高考数学一轮复习 第三章 导数及其应用 第三节 导数与函数的极值、最值作业本 理
高考数学一轮复习 第三章 导数及其应用 第三节 导数与函数的极值、最值夯基提能作业本 文

第三节导数与函数的极值、最值A组基础题组1.若函数f(x)=+ln x,则( )A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点2.函数y=在[0,2]上的最大值是( )A. B. C.0 D.3.函数f(x)=x2-ln x的最小值为( )A. B.1 C.0 D.不存在4.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的极大值、极小值分别为( )A.-,0B.0,-C.,0D.0,5.若函数f(x)=x3-3ax在区间(-1,2)上仅有一个极值点,则实数a的取值范围是( )A.(1,4]B.[2,4]C.[1,4)D.[1,2]6.f(x)=x3-3x2+2在区间[-1,1]上的最大值是.7.已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)的极大值与极小值之差为.8.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为.9.(2018河南洛阳调研)已知f(x)=x3+ax2+bx+1的导数f '(x)满足f '(1)=2a, f '(2)=-b,其中常数a,b∈R.(1)求曲线y=f(x)在点(1, f(1))处的切线方程;(2)设g(x)=f '(x)e-x,求函数g(x)的极值.10.已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.B组提升题组1.(2017课标全国Ⅱ,11,5分)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为( )A.-1B.-2e-3C.5e-3D.12.已知函数f(x)=ax-ln x,当x∈(0,e](e为自然常数)时,函数f(x)的最小值为3,则a的值为.3.已知函数f(x)=+kln x,k<,求函数f(x)在上的最大值和最小值.4.已知函数f(x)=(a>0)的导函数y=f '(x)的两个零点为-3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为-e3,求f(x)的极大值及f(x)在区间[-5,+∞)上的最大值.答案精解精析A组基础题组1.D 因为f(x)=+ln x,所以f '(x)=-+=,当x>2时, f '(x)>0,此时f(x)为增函数;当0<x<2时,f '(x)<0,此时f(x)为减函数,所以x=2为f(x)的极小值点.2.A 易知y'=,x∈[0,2],令y'>0,得0≤x<1,令y'<0,得1<x≤2,所以函数y=在[0,1)上单调递增,在(1,2]上单调递减,所以y=在[0,2]上的最大值是y|x=1=,故选A.3.A f '(x)=x-=,且x>0.令f '(x)>0,得x>1;令f '(x)<0,得0<x<1.∴f(x)在x=1处取得极小值,即最小值,且f(1)=-ln 1=.4.C 由题意知, f '(x)=3x2-2px-q,由f '(1)=0, f(1)=0得解得∴f(x)=x3-2x2+x,由f '(x)=3x2-4x+1=0,得x=或x=1,易得当x=时, f(x)取得极大值,当x=1时, f(x)取得极小值0.5.C 因为f '(x)=3(x2-a),所以当a≤0时, f '(x)≥0在R上恒成立,所以f(x)在R上单调递增, f(x)没有极值点,不符合题意;当a>0时,令f '(x)=0得x=±,当x变化时, f '(x)与f(x)的变化情况如下表:-(-因为函数f(x)在区间(-1,2)上仅有一个极值点,所以或解得1≤a<4.故选C.6.答案 2解析 f '(x)=3x2-6x=3x(x-2),令f '(x)=0得x=0或x=2(舍),当-1<x<0时, f '(x)>0, f(x)为增函数;当0<x<1时, f '(x)<0, f(x)为减函数.所以当x=0时,函数在[-1,1]上取得极大值即最大值,所以f(x)的最大值为2.7.答案 4解析 f '(x)=3x2+6ax+3b,由题意得⇒所以f '(x)=3x2-6x,令3x2-6x=0,则x=0或x=2,所以f(x)在(-∞,0)和(2,+∞)上递增,在(0,2)上递减, 所以f(x)极大值-f(x)极小值=f(0)-f(2)=4.8.答案-37解析由题意知, f '(x)=6x2-12x,令f '(x)=0,得x=0或x=2,当x<0或x>2时, f '(x)>0,当0<x<2时, f '(x)<0,∴f(x)在[-2,0)上单调递增,在(0,2]上单调递减,由条件知f(0)=m=3,∴f(2)=-5, f(-2)=-37,∴所求最小值为-37.9.解析(1)由f '(x)=3x2+2ax+b,得解得所以f(x)=x3-x2-3x+1,f '(x)=3x2-3x-3.于是有f(1)=-.又f '(1)=-3,故曲线y=f(x)在点(1, f(1))处的切线方程为y-=-3(x-1),即6x+2y-1=0.(2)由(1)知g(x)=(3x2-3x-3)e-x,则g'(x)=(-3x2+9x)e-x,令g'(x)=0得x=0或x=3,当x<0或x>3时,g'(x)<0;当0<x<3时,g'(x)>0.于是函数g(x)在(-∞,0)上单调递减,在(0,3)上单调递增,在(3,+∞)上单调递减.所以函数g(x)在x=0处取得极小值g(0)=-3,在x=3处取得极大值g(3)=15e-3.10.解析(1)因为f(x)=e x cos x-x,所以f '(x)=e x(cos x-sin x)-1, f '(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h'(x)=e x(cos x-sin x-sin x-cos x)=-2e x sin x.当x∈时,h'(x)≤0,所以h(x)在区间上单调递减.所以对任意x∈有h(x)≤h(0)=0,即f '(x)≤0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.B组提升题组1.A 由题意可得f '(x)=e x-1[x2+(a+2)x+a-1].∵x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,∴f'(-2)=0,∴a=-1,∴f(x)=(x2-x-1)e x-1, f '(x)=e x-1(x2+x-2)=e x-1·(x-1)(x+2),∴当x∈(-∞,-2),(1,+∞)时, f '(x)>0, f(x)单调递增;x∈(-2,1)时, f '(x)<0, f(x)单调递减.∴f(x)极小值=f(1)=-1.故选A. 2.答案e2解析易知a>0,由f '(x)=a-==0,得x=,当x∈时, f '(x)<0, f(x)单调递减;当x∈时, f '(x)>0, f(x)单调递增,所以f(x)在x=处取得极小值f=1-ln.①当0<≤e时,由1-ln=3,得a=e2,符合题意.②当>e时,由ae-ln e=3,得a=,舍去.综上所述,a的值为e2.3.解析 f '(x)=+=.(1)若k=0,则在上恒有f '(x)<0,∴f(x)在上单调递减.∴f(x)min=f(e)=,f(x)max=f=e-1.(2)若k≠0,则f '(x)==.①若k<0,则在上恒有f '(x)=<0,∴f(x)在上单调递减, ∴f(x)min=f(e)=+kln e=+k-1,f(x)max=f=e-k-1.②若k>0,由k<,得>e,则x-<0,∴f '(x)=<0,∴f(x)在上单调递减,∴f(x)min=f(e)=+kln e=+k-1,f(x)max=f=e-k-1.综上,当k=0时, f(x)min=,f(x)max=e-1;当k≠0且k<时, f(x)min=+k-1, f(x)max=e-k-1.4.解析(1)f '(x)==,令g(x)=-ax2+(2a-b)x+b-c,因为e x>0,所以y=f '(x)的零点就是g(x)=-ax2+(2a-b)x+b-c的零点,且f '(x)与g(x)符号相同. 因为a>0,所以由题意知,当-3<x<0时,g(x)>0,即f '(x)>0;当x<-3或x>0时,g(x)<0,即f '(x)<0,所以f(x)的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).(2)由(1)知,x=-3是f(x)的极小值点,所以有=-e3,结合g(0)=b-c=0,g(-3)=-9a-3(2a-b)+b-c=0,解得a=1,b=5,c=5,所以f(x)=.因为f(x)的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞),所以f(0)=5为函数f(x)的极大值,且f(x)在区间[-5,+∞)上的最大值为f(-5)和f(0)中的最大者.而f(-5)==5e5>5=f(0),所以函数f(x)在区间[-5,+∞)上的最大值是5e5.。
高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。
2025版高考数学全程一轮复习第三章一元函数的导数及其应用第三节导数与函数的极值最值课件

(2)若-2是函数f(x)=(x2+ax-1)ex(a∈R)的极值点,则f(x)的极小值 点为( )
A.5e-2 B.1 C.-e D.-2
答案:B
解析:f′(x)=(2x+a)ex+(x2+ax-1)ex=[x2+(a+2)x+a-1]ex, 由题意得f′(-2)=[4-2(a+2)+a-1]e-2=0,解得a=-1, 故f′(x)=(x2+x-2)ex, 令f′(x)=0,解得x=-2或1, 令f′(x)>0,解得x>1或x<-2,令f′(x)<0,解得-2<x<1, 故f(x)在(-∞,-2),(1,+∞)上单调递增,在(-2,1)上单调递减, 故1为f(x)的极小值点.故选B.
答案:C
5.(易错)若函数f(x)=13x3-4x+m在[0,3]上的最大值为4,则m= ____4____.
解析:∵f′(x)=x2-4=(x+2)(x-2), 令f′(x)=0得x=-2或x=2. ∵0≤x≤3,∴x=2, 当0<x<2时,f′(x)<0, ∴函数f(x)在区间(0,2)上单调递减; 当2<x<3时,f′(x)>0, ∴函数f(x)在区间(2,3)上单调递增. 又f(0)=m,f(3)=m-3, ∵m>m-3, ∴x=0时,f(x)在[0,3]上取得最大值f(0)=m. ∴m=4.
(3)已知函数f(x)=12x2-(a+2)x+2a ln x+1在(4,6)上存在极值点, 则实数a的取值范围是___(_4_,__6)_____.
解析:f′(x)=x-(a+2)+2xa=x2−
a+2 x
x+2a=
x−2 x−a x
,x>0,
由题意f′(x)=
高考数学一轮复习全套课时作业3-3-1导数的应用--极值与最值

题组层级快练3.3.1导数的应用--极值与最值一、单项选择题1.(2021·辽宁沈阳一模)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点2.(2021·河北邯郸一中月考)若函数f(x)=ae x-sinx在x=0处有极值,则a的值为() A.-1B.0C.1D.e3.函数f(x)=12x-sinx在0,π2上的最小值和最大值分别是()A.π6-32,0 B.π4-1,0 C.π6-32,π4-1D.-12,124.(2021·杭州学军中学模拟)函数f(x)=xe-x,x∈[0,4]的最小值为()A.0 B.1e C.4e4D.2e25.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-∞,-1)D.(1,+∞)6.若函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则()A.a-2b=0B.2a-b=0C.2a+b=0D.a+2b=07.设二次函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()二、多项选择题8.已知函数f(x)=x3-ax-1,以下结论正确的是()A.当a=0时,函数f(x)的图象的对称中心为(0,-1)B.当a≥3时,函数f(x)在(-1,1)上为单调递减函数C.若函数f(x)在(-1,1)上不单调,则0<a<3D.当a=12时,f(x)在[-4,5]上的最大值为159.(2021·山东临沂期末)已知函数f(x)=x+sinx-xcosx的定义域为[-2π,2π),则()A.f(x)为奇函数B.f(x)在[0,π)上单调递增C.f(x)恰有4个极大值点D.f(x)有且仅有4个极值点三、填空题与解答题10.已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则f(2)的值为________.11.(2021·内蒙古兴安盟模拟)已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.12.(2018·江苏)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.13.(2021·广东省高二期末)已知函数f(x)=13x3-4x+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[-3,5]上的最大值与最小值.14.已知函数f(x)=(x2-2x)e x(x∈R,e为自然对数的底数).(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[0,m]上的最大值和最小值.15.(2021·天水一中诊断)若函数f(x)=ax22-(1+2a)·x+2lnx(a>0)a的取值范围是()B.(1,+∞)C.(1,2)D.(2,+∞)16.(2016·北京)设函数f(x)3-3x,x≤a,2x,x>a.(1)若a=0,则f(x)的最大值为________;(2)若f(x)无最大值,则实数a的取值范围是________.17.(2020·衡水中学调研卷)已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).3.3.1导数的应用--极值与最值参考答案1.答案D解析由f(x)=xe x +1,可得f ′(x)=(x +1)e x ,令f ′(x)>0可得x>-1,即函数f(x)在(-1,+∞)上单调递增;令f ′(x)<0可得x<-1,即函数f(x)在(-∞,-1)上单调递减,所以x =-1为f(x)的极小值点.故选D.2.答案C解析f ′(x)=ae x -cosx ,若函数f(x)=ae x -sinx 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意.故选C.3.答案A解析函数f(x)=12x -sinx ,f ′(x)=12-cosx ,令f ′(x)>0,解得π3<x ≤π2,令f ′(x)<0,解得0≤x<π3,所以f(x)在0,π2上单调递增,所以f(x)min ==π6-32,而f(0)=0,=π4-1<0,故f(x)在区间0,π2上的最小值和最大值分别是π6-32,0.故选A.4.答案A解析f ′(x)=1-xe x,当x ∈[0,1)时,f ′(x)>0,f(x)单调递增,当x ∈(1,4]时,f ′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e 4>0,所以当x =0时,f(x)有最小值,且最小值为0.故选A.5.答案A解析f ′(x)=3x 2-3,令f ′(x)=0,得x =±1.三次方程f(x)=0有3个根⇔f(x)极大值>0且f(x)极小值<0.∵x =-1为极大值点,x =1为极小值点,(-1)=2+a>0,(1)=a -2<0,∴-2<a<2.故选A.6.答案D解析y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.故选D.7.答案C解析由f(x)在x =-2处取得极小值可知,当x<-2时,f ′(x)<0,则xf ′(x)>0;当-2<x<0时,f ′(x)>0,则xf ′(x)<0;当x >0时,f ′(x)>0,则xf ′(x)>0.故选C.8.答案ABC解析本题考查利用导数研究函数的单调性、极值、最值.y =x 3为R 上的奇函数,其图象的对称中心为原点,当a =0时,根据平移知识,函数f(x)的图象的对称中心为(0,-1),A 正确;由题意知f ′(x)=3x 2-a ,因为当-1<x<1时,3x 2<3,又a ≥3,所以f ′(x)<0在(-1,1)上恒成立,所以函数f(x)在(-1,1)上为单调递减函数,B 正确;f ′(x)=3x 2-a ,当a ≤0时,f ′(x)≥0,f ′(x)不恒等于0,此时f(x)在(-∞,+∞)上单调递增,不符合题意,故a>0.令f ′(x)=0,解得x =±3a3.因为f(x)在(-1,1)上不单调,所以f ′(x)=0在(-1,1)上有解,所以0<3a3<1,解得0<a<3,C 正确;令f ′(x)=3x 2-12=0,得x =±2.根据函数的单调性,f(x)在[-4,5]上的最大值只可能为f(-2)或f(5).因为f(-2)=15,f(5)=64,所以最大值为64,D 错误.故选ABC.9.答案ABD解析A 显然正确;∵f(x)=x +sinx -xcosx ,∴f ′(x)=1+cosx -(cosx -xsinx)=1+xsinx.当x ∈[0,π)时,f ′(x)>0,则f(x)在[0,π)上单调递增.显然f ′(0)≠0,令f ′(x)=0,得sinx =-1x ,分别作出函数y=sinx ,y =-1x的图象如图.由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f(x)在区间[-2π,2π)上有4个极值点,且只有2个极大值点.10.答案18解析f ′(x)=3x 2+2ax +b 1)=10,1)=0,2+a +b +1=10,+b +3=0,=4,=-11=-3,=3.当a =-3,b =3时,f ′(x)=3(x -1)2≥0,f(x)无极值,故舍去.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113.当x 变化时,f ′(x),f(x)的变化情况如下表:∴f(x)=x 3+4x 2-11x +16,f(2)=18.11.答案-37解析由已知可得,f ′(x)=6x 2-12x ,由6x 2-12x ≥0得x ≥2或x ≤0,因此当x ∈[2,+∞),(-∞,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,又因为x ∈[-2,2],所以当x ∈[-2,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,所以f(x)max =f(0)=m =3,故有f(x)=2x 3-6x 2+3,所以f(-2)=-37,f(2)=-5.因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37.12.答案-3解析令f(x)=2x 3-ax 2+1=0⇒a =2x +1x2.令g(x)=2x +1x 2(x>0),g ′(x)=2-2x 3>0⇒x>1⇒g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵有唯一零点,∴a =g(1)=2+1=3⇒f(x)=2x 3-3x 2+1.求导可知在[-1,1]上,f(x)min =f(-1)=-4,f(x)max =f(0)=1,∴f(x)min +f(x)max =-3.13.答案(1)函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2)(2)函数f(x)在区间[-3,5]上的最大值为743,最小值为-73思路(1)求导后,利用导数的符号可得函数的单调区间;(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在[-2,2]上单调递减,在(2,5]上单调递增,根据单调性可得最大最小值.解析(1)f ′(x)=x 2-4,由f ′(x)>0,得x>2或x<-2;由f ′(x)<0,得-2<x<2,所以函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在(-2,2)上单调递减,在(2,5]上单调递增,因为f(-3)=13×(-3)3-4×(-3)+3=6,f(2)=13×23-4×2+3=-73,f(-2)=13×(-2)3-4×(-2)+3=253,f(5)=13×53-4×5+3=743,所以函数f(x)在区间[-3,5]上的最大值为743,最小值为-73.14.答案略解析(1)f(x)=(x 2-2x)e x ,求导得f ′(x)=e x (x 2-2).因为e x >0,令f ′(x)=e x (x 2-2)>0,即x 2-2>0,解得x<-2或x> 2.令f ′(x)=e x (x 2-2)<0,即x 2-2<0,解得-2<x< 2.所以函数f(x)在(-∞,-2)和(2,+∞)上单调递增,在(-2,2)上单调递减.即函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)①当0<m ≤2时,因为f(x)在(-2,2)上单调递减,所以f(x)在区间[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(m)=(m 2-2m)e m .②当2<m ≤2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(0)=f(2)=0,所以f(x)在[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.③当m>2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(m)>0=f(0),所以f(x)在[0,m]上的最大值为f(m)=(m 2-2m)·e m ,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.15.思路把函数f(x)题,然后再通过分离参数的方法求出参数a 的取值范围.答案C 解析由f(x)=ax 22-(1+2a)x +2lnx(a>0,x >0),得导数f ′(x)=ax -(1+2a)+2x(x >0),∵函数f(x)=ax 22-(1+2a)x +2lnx(a>0)∴方程ax -(1+2a)+2x=0∴a =1x 在区间故a =1x∈(1,2),则a 的取值范围是(1,2).故选C.评说涉及函数的极值问题,往往要使用导数这个解题的工具,在解题时要注意运用等价转化的解题思想.16.答案(1)2(2)(-∞,-1)解析(1)若a =0,则f(x)3-3x ,x ≤0,2x ,x>0,当x>0时,-2x<0;当x ≤0时,f ′(x)=3x 2-3=3(x +1)·(x-1),令f ′(x)>0,得x<-1,令f ′(x)<0,得-1<x ≤0,所以函数f(x)在(-∞,-1)上单调递增,在(-1,0]上单调递减,所以函数f(x)在(-∞,0]上的最大值为f(-1)=2.综上可得,函数f(x)的最大值为2.(2)函数y =x 3-3x 与y =-2x 的大致图象如图所示,由图可知当f(x)无最大值时,a ∈(-∞,-1).17.答案(1)极小值点为x =1e,无极大值点(2)当a ≤1时,g(x)min =0,当1<a<2时,g(x)min =a -e a -1,当a ≥2时,g(x)min =a +e -ae 解析(1)f ′(x)=lnx +1,x>0,由f ′(x)=0,得x =1e .所以f(x)所以x =1e 是函数f(x)的极小值点,极大值点不存在.(2)g(x)=xlnx -a(x -1),则g ′(x)=lnx +1-a ,由g ′(x)=0,得x =e a -1.所以在区间(0,e a -1)上,g(x)单调递减,在区间(e a -1,+∞)上,g(x)单调递增.当e a -1≤1,即a ≤1时,在区间[1,e]上,g(x)单调递增,所以g(x)的最小值为g(1)=0.当1<e a-1<e,即1<a<2时,g(x)的最小值为g(e a-1)=a-e a-1.当e a-1≥e,即a≥2时,在区间[1,e]上,g(x)单调递减,所以g(x)的最小值为g(e)=a+e-ae.综上,当a≤1时,g(x)的最小值为0;当1<a<2时,g(x)的最小值为a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.。
2019届高考数学一轮复习 第三章 导数及其应用 第三节 导数与函数的极值、最值 文

2.已知a为函数f(x)=x3-12x的极小值点,则a= ( D )
A.-4 B.-2 C.4 D.2 答案 D 由题意可得f '(x)=3x2-12=3(x-2)(x+2), 令f '(x)=0,得x=-2或x=2, 则f '(x), f(x)随x的变化而变化的情况如下表:
x
(-∞,-2)
-2
(-2,2)
a
有一个极大值点.
命题方向三 已知函数的极值求参数
典例3 (1)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b=
.
(2)若函数f(x)= x3 3 -a 2 x2+x+1在区间 12 , 3 上有极值点,则实数a的取值范围
是
.
答案
(1)-7
(2) 2 , 1
解析 f '(x)=3ax2-4x+1. (1)函数图象过点(0,1)时,有f(0)=c=1.
当a=1时, f '(x)=3x2-4x+1,令f '(x)>0,解得x< 1 或x>1;令f '(x)<0,解得1 <x<1.
3
3
所以函数f(x)在 和, 13 (1,+∞)上单调递增;在 上 13单, 1 调 递减,极小值
0 3
解析 (1)由题意得f '(x)=3x2+6ax+b,
则
13aba2
0,
3b6a 0,
解得
a b
或1 ,
3
a 2,
b
9,
高考数学( 文科)一轮复习练习:第三章 导数及其应用 第3讲 含答案

基础巩固题组 (建议用时:40分钟)一、填空题1.函数f (x )=2x 3-6x 2-18x -7在[1,4]上的最小值为________. 解析 f ′(x )=6x 2-12x -18=6(x 2-2x -3) =6(x -3)(x +1),由f ′(x )>0,得x >3或x <-1; 由f ′(x )<0,得-1<x <3,故函数f (x )在[1,3]上单调递减,在[3,4]上单调递增, ∴f (x )min =f (3)=2×27-6×9-18×3-7=-61. 答案 -612.函数f (x )=x 3+3x 2+3x -a 的极值点的个数是________.解析 ∵f ′(x )=3x 2+6x +3=3(x 2+2x +1)=3(x +1)2≥0,∴函数f (x )在R 上单调递增,故f (x )无极值点. 答案 03.(2015·泰州调研)函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则b 的取值范围是________.解析 由f (x )=x 3-3bx +3b ,得f ′(x )=3x 2-3b .由已知可得f ′(x )=3x 2-3b 在(0,1)上与x 轴有交点,且满足⎩⎨⎧f ′(0)<0,f ′(1)>0,即⎩⎨⎧b >0,3-3b >0.∴0<b <1.∴b 的取值范围是(0,1). 答案 (0,1)4.(2015·扬州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.解析 由题意得f ′(x )=3x 2+6ax +b ,则 ⎩⎨⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎨⎧a =1,b =3或⎩⎨⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 答案 -75.(2016·长沙模拟)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是________. 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.答案 (-∞,-3)∪(6,+∞)6.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是________.解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1. 答案 (-∞,-1)7.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析 由题意,得f ′(x )=3x 2-12,令f ′(x )=0,得x =±2,又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,所以M =24,m =-8,M -m =32. 答案 328.(2015·苏、锡、常、镇模拟)函数f (x )=ax 3+bx 2+cx +d 在x =0处有极大值1,在x =2处有极小值0,则常数a ,b ,c ,d 分别为________,________,________,________.解析 f ′(x )=3ax 2+2bx +c ,则⎩⎨⎧f (2)=0,f ′(2)=0,f (0)=1,f ′(0)=0,即⎩⎨⎧8a +4b +2c +d =0,12a +4b +c =0,d =1,c =0,解得a =14,b =-34,c =0,d =1.答案 14 34 0 1 二、解答题9.(2016·徐州一检)当a ∈⎝ ⎛⎭⎪⎫-∞,-1e 时,函数f (x )=ax -1+ln x 在区间(0,e)上的最大值为-4,求a 的值.解 由题意f ′(x )=a +1x ,令f ′(x )=0,解得x =-1a .∵a ∈⎝ ⎛⎭⎪⎫-∞,-1e ,∴0<-1a <e ,由f ′(x )>0,解得0<x <-1a,由f ′(x )<0,解得-1a <x <e.从而f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,-1a ,减区间为⎝ ⎛⎭⎪⎫-1a ,e .∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1-1+ln ⎝ ⎛⎭⎪⎫-1a =-4,解得a =-e 2.10.(2015·安徽卷)已知函数f (x )=ax(x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar =400,求f (x )在(0,+∞)内的极值.解 (1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4.所以当x <-r 或x >r 时,f ′(x )<0, 当-r <x <r 时,f ′(x )>0.因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞); f (x )的单调递增区间为(-r ,r ).(2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减.因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)内的极大值为f (r )=ar (2r )2=a 4r =4004=100.能力提升题组 (建议用时:25分钟)11.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13. 答案 -1312.(2016·南通调研)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是________.解析 若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0恒成立.当x ∈⎝ ⎛⎭⎪⎫12,3时,y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x 恒成立,a ≤2;当x ∈⎝ ⎛⎭⎪⎫12,3,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3上有极值点,实数 a 的取值范围是⎝ ⎛⎭⎪⎫2,103.答案 ⎝ ⎛⎭⎪⎫2,10313.(2015·太原二模)已知f ′(x )=a (x +1)(x -a )是函数f (x )的导函数,若f (x )在x =a 处取得极大值,则实数a 的取值范围是________.解析 ∵f ′(-1)=f ′(a )=0,∴当a <-1时,x <a 时,f ′(x )<0,f (x )单调递减;a <x <-1时,f ′(x )>0,f (x )单调递增;x >-1时,f ′(x )<0,f (x )单调递减,此时f (x )在x =a 处取得极小值,不符合题意.当-1<a <0时,x <-1时,f ′(x )<0,f (x )单调递减;-1<x <a 时,f ′(x )>0,f (x )单调递增;x >a 时,f ′(x )<0,f (x )单调递减,此时f (x )在x =a 处取得极大值,符合题意.当a >0时,x <-1时,f ′(x )>0,f (x )单调递增;-1<x <a 时,f ′(x )<0,f (x )单调递减;x >a 时,f ′(x )>0,f (x )单调递增,此时f (x )在x =a 处取得极小值,不符合题意.∴实数a 的取值范围是(-1,0). 答案 (-1,0)14.(2015·南京、盐城调研)已知a ∈R ,函数f (x )=a x +ln x -1. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x +ln x -1,x ∈(0,+∞), 所以f ′(x )=-1x 2+1x =x -1x 2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14. 又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -⎝ ⎛⎭⎪⎫ln 2-12=14(x -2),即x -4y +4ln 2-4=0. (2)因为f (x )=ax +ln x -1,所以f ′(x )=-a x 2+1x =x -ax 2,x ∈(0,+∞). 令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,当x ∈(0,a )时,f ′(x )<0, 函数f (x )在区间(0,a )上单调递减,当x ∈(a ,e]时, f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x=a时,函数f(x)取得最小值ln a.③若a≥e,则当x∈(0,e]时,f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)取得最小值a e.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;当0<a<e时,函数f(x)在区间(0,e]上的最小值为ln a;当a≥e时,函数f(x)在区间(0,e]上的最小值为a e.。
2023年高考数学一轮复习第三章一元函数的导数及其应用3导数与函数的极值最值练习含解析

导数与函数的极值、最值考试要求 1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.( ×)(2)函数的极小值一定是函数的最小值.( ×)(3)函数的极小值一定不是函数的最大值.( √)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.( ×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4 答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( ) A .(-∞,-6]∪[6,+∞) B .(-∞,-6)∪(6,+∞) C .(-6,6) D .[-6,6] 答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________.答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题 命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2 求已知函数的极值例2 已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x ,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x ,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,但是无极大值. 命题点3 已知极值(点)求参数例3 (1)(2022·大庆模拟)函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于( ) A .-7 B .0 C .-7或0 D .-15或6答案 A解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2, 可得f ′(x )=3x 2+2ax +b , 因为f (x )在x =1处取得极值10, 可得⎩⎪⎨⎪⎧f ′1=3+2a +b =0,f1=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1), 当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意. 所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( ) A .(0,e)B.⎝ ⎛⎭⎪⎫0,1eC.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝ ⎛⎭⎪⎫1x-a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x,设g (x )=ln x +1x,则g ′(x )=1-ln x +1x 2=-ln x x2. 当0<x <1时,g ′(x )>0,g (x )单调递增; 当x >1时,g ′(x )<0,g (x )单调递减, 所以g (x )的极大值为g (1)=1, 又当x >1时,g (x )>0, 当x →+∞时,g (x )→0, 当x →0时,g (x )→-∞, 所以0<2a <1,即0<a <12.教师备选1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎪⎫m +π4等于( )A.m -1m +1B.m +1m -1 C.1-mm +1D.m +11-m答案 B解析 由f ′(x )=cos x -x sin x =0, 得tan x =1x ,所以tan m =1m,故tan ⎝⎛⎭⎪⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( ) A .1≤b <a B .b <a ≤1 C .a <1≤b D .a <b ≤1答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析. 对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意;对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意.思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解; (2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极大值为( ) A .-1 B .-2e -3C .5e -3D .1答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )ex -1+(x 2+ax -1)ex -1=ex -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x -1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1. 此时f ′(x )=ex -1(x 2+x -2)=ex -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1, 由f ′(x )>0可得x <-2或x >1; 由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增, 在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎢⎡⎦⎥⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫52,103B.⎣⎢⎡⎭⎪⎫52,103C.⎝ ⎛⎦⎥⎤52,103 D.⎣⎢⎡⎦⎥⎤2,103答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0),∴f ′(x )=1x+x -a ,∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎢⎡⎦⎥⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎢⎡⎦⎥⎤12,3上只有一个变号零点. 令f ′(x )=1x +x -a =0,得a =1x+x .设g (x )=1x +x ,则g (x )在⎣⎢⎡⎦⎥⎤12,1上单调递减,在[1,3]上单调递增, ∴g (x )min =g (1)=2, 又g ⎝ ⎛⎭⎪⎫12=52,g (3)=103,∴当52≤a <103时,y =f ′(x )在⎣⎢⎡⎦⎥⎤12,3上只有一个变号零点.∴实数a 的取值范围为⎣⎢⎡⎭⎪⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ). (1)若a =1,求g (x )在区间[1,e]上的最大值; (2)求g (x )在区间[1,e]上的最小值h (a ). 解 (1)∵a =1, ∴g (x )=ln x +x 2-3x , ∴g ′(x )=1x+2x -3=2x -1x -1x,∵x ∈[1,e],∴g ′(x )≥0, ∴g (x )在[1,e]上单调递增, ∴g (x )max =g (e)=e 2-3e +1. (2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-a +2x +ax=2x -a x -1x.①当a2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎢⎡⎭⎪⎫1,a 2上单调递减,在⎝ ⎛⎦⎥⎤a 2,e 上单调递增,h (a )=g ⎝ ⎛⎭⎪⎫a2=a ln a 2-14a 2-a ;③当a2≥e,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,1-e a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞), 由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; 当a >0时,令f ′(x )=0,得x =1a,所以当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,f (x )单调递减,综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值, 当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值,即f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -a ×1a-2=ln 1a-3=-ln a -3,因此有-ln a -3>a -4,得ln a +a -1<0, 设g (a )=ln a +a -1,则g ′(a )=1a+1>0,所以g (a )在(0,+∞)上单调递增, 又g (1)=0,所以g (a )<g (1),得0<a <1, 故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 解 (1)∵蓄水池的侧面的总成本为 100×2πrh =200πrh (元), 底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元. 由题意得200πrh +160πr 2=12000π, ∴h =15r(300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3. 故函数V (r )的定义域为(0,53). (2)由(1)知V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减. 由此可知,V (r )在r =5处取得最大值,此时h =8, 即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xex的极大值点与极小值点分别为a ,b ,则a +b 等于( )A .-4 B. 2 C .0 D .2答案 C解析 f ′(x )=2-x2e x ,当-2<x <2时,f ′(x )>0; 当x <-2或x >2时,f ′(x )<0. 故f (x )=x 2+2xex的极大值点与极小值点分别为2,-2,则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减 答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln2D .-2+2ln2答案 B解析 由题意得,f ′(x )=2x+2ax -3,∵f (x )在x =2处取得极小值, ∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x+x -3=x -1x -2x,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减, ∴f (x )的极大值为f (1)=12-3=-52.4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( ) A .π-2 B.π6 C .2 D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎢⎡⎦⎥⎤0,π6和⎣⎢⎡⎦⎥⎤5π6,π上时,f ′(x )≥0,f (x )单调递增;当12<sin x ≤1,即x 在⎝ ⎛⎭⎪⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝ ⎛⎭⎪⎫π6=π6+3,有极小值 f ⎝ ⎛⎭⎪⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝ ⎛⎭⎪⎫π6>f (0)>f (π)>f ⎝ ⎛⎭⎪⎫5π6,∴f (x )在[0,π]上的最大值为π6+ 3.5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1 D .0答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎪⎨⎪⎧1+3=-2b3a ,1×3=-33a,解得a =-13,b =2.故f (x )=-13x 3+2x 2-3x +k .易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0,所以k =0或k =43.6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( ) A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点 答案 BD解析 因为f (x )的定义域为[-2π,2π), 所以f (x )是非奇非偶函数,故A 错误; 因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确; 显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x,分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022·潍坊模拟)写出一个存在极值的奇函数f (x )=________. 答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________. 答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞). ①当x >12时,f (x )=2x -1-2ln x ,所以f ′(x )=2-2x=2x -1x, 当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝ ⎛⎦⎥⎤0,12上单调递减, 所以f (x )min =f ⎝ ⎛⎭⎪⎫12=-2ln 12=2ln2=ln4>lne =1.综上,f (x )min =1.9.已知函数f (x )=ln x -2x -2x +1.(1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+ax +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围.解 (1)由题知函数f (x )的定义域为(0,+∞), f ′(x )=1x-2x +1-2x -1x +12=x -12x x +12≥0对任意x ∈(0,+∞)恒成立,当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -ax +1,所以g ′(x )=1x+ax +12=x 2+2+a x +1x x +12(x >0).由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解. 令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=2+a2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4).10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数. (1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e], ∴f ′(x )=1-axx,由f ′(1)=0,得a =1. ∴f ′(x )=1-x x,∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0, ∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax , ∴f ′(x )=1x -a =1-ax x,①当a ≤0时,f (x )在(0,e]上单调递增, ∴f (x )的最大值是f (e)=1-a e =-3, 解得a =4e>0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx=0,得x =1a,当0<1a <e ,即a >1e时,∴x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1a ,单调递减区间是⎝ ⎛⎭⎪⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-1-ln a =-3,∴a =e 2;当e≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3, 解得a =4e >1e,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x的两个极值点之积为-3,则f (x )的极大值为( ) A.6e 3 B .-2eC .-2e D.4e2 答案 A解析 因为f (x )=(x 2-a )e x, 所以f ′(x )=(x 2+2x -a )e x, 由f ′(x )=(x 2+2x -a )e x=0, 得x 2+2x -a =0,由函数f (x )=(x 2-a )e x的两个极值点之积为-3, 则由根与系数的关系可知,-a =-3,即a =3, 所以f (x )=(x 2-3)e x ,f ′(x )=(x 2+2x -3)e x, 当x <-3或x >1时,f ′(x )>0; 当-3<x <1时,f ′(x )<0, 故f (x )在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )的极大值为f (-3)=6e3.12.函数f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29(a >0),则a ,b 的值为( ) A .a =2,b =-29B .a =3,b =2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则( ) A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a<0时,根据题意画出函数f(x)的大致图象,如图2所示,观察可知a>b.图2综上,可知必有ab>a2成立.14.(2022·河南多校联考)已知函数f(x)=2ln x,g(x)=x+2,若f(x1)=g(x2),则x1-x2的最小值为______.答案4-2ln2解析设f(x1)=g(x2)=t,即2ln x1=t,x2+2=t,解得x 1=2e t ,x 2=t -2, 所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1,令h ′(t )=0,解得t =2ln2, 当t <2ln2时,h ′(t )<0, 当t >2ln2时,h ′(t )>0,所以h (t )在(-∞,2ln2)上单调递减,在(2ln2,+∞)上单调递增, 所以h (t )的最小值为h (2ln2)=e ln2-2ln2+2=4-2ln2, 所以x 1-x 2的最小值为4-2ln2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( ) A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0), ∴f ′(x )=ln x +1+2x , ∵x 0是函数f (x )的极值点, ∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝ ⎛⎭⎪⎫1e =2e>0,当x >1e 时,f ′(x )>0,∵当x →0时,f ′(x )→-∞, ∴0<x 0<1e,即A 正确,B 不正确;f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0). (1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0,一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增;②当0<a <12时,令f ′(x )=0,得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0,所以当0<x <1-1-2a2时,f ′(x )>0,f (x )单调递增,当1-1-2a 2<x <1+1-2a2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增.综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞.(2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a2,则0<x 1<12<x 2,由f (x 1)≥mx 2恒成立, 得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2, 即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2),记h (x )=x -1x+2(1-x )ln(1-x ),1>x >12,则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎪⎫1>x >12, 故h (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,h ⎝ ⎛⎭⎪⎫12=-32-ln 2,3 2-ln 2.故m≤-。
近年高考数学一轮复习第三章导数及其应用第三节导数与函数的极值、最值作业本理(2021年整理)

(北京专用)2019版高考数学一轮复习第三章导数及其应用第三节导数与函数的极值、最值作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第三章导数及其应用第三节导数与函数的极值、最值作业本理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第三章导数及其应用第三节导数与函数的极值、最值作业本理的全部内容。
第三节导数与函数的极值、最值A组基础题组1.下列函数中,既是奇函数又存在极值的是( )A.y=x3B.y=ln(—x)C。
y=xe-x D.y=x+2.已知函数y=x-ln(1+x2),则函数y的极值情况是()A.有极小值B。
有极大值C。
既有极大值又有极小值D。
无极值3。
函数f(x)=x2—2ax+a在区间(—∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定()A。
有最小值B。
有最大值C.是减函数D.是增函数4.函数y=xln x有极值,为.5。
如图是y=f(x)的导函数的图象,对于下列四个判断:①f(x)在[-2,—1]上是增函数;②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;④x=3是f(x)的极小值点。
其中正确的判断是.(填序号)6.函数y=x+2cos x在区间上的最大值是。
7。
(2017北京丰台二模,18)已知函数f(x)=e x—aln x-a.(1)当a=e时,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)证明:∀a∈(0,e), f(x)在区间上有极小值,且极小值大于0.8.(2018北京海淀期中)已知函数f(x)=x—(a+1)ln x—,其中a>0.(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)在区间[1,e]上的最小值g(a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节导数与函数的极值、最值A组基础题组1.下列函数中,既是奇函数又存在极值的是( )A.y=x3B.y=ln(-x)C.y=xe-xD.y=x+2.已知函数y=x-ln(1+x2),则函数y的极值情况是( )A.有极小值B.有极大值C.既有极大值又有极小值D.无极值3.函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数4.函数y=xln x有极值,为.5.如图是y=f(x)的导函数的图象,对于下列四个判断:①f(x)在[-2,-1]上是增函数;②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;④x=3是f(x)的极小值点.其中正确的判断是.(填序号)6.函数y=x+2cos x在区间上的最大值是.7.(2017北京丰台二模,18)已知函数f(x)=e x-aln x-a.(1)当a=e时,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)证明:∀a∈(0,e), f(x)在区间上有极小值,且极小值大于0.8.(2018北京海淀期中)已知函数f(x)=x-(a+1)ln x-,其中a>0.(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)在区间[1,e]上的最小值g(a).(其中e是自然对数的底数)B组提升题组9.已知函数f(x)=x3-ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-1,则a= ,b= .10.(2016北京,14,5分)设函数f(x)=①若a=0,则f(x)的最大值为;②若f(x)无最大值,则实数a的取值范围是.11.(2017北京西城一模,18)已知函数f(x)=e x-x2.设直线l为曲线y=f(x)在点P(x0, f(x0))处的切线,其中x0∈[-1,1].(1)求直线l的方程(用含x0的式子表示);(2)设O为原点,直线x=1分别与直线l和x轴交于A,B两点,求△AOB的面积的最小值.12.(2017北京海淀期中)已知函数f(x)=x3-9x,函数g(x)=3x2+a.(1)若直线l是曲线y=f(x)在点(0,f(0))处的切线,且l与曲线y=g(x)相切,求a的值;(2)若方程f(x)=g(x)有三个不同的实数解,求实数a的取值范围.答案精解精析A组基础题组1.D A选项中,函数y=x3单调递增,无极值,B,C选项中的函数都不是奇函数,D选项中的函数既为奇函数又存在极值.2.D 由题意得x∈R,y'=1-·(1+x2)'=1-=≥0,所以函数y=x-ln(1+x2)无极值.3.D ∵函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,图象开口向上,对称轴为x=a,∴a<1.g(x)==x+-2a.若a≤0,则g(x)=x+-2a在(-∞,0),(0,+∞)上单调递增.若0<a<1,则g(x)=x+-2a在(,+∞)上单调递增,故g(x)在(1,+∞)上单调递增.综上可得g(x)=x+-2a在(1,+∞)上单调递增,故选D.4.答案小;-解析y'=ln x+1(x>0),当y'=0时,x=e-1;当y'<0时,0<x<e-1;当y'>0时,x>e-1.∴y=xln x在(0,e-1)上是减函数,在(e-1,+∞)上是增函数.∴y=xln x有极小值y=-.5.答案②③解析①∵f '(x)在[-2,-1)上是小于0的,∴f(x)在[-2,-1]上是减函数,①不对;②∵f '(-1)=0且在x=-1附近两侧的导数值为左负右正,∴x=-1是f(x)的极小值点,②对;③在(-1,2)上导数值大于0,在(2,4)上导数值小于0,所以f(x)在[-1,2]上是增函数,在[2,4]上是减函数,③对;④x=3附近左右两侧导数值的符号都为负,所以x=3不是f(x)的极值点,④不对.6.答案+解析y'=1-2sin x,令y'=0,结合x∈,解得x=,易知当x∈时,y'>0;当x∈时,y'<0,故在上,函数y=x+2cos x在x=时取最大值+.7.解析(1)f(x)的定义域为(0,+∞),因为a=e,所以f(x)=e x-e(ln x+1),所以f '(x)=e x-.因为f(1)=0, f '(1)=0,所以曲线y=f(x)在点(1, f(1))处的切线方程为y=0.(2)证明:因为0<a<e,所以f '(x)=e x-在区间上是单调递增函数.因为f '=-e<0, f '(1)=e-a>0,所以∃x0∈,使得-=0.所以∀x∈, f '(x)<0;∀x∈(x0,1), f '(x)>0,故f(x)在上单调递减,在(x0,1)上单调递增,所以f(x)有极小值f(x0).因为-=0,所以f(x0)=-a(ln x0+1)=a.设g(x)=a,x∈,则g'(x)=a=-,所以g'(x)<0,即g(x)在上单调递减,所以g(x)>g(1)=0,即f(x0)>0,所以函数f(x)的极小值大于0.8.解析(1)当a=2时,f(x)=x-3ln x-,f '(x)=,此时,f(1)=-1,f '(1)=0,故曲线y=f(x)在点(1,f(1))处的切线方程为y=-1.(2)f(x)=x-(a+1)ln x-的定义域为(0,+∞),f '(x)=1-+=,令f '(x)=0,得x=a或x=1.①当0<a≤1时,对任意的x∈(1,e),f '(x)>0,f(x)在[1,e]上单调递增,f(x)min=f(1)=1-a;②当1<a<e时,列表如下:x (1,a) a (a,e)f '(x) - 0 +f(x) ↘极小值↗f(x)min=f(a)=a-1-(a+1)·ln a;③当a≥e时,对任意的x∈(1,e),f '(x)<0,f(x)在[1,e]上单调递减,f(x)min=f(e)=e-(a+1)-.由①②③可知,g(a)=B组提升题组9.答案;1解析因为f '(x)=3x2-3ax=3x(x-a),令f '(x)=0,解得x1=0,x2=a.因为a>1,所以当x变化时, f '(x)与f(x)的变化情况如下表:x -1(-1,0) 0(0,1)1f '(x) + 0 -f(x)-1- a+b ↗极大值b ↘1- a+b由题意得b=1.则f(-1)=-, f(1)=2-, f(-1)<f(1),所以-=-1,所以a=.10.答案①2②(-∞,-1)解析①若a=0,则f(x)=当x>0时, f(x)=-2x<0;当x≤0时, f '(x)=3x2-3=3(x-1)(x+1),当x<-1时, f '(x)>0, f(x)是增函数,当-1<x<0时, f '(x)<0, f(x)是减函数,∴f(x)≤f(-1)=2.∴ f(x)的最大值为2.②在同一平面直角坐标系中画出y=-2x和y=x3-3x的图象,如图所示,当a<-1时, f(x)无最大值;当-1≤a≤2时, f(x)max=2;当a>2时, f(x)max=a3-3a.综上,当a∈(-∞,-1)时, f(x)无最大值.11.解析(1)对f(x)求导,得f '(x)=e x-x,所以直线l的斜率为f '(x0)=-x0,由此得直线l的方程为y-=(-x0)(x-x0),即y=(-x0)x+(1-x0)+.(2)依题意B(1,0),设A(1,y1),在切线方程中令x=1, 得y1=(-x0)+(1-x0)+=(2-x0).所以S△AOB=|OB|·|y1|==,x0∈[-1,1].设g(x)=,x∈[-1,1],则g'(x)=-+=-(x-1)(e x-1).令g'(x)=0,得x=0或x=1.当x变化时,g(x),g'(x)的变化情况如下表:x -1(-1,0) 0(0,1)1g'(x) - 0 +g(x)↘ 1 ↗+所以g(x)在(-1,0)上单调递减,在(0,1)上单调递增,所以g(x)min=g(0)=1,从而△AOB的面积的最小值为1.12.解析(1)函数f(x)=x3-9x的导函数为f '(x)=3x2-9,f(0)=0, f '(0)=-9,所以直线l的方程为y=-9x,设l与曲线y=g(x)相切于点(m,n),易知g'(x)=6x,所以g'(m)=6m=-9,解得m=-,又g(m)=-9m,即g =+a=,所以a=.(2)记F(x)=f(x)-g(x)=x3-9x-3x2-a,则F'(x)=3x2-6x-9,令F'(x)=0,得x=3或x=-1.当x<-1时,F'(x)>0,F(x)在(-∞,-1)上单调递增;当-1<x<3时,F'(x)<0,F(x)在(-1,3)上单调递减;当x>3时,F'(x)>0,F(x)在(3,+∞)上单调递增.可得x=-1时,F(x)取得极大值,为5-a,x=3时,F(x)取得极小值,为-27-a.因为当x→+∞时,F(x)→+∞,当x→-∞时,F(x)→-∞,所以方程f(x)=g(x)有三个不同实数解等价于解得-27<a<5.。