整式的乘法1 (2)
整式的乘法(1)

(3)
(5)
7.能力提升:
(1)
(2)若单项式 xn+1y与单项式3xyz乘积的结果是一个六次单项式,求n的值。
四、【我的收获】
4.经历了上面的探索过程,请在下面写出单项式乘法法则:
归纳:单项式乘单项式的运算法则:
探究二:做一做
例1.利用乘法交换 律、结合律以及前面所学的幂Hale Waihona Puke 运算性质,计算下列单项式乘以单项式:
(1)2xy2· xy(2)(-2a2b3)·(-3a)
解:原式=()()()解:原式=()()() ()
= =
(3)7xy2·(2xyz)2
A.4a3bcB.36a3bcC.-4a3bcD.-36a3bc
4.下列各题的计算中正确的是()
A.(-7a)·(-5a)2=35a3B.7a2·8a3=15a5
C.3x3·5x3=15x9D.(-3x4)·(-4x3)=12x7
5.(-2a4b2)(-3a)2的结果是( )
A.-18a6b2B.18a6b2C.6a5b2D.-6a5b2
里辛一中“分层互助”导学案
初一数学 课题:整式的乘法(1)备课时间:2013-04-07
课堂寄语:数学王子高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。”
学习
目标
1.经历探索整式乘法运算法则的过程,发展观察,归纳,猜想,验证等能力。
(2)(2ab3)·(-4ab)=-2a2b4( )
(3)(xy)3(-x2y)=-x3y3( )
(4)-3a2b(-3ab)=9a3b2( )
2.下列运算正确的是()
整式的乘法说课稿

《整式的乘法(1)》说课稿授课老师:方泽青大家好,今天我说课的题目是北师大版初中数学七年级下册第一章第六节“整式乘法”第一课时的内容。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析和评价分析五个方面加以说明。
一、教材分析:1、教材的地位与作用:本节课的内容是“整式乘法”中的“单项式乘以单项式”,是在学生学习了整式加减的基础上进行的,作为铺垫,又提前安排了同底数幂的乘法、幂的乘方、积的乘方等知识,然后通过实例引入了单项式与单项式的乘法,使学生通过对乘法交换律和结合律等法则的运用,探索单项式与单项式乘法的运算法则。
所以,本节课的知识既是对前面所学知识的综合应用,也为下面学习单项式乘以多项式、多项式乘以多项式和八年级学习分解因式打好基础。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析:学生的心理特征:初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
学生的知识技能基础:在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础。
对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,帮助学生提高认识。
学生的活动经验基础:学生在小学及七年级上的学习中,受到了较好的运算能力训练,能够独立完成计算活动,并具有一定的将实际问题转化为数学问题,通过计算解决实际问题的能力。
沪教版七年级上册 整式乘法-带答案

3.多项式与多项式相乘法则的推导
教学难点:
1.分清单项式与单项式相乘中,幂的运算法则
2.单项式与多项式相乘时结果的符号的确定
3.多项式与多项式相乘的应用
考点及考试要求:
1. 单项式与单项式相乘的法则,能够熟练地进行单项式的乘法计算
2. 单项式与多项式相乘的法则及推导
2、已知:多项式 与3x+1的积中含 项的系数为10,且积中不含x项,求a、b的值。
a=3,b=-1
自我测试
一、选择题:
1、下列说法中,不正确的是( D )
A.单项式乘以单项式,其结果一定仍是单项式
B.两个单项式相乘,积的系数是这两个单项式系数的积
C.两个单项式相乘,每一个因式所含字母都在结果里出现
方法提炼
1、展开式中不含某一项,说明该项的系数为0
2、整式的乘法会联合同类项出考题,所以要熟练掌握理解定义
3、运用整式乘法的运算规律,可以简化运算
巩固练习
一、填空题:
1、 .2
2、
3、 =
4、 。
5、若 ,则A=__________。
二、选择题:
1、若多项式 ,则a、b的值为( D )
A.a=2,b=3 B. a=2,b=-3 C. a=-2,b= -3 D. 都不对
(1)原式= (2)原式= (3)原式=
2、计算:
(1)
(2)
(3)
(4)
分析:观察原式和计算结果,会发现积的最高次项和常数项恰好分别是两个因式的最高次项的乘积和两个常数项的乘积,比较两个代数式的同次项的方法,特别是比较其最高次项和常数项的方法,在考试中经常用到。
解:(1)原式= (2)原式=
第1周1.4整式的乘法(2)

课时课题:第一章第四节整式的乘法(二)课型:新授课授课人:滕州市姜屯中学王翠华授课时间: 2013年 3 月 12 日,星期二,第 2、4 节课教学目标:1.在具体情境中了解单项式与多项式乘法的意义。
2.经历探索单项式与多项式乘法运算法则的过程,理解单项式乘以多项式的运算法则。
3.会利用法则进行单项式与多项式的乘法运算,理解单项式与多项式相乘的算理,体会乘法分配律及转化的数学思想。
4.发展学生有条理思考的能力和语言表达能力。
5.在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣。
教学重点:单项式与多项式相乘的运算法则及应用。
教学难点:灵活应用单项式与多项式乘法的法则。
教法及学法指导:本节应用“以预习稿为载体的自主互动式”学习模式,引导学生通过自己的预习,及对设计的问题进行仔细观察、展示自己的收获、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.学生在之前已经学习了单*单运算法则,但仍然存在不少问题,教学时需复习巩固.课前准备:制作课件,检查学生预习稿完成情况,发现学生存在的问题.教学过程:一、基础展示,导入新课师:同学们好,今天我们继续探究整式的乘法,在此之前我们一块复习一下上节课的学习内容(出示预习稿中的基础知识)师:我们本单元学习整式的乘法,整式包括什么?生:整式包括单项式和多项式。
师:什么是多项式?怎么理解多项式的项数和次数?生:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,有几个单项式就叫做几项,多项式的次数就是其中次数最高的单项式的次数。
师:整式乘法除了我们上节课学习的单项式乘以单项式外,还应包含哪些内容? 生:还应该有单项式乘以多项式和多项式乘以多项式。
(由此引入今天将学习单项式与多项式相乘)设计目的: 单项式乘以多项式最终转化为单项式乘以单项式,所以帮助学生理解单项式与多项式的联系非常重要。
问题1、2的设计是让学生从宏观上把握所学知识间的关系,而不是只见树木,不见森林。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)

考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
1.4整式的乘法(1)(2)(3)

=2x•x−2x• y + y•x y•y
练习一、计算:
(1) (2n+6)(n–3); (2) (2x+3)(3x–1);
(3) (2a+3)(2a–3); (4) (2x+5)(2x+5).
解:(1) (x+y)(x–y)
运用多项式乘法法则,要有序地逐项 相乘,不要漏乘,并注意项的符号.
最后的计算结果要化简 ̄ ̄ ̄
合并同类项.
2
2.(2a b )(3a) [(2) (3)](a a) b
2 3
2
3
6a b
3 3
3.(4 10 ) (5 10 ) (4 5) (10 10 )
5 4
5 4
20 10
9
2 10 6 3 2 2 3 2 4.( x y) (4 xy ) ( x y ) (4 xy )
)
2、单项式乘法法则对于三个以上的单项
式相乘能否同样适用呢? 适用
做一做
1 1 2 1.(2 xy ) ( xy)(3xyz ) (2 3) ( xxx)( y yy) z 3 3
2
2x y z
3 4
1 2 1 2 2 2.(2 x )( xy z )(6 yz ) [2 (6)] ( x x) ( y y) ( zz) 3 3 3 3 2
x 2 a 2 ax
3、长为2x米,宽为3a米的矩形, 面积为多少平方米?
2 x 3a 6 ax
在这里,求矩形的面积,会遇到如下的式子,这
是什么运算呢?
人教版八年级上册数学精品教学课件 第14章整式的乘法与因式分解 第1课时 单项式与单项式、多项式相乘

pa + pb + pc
知识要点 单项式乘多项式的法则
单项式与多项式相乘,就 p p
是用单项式乘多项式的每一 项,再把所得的积相加.
a
b
注意(1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
p c
典例精析 例3 计算:
(1) (-4x) ·(2x2 + 3x-1);
解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
解:由题意得
3m 1 n 2n 3 m
6 4, 1,
解得
m 2, n 3.
∴
m2
+
n
=
7.
方法总结:单项式乘单项式就是把它们的系数和同底
数幂分别相乘,结合同类项的定义,列出二元一次方
程组求出参数的值,然后代值计算即可.
二 单项式与多项式相乘
问题 如图,试问三块草坪的的总面积是多少?
问题2 如果将上式中的数字改为字母,比如 ac5 ·bc2, 怎样计算这个式子?
ac5 ·bc2 = (a ·b) ·(c5 ·c2) (乘法交换律、结合律) = abc5+2 (同底数幂的乘法) = abc7.
根据以上计算,想一想如何计算单项式乘单项式?
知识要点 单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、同底数 幂分别相乘,对于只在一个单项式里含有的字母, 则连同它的指数作为积的一个因式.
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法
第1课时 单项式与单项式、多项式相乘
导入新课
北师大版七年级数学下册课件第一章第四节整式的乘法

对点训练
1.(1)计算a·3a的结果是( B )
A.a2
B.3a2
C.ห้องสมุดไป่ตู้a D.4a
(2)化简(-3x2)·2x3的结果是( C ) A.-3x5 B.18x5 C.-6x5 D.-18x5
知识点二:单项式与单项式相乘的一般步骤
(2)4y·(-2xy2);
解:(1)原式=(3×5)(x2·x3)=15x5.
(2)原式=[4×(-2)]x(y·y2)=-8xy3.
(3)(3x2y)3·(-4x);
(4)(-2a)3·(-3a)2.
解:(3)原式=27x6y3·(-4x)=[27×(-4)](x6·x)y3=-108x7y3.
第一章 整式的乘除
整式的乘法(1)
学习目标
1.经历探索整式乘法运算法则的过程,进一步体会类比方法的 作用,以及乘法分配律在整式乘法运算中的作用. 2.(课标)能进行简单的整式乘法运算(单项式乘单项式).
知识要点 知识点一:单项式乘单项式法则 单项式与单项式相乘的运算法则: 单项式与单项式相乘,把它们的 系数 、相同字母的幂分 别 相乘 ,其余字母连同它的 指数不变 ,作为积的因式.
3
27
=-2x5y5- 1x7y5.
3
7.【例4】(北师7下P15)一家住房的结构如图所示,这家房子 的主人打算把卧室以外的部分都铺上地砖,至少需要多少平 方米的地砖?如果某种地砖的价格是a元/m2,那么购买所需地 砖至少需要多少元?
解:根据题意,得xy+2xy+8xy=11xy(m2), 则把卧室以外的部分都铺上地砖,至少需要11xy m2的地砖,购 买所需地砖至少需要11axy元.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
1、请你计算出例1的结果.
2、仿照例1的计算过程完成P29随 堂练习!
单项式的除法 法则
• 如何进行单项式除以单项式的运算?
单项式相除, 把系数、同底数幂分别相除,作为 商的因式;对于只在被除式里含有的字母,则连它的 指数作为商的一个因式。
理解
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 除式的系数
先把这个多项式的每一项分别除以单项式, 再把所得的商相加。
已知-5xm+3ny3m-n ÷(-2x3ny2m+n) 的商与-2x3y2是同类项,求m+n 的值。
2 3 3 2
(4)(4 x y 3 xy ) 7 xy
2 2
注意:同号得正,异号得负
小组PK赛
挑战学习
第一题
第二题
第三题
第四题
小 结
拓 展
挑战学习
填一填:
(1)3a2÷(6a6)·(-2a4) = ( -1 )
(2) (
Байду номын сангаас
-2x+3y
)· (-2xy)= 4x2y-6xy2
4分题
挑战学习
追 求 融 卓 会 放 越 中 眼 外 全 球
1
Warm up
m
自主学习
(1)a a
8
8
a a a
n
4
mn
3
( 2 ) (3 a ) ( 2 a )
(3) (6 a b ) (2 a b)
3 4 2
同底数幂相 除,底数不 变指数相减
自主学习
阅读课本 28回答下列问题(5min)
填一填:
(1)(-12a3bc ) ÷(
(2)(
-3ac
) =4a2b
3 7 2 x 1 x 2 2
4分题
挑战学习
◆一个长方体模型的长、宽、高分 别为4a(cm),3a(cm),2a(cm)。某种油 漆每千克可漆 的面积,问 漆好这个模型需要多少千克油漆?
1 2 4a 3a 2a a 48a 2
底数不变, 指数相减。
保留在商里 作为因式。
挑战学习
请把解题思路大声说出来
先把这个多项式的每一 项分别除以单项式,再把 所得的商相加。 先定商的符号(同号得正,异号得负);
挑战学习
(1)(3 xy y ) y (2)(ma mb mc) m (3)(6c d c d ) (2c d )
6分题
挑战学习
4分题
(1)(12a b c) (6ab ) 2ab
3 3 2
2a bc
2
(4)(2 (2 )( x 4 y 3) 2 x 2 y 3
3 x 2y 2
反思学习
单项式相除
1、系数相除; 2、同底数幂相除;
3、只在被除式里的幂不变。
多项式除以单项式