的提取,即从生物体内分离出目标蛋白。
提取方法一般包括机械破碎、化学溶解和生物学方法等。
接下来是蛋白的纯化,通过不同的技术方法,如柱层析、凝胶电泳、超滤等,将目标蛋白从混合样品中分离出来。
然后是结构鉴定,利用质谱、X射线晶体学等方法确定蛋白的三维结构。
最后是功能分析,通过酶活性测定、配体结合实验等手段研究蛋白的功能。
三、常用的蛋白制备技术1.柱层析法柱层析法是一种基于蛋白分子大小、电荷、疏水性等特性的分离技术。
常用的柱层析方法包括离子交换层析、凝胶过滤层析、金属螯合层析等。
通过选择合适的柱和缓冲液条件,可以实现对蛋白的高效纯化。
2.凝胶电泳法凝胶电泳法是一种将蛋白按照大小、电荷分离的技术。
常见的凝胶电泳包括SDS-PAGE、原位电泳、双向电泳等。
通过凝胶电泳可以对蛋白进行定性和定量分析,为后续的进一步纯化和结构鉴定提供依据。
3.超滤法超滤法是利用不同孔径的超滤膜将混合液中的蛋白筛选出来的技术。
超滤法可以快速分离大分子和小分子,是一种高效的蛋白纯化方法。
提取蛋白的常规方法

1、原料的选择早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。
但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,- 105 - 蛋白质提取与制备Protein Extraction and Preparation因而对提取要求更复杂一些。
原料的选择主要依据实验目的定。
从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。
尽量要新鲜原料。
但有时这几方面不同时具备。
含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。
一般要注意种属的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。
要事前调查制备的难易情况。
若利用蛋白质的活性,对原料的种属应几乎无影响。
如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。
但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。
研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。
可能时尽量用全年均可采到的原料。
对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。
2、前处理a、细胞的破碎材料选定通常要进行处理。
要剔除结缔组织及脂肪组织。
如不能立即进行实验,则应冷冻保存。
除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。
不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。
如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。
⑴机械方法主要通过机械切力的作用使组织细胞破坏。
常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。
蛋白质提纯注意事项

蛋白质提纯注意事项
蛋白质提纯的注意事项包括以下几点:
1. 操作应尽可能在冰上或冷库内进行,以防止蛋白质的变性。
2. 维持合适的pH,除非进行聚焦层析,所使用的缓冲溶液pH应避免与pI相同,以防止蛋白质的沉淀。
3. 使用蛋白酶抑制剂,防止蛋白酶对目标蛋白的降解。
在纯化细胞中的蛋白质时,加入DNA酶,降解DNA,防止DNA对蛋白的污染。
4. 避免样品反复冻融和剧烈搅动,以防蛋白质的变性。
5. 缓冲溶液成分尽量模拟细胞内环境。
6. 在缓冲溶液中加入0.1~1mmol/LDTT(二硫苏糖醇)(或β-巯基乙醇),防止蛋白质的氧化。
7. 加1~10mmol/LEDTA金属螯合剂,防止重金属对目标蛋白的破坏。
8. 使用灭菌溶液,防止微生物生长。
9. 在前处理阶段,需要将蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态,不丢失生物活性。
动物材料应先剔除结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免受单宁等物质的污染,油料种子最好先用低沸点的有机溶剂如乙醚等脱脂。
然后根据不同的情况,选择适当的方法,将组织和细胞破碎。
细胞碎片等不溶物用离心或过滤的方法除去。
如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。
注意,这只是蛋白质提纯的部分注意事项,具体的操作流程和实验条件可能需要结合实验需求和实际情况进行调整。
蛋白质分离技术全

.
29
几种盐在不同温度下的溶解度(克/100毫升水)
•
0℃ 20℃ 80℃ 100 ℃
(NH4)2SO4 70.6 75.4
95.3
103
Na2SO4 4.9 18.9
43.3
42.2
NaH2PO4 1.6
加入大量中性盐后夺走了水分子破坏了水加入大量中性盐后夺走了水分子破坏了水化膜暴露出疏水区域同时又中和了电荷化膜暴露出疏水区域同时又中和了电荷破坏了亲水溶胶蛋白质分子即聚集而形成沉破坏了亲水溶胶蛋白质分子即聚集而形成沉盐浓度saltingoutsaltingin等点电时的蛋白质等点电时的蛋白质亲水胶体亲水胶体带负电荷蛋白质带负电荷蛋白质亲水胶体亲水胶体脱水脱水脱水带负电荷蛋白质疏水胶体不稳定蛋白颗粒不稳定蛋白颗粒阴离子阳离子蛋白质聚集沉淀带正电荷蛋白质带正电荷蛋白质亲水胶体亲水胶体水化膜带正电荷蛋白质疏水胶体水化膜中性盐的选择中性盐的选择常用的中性盐中最重要的是常用的中性盐中最重要的是nhnh4422soso44为它与其他常用盐类相比有十分突出的优点
• 3) 酶解法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛 酶和酯酶等,于37℃,pH8,处理15分钟,可以专一性地将 细胞壁分解。
• 4) 有机溶剂处理法:利用氯仿、甲苯、丙酮等脂溶性溶剂或
SDS(十二烷基硫酸钠)等表面活性剂处理细胞,可将细胞
膜溶解,从而使细胞破裂,此法也可以与研磨法联合使用。
.
例如,胰岛素。
.
17
4. 膜蛋白的提取
• 膜蛋白的种类繁多,多数膜蛋白分子数目较少,但却赋予细胞膜 非常重要的生物学功能。
• 根据膜蛋白分离的难易及其与脂分子的结合方式,膜蛋白可分为 两大类型:外周膜蛋白和内在膜蛋白。 (1) 外周膜蛋白为水溶性蛋白,靠离子键或其它较弱的键与膜表 面的蛋白质分子或脂分子结合,因此只要改变溶液的离子强度甚 至提高温度就可以从膜上分离下来,膜结构并不被破坏。 (2) 内在膜蛋白与膜结合非常紧密,一般讲只有用去垢剂 (detergent)使膜溶解后才可分离出来。
细胞总蛋白的制备, SDS-PAGE,Western Blot

医学生物学研究技术与实验实验报告实验名称:细胞总蛋白的制备,SDS-PAGE,Western Blot一、实验目的1. 掌握SDS直接裂解细胞法提取蛋白质2. 掌握Lowry法测定蛋白质浓度的原理3. 掌握SDS-PAGE分离蛋白质的原理和技术4. 掌握半干转移的操作和Western Blot 的原理和技术二、实验原理1. 蛋白质提取常见裂解方法极其原理。
蛋白质的抽提是指破碎过程中,将生物材料在水,缓冲液或稀盐溶液等适当溶剂中浸泡,使胞内的蛋白质等内容物释放到溶剂中。
血浆,消化液和分泌液等体液中可溶性蛋白质,可不经抽提,直接进行分离。
细胞内一般蛋白质的抽提,应先将细胞膜或细胞壁破碎,然后用适当溶剂将蛋白质溶出,再用离心法除去不溶物,得到出抽提液。
膜蛋白的抽提比较复杂。
膜蛋白按其所在位置分为外周蛋白和固有蛋白。
外周蛋白通过次级键和膜外侧脂质的性头部鳌和在一起,应选则适当离子强度及PH的缓冲液,其中要好友EDTA,将其抽出。
固有蛋白嵌和在膜脂质双层中,通过疏水键于膜内侧脂质层的疏水性尾部结合。
在抽提固有蛋白时,要减弱器与膜脂的疏水性结合,又要使其保持部分疏水基暴露在外的天然状态,这一过程叫增溶作用。
较为理想的增溶剂是去垢剂。
目前用的去垢剂分为阴离子型,阳离子型,两性离子型,非离子型。
增溶后的膜蛋白抽提剂有较好的均一性,便于进一步纯化。
纯化后的膜蛋白,可通过透析法去除去垢剂,进行膜蛋白重组。
抽提蛋白质的理想条件是尽可能促进蛋白质在溶剂中溶解,而减弱蛋白水解酶活力,以减少细胞的自溶过程。
主要是通过选择适当PH,温度,或溶剂,以及加适当蛋白水解酶抑制剂。
常见裂解方法有:1 低渗裂解,2 冻融法,3 Triton100或者NP-40等非离子去污剂(比较温柔),4 脱氧胆酸钠、SDS、Triton100 (强烈),5 上样缓冲液(含SDS)+细胞沸水浴5 min,6 匀浆器。
2. Lowry法测定蛋白质浓度1. 蛋白质与碱性铜试剂产生双缩脲反应,形成紫红色蛋白质-铜复合物;2. 紫红色复合物中的酪氨酸和色氨酸残基还原磷钼酸和磷钨酸,产生深蓝色,呈色强度与蛋白质浓度呈正相关,分光光度计测A750吸光度,做标准曲线3.SDS-PAGE分离蛋白质SDS-聚丙烯酰胺凝胶电泳是蛋白分析中最经常使用的一种方法.它是将蛋白样品同离子型去垢剂十二烷基硫酸钠(SDS)及巯基乙醇一起加热,使蛋白变性,多肽链内部及肽键之间的二硫键被还原,肽键被打开,打开的肽键靠疏水作用与SDS结合而带负电荷,电泳时在电场作用下,肽链在凝胶中向正极迁移。
蛋白纯化技术路线

蛋白纯化技术路线
1.寻找来源:确定需要纯化的蛋白质所在的生物样品,可以是细胞提取物、细菌发酵液、动物组织等。
2.预处理:对样品进行预处理来去除非目标蛋白质和杂质,使目标蛋白更容易纯化。
常见的预处理方法包括超声破碎、离心、滤过等。
3.亲和层析:使用亲和层析柱选择性地结合目标蛋白质。
亲和层析柱可以根据目标蛋白质的性质选择,例如亲和剂可以是金属离子、抗体、某种结构域等。
目标蛋白质被结合到柱子上后,其他非目标蛋白质可以通过洗脱步骤洗脱下来。
4.尺寸排阻层析:利用蛋白质的分子量差异进行分离。
此步骤常用于去除亲和层析步骤中残留的杂质和非目标蛋白质。
5.离子交换层析:利用蛋白质在不同离子浓度条件下的电荷差异来实现分离。
在正负电荷基质之间的交换,可以根据蛋白质的电荷特性进行选择性结合和洗脱。
6.亲水性层析:利用蛋白质的亲水性差异进行分离。
亲水性层析可以通过调整盐浓度和pH值来选择性结合和洗脱目标蛋白质。
7.透析:用于去除层析步骤中使用的缓冲剂、杂质与目标蛋白之间的物质交换。
8.浓缩:用于将目标蛋白溶液浓缩至适当的浓度,以便于后续的研究操作。
9.纯化效果验证:使用蛋白质分析方法(如SDSPAGE、Westernblot等)来验证纯化的效果和目标蛋白质的纯度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞的总蛋白质提取全过程及经验
如果你要自己裂解细胞的时候,需要注意的事项:师兄给你的细胞要赶紧裂解,当然了,你还要看是带瓶子给你还是消化好给你的。
一般我使用的时候,是将细胞统一从几个培养瓶中消化收集起来,然后赶紧4度下离心,用预冷的PBS 或者生理盐水洗涤细胞。
也有人喜欢在培养瓶中直接加裂解液,这个一般都是做western什么用的,需要的蛋白量不是很多,而且大部分时候都是要有活性的蛋白的。
一般1000rpm足够离心了,转速太快,细胞会破碎,然后会损失蛋白。
PBS洗涤的最后一遍,记得将细胞转移到超声管中,也许是由于普通的10mL离心管有可能承受不了超声的能量吧,我们师兄师姐一般都用超声管来自装细胞,然后加入裂解液直接超声。
3s每次,间歇3s60次,400W,重复工作复位2次,总共超声180次就差不多了。
裂解后的细胞要赶紧在2500g下离心30-60min,超声管是没有盖子的,可以直接在上面加一层封口膜离心。
在离心的时候,去配制沉淀液,丙酮:无水乙醇:冰乙酸=50:50:0.1,体积比。
一般我加的是裂解液体积的5倍。
沉淀液要预冷,我喜欢将沉淀液放在-20度下。
细胞离心后,上清液加入到沉淀液中,就会看到比较多的白色沉淀出现,-20度沉淀>2h,然后就可以高速沉淀下蛋白了。
这里我们用的体积比较大,一般的离心管不能用,要用beckman专用的那种50mL离心管,25000g,15-30min。
Beckman离心管比较大,底部是平的,所以蛋白在底部并不是很牢固,在弃去上清液的时候,一定要注意用枪头缓慢的吸出!然后用5mL做有的丙酮洗涤一遍,再用75%酒精将蛋白转移到4mL的离心管中,当然,如果你的蛋白很少,1.5mL的EPtube也可以使用。
之所以用4mL是因为我每次提取的蛋白量大概>10mg,而冻干后的蛋白复溶后测定浓度,一般要求在5-6mg/mL之间,所以buffer的体积也会比较的大。
这里蛋白在离心的时候,是片状的,一定要慢慢转移,防止损失,不行就多次转移,每次都将离心管离心去上清。
转移后的蛋白离心除去酒精,这时候还是会有部分水分的,就在冻干机里面冻干,尽量在室温下操作。
冻干后的蛋白质就可以保存起来了。
然后在使用之前,测定蛋白质的浓度,如果你用了8M尿素溶解,在酶解的时候,就需要稀释到<2M,所以蛋白初始浓度不能太低。
在蛋白复溶的时候,尽量在4度操作,然后一定要慢慢的加buffer,加多了就不好了,只要蛋白能完全溶解就好。
完全溶解的蛋白,会有些粘稠,但是绝对不会有不溶物产生,如果产生了不溶物,就说明需要加buffer,一般复溶这一步要进行一个下午最少!。