中国海洋大学大学物理电磁学I3A

合集下载

海大 电磁场--A 试题 2008-2009 答案

海大 电磁场--A 试题 2008-2009 答案


q
F 4 0
Q
D
Rq
D
2

DRq D2 R2
2


(2)
当 q 与 Q 同号,且 Q q
RD3 D2 R2
2

R D
成立时,
F
表现为吸引力。
证明:使用镜像法分析
由于导体球不接地,本身又带电 Q
所以, 必须在导体球内加上两个镜像电荷来等效导体球对球外的影响。
5.当电磁波以大于零的角度 入射于介质表面时,如果没有反射波,则 B 。
A. 为临界角 B. 为布诺斯特角 C.入射波为垂直极化波
1
三、(20 分)
一同轴线的内导体半径为 a,外导体半径为 b,外加电压 U0,中间填充 r

a
的电介质。试求:介质中的电场强度 E 及电位移矢量 D。
解:设内导体单位长度带电荷为 l
2. 在时变电磁场中,根据方程 B 0 ,可定义矢位使 B A ,再根据方程

E

A t


0
,可定义标位,使 E A 。 t
3. 相对于电磁波传播方向,若电磁波的电场和磁场均只有横向分量,则称为 横电磁波(TEM) 波;若只有磁场有纵向分量,则称为 横电波(TE) 波;若只有电场有纵向
相位常数 1 6 rad m
2 r0 1 2.5 9.49 rad m 1v1 6 310 8 1.8 1019 rad s
折射系数 T 22 2 10 0.774 Et
2 1 10 5
Ein
反射波的相量形式和瞬时形式分别为:

大学物理电磁学公式总结汇总

大学物理电磁学公式总结汇总

大学物理电磁学公式总结汇总普通物理学教程大学物理电磁学公式总结,下面给大家整理了关于大学物理电磁学公式总结,方便大家学习大学物理电磁学公式总结1定律和定理1. 矢量叠加原理:任意一矢量可看成其独立的分量的和。

即:=∑ (把式中换成、、、、、就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。

2. 牛顿定律:=m (或= );牛顿第三定律:′= ;万有引力定律:3. 动量定理:→动量守恒:条件4. 角动量定理:→角动量守恒:条件5. 动能原理:(比较势能定义式:)6. 功能原理:A外+A非保内=ΔE→机械能守恒:ΔE=0条件A 外+A非保内=07. 理想气体状态方程:或P=nkT(n=N/V,k=R/N0)8. 能量均分原理:在平衡态下,物质分子的每个自由度都具有相同的平均动能,其大小都为kT/2。

克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其它影响。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其它影响。

实质:在孤立系统内部发生的过程,总是由热力学概率小的宏观状态向热力学概率大的状态进行。

亦即在孤立系统内部所发生的过程总是沿着无序性增大的方向进行。

9. 热力学第一定律:ΔE=Q+A10.热力学第二定律:孤立系统:ΔS0(熵增加原理)11. 库仑定律:(k=1/4πε0)12. 高斯定理:(静电场是有源场)→无穷大平板:E=σ/2ε013. 环路定理:(静电场无旋,因此是保守场)θ2Ir P o Rθ1I14. 毕奥—沙伐尔定律:直长载流导线:无限长载流导线:载流圆圈:,圆弧:电磁学1. 定义:= /q0 单位:N/C =V/mB=Fmax/qv;方向,小磁针指向(S→N);单位:特斯拉(T)=104高斯(G)① 和:=q( + × )洛仑兹公式②电势:电势差:电动势:( )③电通量:磁通量:磁通链:ΦB=NφB单位:韦伯(Wb)Θ ⊕-q +qS④电偶极矩:=q 磁矩:=I =IS⑤电容:C=q/U 单位:法拉(F)乘自感:L=Ψ/I 单位:亨利(H)乘互感:M=Ψ21/I1=Ψ12/I2 单位:亨利(H)⑥电流:I = ; 乘位移电流:ID =ε0 单位:安培(A)⑦乘能流密度:2. 实验定律① 库仑定律:②毕奥—沙伐尔定律:③安培定律:d =I ×④电磁感应定律:ε感= –动生电动势:感生电动势:( i为感生电场)乘⑤欧姆定律:U=IR( =ρ )其中ρ为电导率3. 乘定理(麦克斯韦方程组)电场的高斯定理:( 静是有源场)( 感是无源场)磁场的高斯定理:( 稳是无源场)( 感是无源场)电场的环路定理:(静电场无旋)(感生电场有旋;变化的磁场产生感生电场)安培环路定理:(稳恒磁场有旋)(变化的电场产生感生磁场)4. 常用公式①无限长载流导线:螺线管:B=nμ0I② 带电粒子在匀强磁场中:半径周期磁矩在匀强磁场中:受力F=0;受力矩③电容器储能:Wc= CU2 乘电场能量密度:ωe= ε0E2 电磁场能量密度:ω= ε0E2+ B2乘电感储能:WL= LI2 乘磁场能量密度:ωB= B2 电磁场能流密度:S=ωV④ 乘电磁波:C= =3.0×108m/s 在介质中V=C/n,频率f=ν=波动学大学物理电磁学公式总结2概念(2113定义和相关公式)1. 位置矢量:,其5261在直角坐标系中:; 角位置:4102θ16532. 速度:平均速度:速率:( )角速度:角速度与速度的关系:V=rω3. 加速度:或平均加速度:角加速度:在自然坐标系中其中(=rβ),(=r2 ω)4. 力:=m (或= ) 力矩:(大小:M=rFcosθ方向:右手螺旋法则)5. 动量:,角动量:(大小:L=rmvcosθ方向:右手螺旋法则)6. 冲量:(= Δt);功:(气体对外做功:A=∫PdV)mg(重力) → mgh-kx(弹性力) → kx2/2F= (万有引力) → =Ep(静电力) →7. 动能:mV2/28. 势能:A保= –ΔEp不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=EK+EP9. 热量:其中:摩尔热容量C与过程有关,等容热容量Cv 与等压热容量Cp之间的关系为:Cp= Cv+R10. 压强:11. 分子平均平动能:;理想气体内能:12. 麦克斯韦速率分布函数:(意义:在V附近单位速度间隔内的分子数所占比率)13. 平均速率:方均根速率:;最可几速率:14. 熵:S=KlnΩ(Ω为热力学几率,即:一种宏观态包含的微观态数)15. 电场强度:= /q0 (对点电荷:)16. 电势:(对点电荷);电势能:Wa=qUa(A= –ΔW)17. 电容:C=Q/U ;电容器储能:W=CU2/2;电场能量密度ωe=ε0E2/218. 磁感应强度:大小,B=Fmax/qv(T);方向,小磁针指向(S→N)。

中国海洋大学 大学物理3 期末考试试题和答案11

中国海洋大学 大学物理3 期末考试试题和答案11

专业年级 学号 姓名 授课教师 分数 题号 一、选择题二.简答题三.计算题四.证明题分数一、选择题(21分,每题3分)1、 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB两板间的电势差U AB 为(A) d S q q 0212ε+. (B) d S q q 0214ε+. [ ] (C) d Sq q 0212ε-. (D) d Sq q 0214ε-. 2、 真空中一半径为R 的球面均匀带电Q ,在球心O 处有一电荷为q 的点电荷,如图所示.设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为(A) rq04επ (B) ⎪⎭⎫ ⎝⎛+πR Q r q 041ε. [ ] (C)r Qq 04επ+ (D)⎪⎭⎫⎝⎛-+πR q Q r q 041ε. 3、载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足: [ ] (A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r .4、平行板电容器的两板都是半径为R 的圆形导体片,若两板上的电荷面密度为t ωσσsin 0=,则两板间的位移电流为 [] (A )0ωσ; (B )t R ωωσπcos 02; ( C )t Rωωσπsin 02; ( D )02ωσπR 。

5、在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明. (B ) 全暗. [ ](C)右半部明,左半部暗. (D)右半部暗,左半部明.dB A S S q 1q 2Q P O R q rP 1.521.75 1.52 图中数字为各处的折射λ 1.62 1.62中国海洋大学命题专用纸(附页A)中国海洋大学命题专用纸(附页C)中国海洋大学命题专用纸(附页E)。

(完整word版)中国海洋大学大学物理电磁学I3B

(完整word版)中国海洋大学大学物理电磁学I3B

中国海洋大学命题专用纸2005-2006学年第 1 学期试题名称:大学物理Ⅰ(3)共5页第 1 页授课教师命题教师或命题负责人签字院系负责人签字年月日中国海洋大学命题专用纸2005-2006学年第 1 学期试题名称:大学物理Ⅰ(3)共5页第 2 页中国海洋大学命题专用纸2005-2006学年第 1 学期试题名称:大学物理Ⅰ(3)共 5 页第 3 页12.(本题5分)(3230)要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过__________块理想偏振片.在此情况下,透射光强最大是原来光强的______________________倍.13.(本题3分)(4353)已知惯性系S'相对于惯性系S系以0.5 c的匀速度沿x轴的负方向运动,若从S'系的坐标原点O'沿x轴正方向发出一光波,则S系中测得此光波在真空中的波速为____________________________________.14.(本题5分)(4732)观察者甲以0.8c的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg的物体,则(1)甲测得此物体的总能量为____________;(2)(2) 乙测得此物体的总能量为_________.二、计算题(共38分)15.如图所示,一厚为b的“无限大”带电平板,其电荷体密度分布为 =kx (0≤x≤b ),式中k为一正的常量.求:(1) 平板外两侧任一点P1和P2处的电场强度大小;(2) 平板内任一点P处的电场强度;(3) 场强为零的点在何处?中国海洋大学命题专用纸2005-2006学年第 1 学期试题名称:大学物理Ⅰ(3)共5 页第 4 页中国海洋大学命题专用纸2005-2006学年第 1 学期试题名称:大学物理Ⅰ(3)共5 页第 4 页v0.99c (c为真空中光速)的速率运动.试求:17.(本题8分)(4500)一电子以(1) 电子的总能量是多少?(2) 电子的经典力学的动能与相对论动能之比是多少?(电子静止质量m e=9.11×10-31 kg)三、简述题(共15分)18(本题5分)(3762)光栅的衍射光谱和棱镜的色散光谱主要有什么不同?19(本题5分)19—6你能否举一些日常生活中所见到的例子.来说明物体热辐射的各种波长中,单色辐射强度最大的波长随温度的升高而减小?20(本题5分)光电效应和康普顿效应都是光子与电子间的相互作用,你是怎样区别这两个过程的?。

大学物理电磁学

大学物理电磁学

P
E
x
E
OR x
2
P.23/102
电荷与电场
练习:无限大均匀带电平面的电场(电荷面密度)。
为利用例3结果简化计算。将无限大平面视为半径R 的圆盘 —— 由许多均匀带电圆环组成。
dr
思路 dq ?
r O Px
dE ?
E dE ?
dq 2 π r dr
dE
4
π
0
x dq (x2
r2
其通上 过每 垂点 直切E 向的:单位该面点积E 的方条向数等于场强的大小,
即其疏密与场强的大小成正比。
E
E
4
q
π 0r3
r
+
2020/8/15
P.25/102
电荷与电场
电偶极子的电场线
2020/8/15
一对正电荷的电场线
均匀带电直导 线的电场线
P.26/102
平板电容器中的电场线
电荷与电场
静电场中电场线的特点: 1. 电场线起始于正电荷,终止于负电荷。
2. 电场线不闭合,不相交。 3. 电场线密集处电场强,电场线稀疏处电场弱。
2020/8/15
P.27/102
二、电通量
电荷与电场
通过电场中某一给定面的电场线的总条数叫做通过 该面的电通量(electric flux)。
S
E
Φe
ES
n
2020/8/15
P.6/102
电荷与电场
3. 静电力叠加原理
两点电荷间相互作用力不因其它电荷的存在而改变。
点电荷系对某点电荷的作用等于系内各点电荷单独存在
时对该电荷作用的矢量和。
F F1 F2 Fn

中国海洋大学 大学物理3 期末考试试题和答案41

中国海洋大学 大学物理3 期末考试试题和答案41

感应电动势.
O
x
2、(12 分)图示一平面简谐波在 t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.
y (m) u = 0.08 m/s
O -0.04
P
x (m)
0.20 0.40 0.60
3、(10 分)一衍射光栅,每厘米 200 条透光缝,每条透光缝宽为 a=2×10-3 cm,在光栅后放 一焦距 f=1 m 的凸透镜,现以=600 nm (1 nm=10-9 m)的单色平行光垂直照射光栅,求:
S,S 边线所在平面 的磁通量(取弯面向
外为正)为
(A) r2B.
. (B) 2r2B.
(C) -r2Bsin.
(D) -r2Bcos.


2、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为 I.这四条导
线被纸面截得的断面,如图所示,它们组成了边长为 2a 的正方形的四个 角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点 O 的
院系负责人 签字
年月日
中 国 海 洋 大 学 命 题 专 用 纸(附页)
2006-2007 学年第 1 学期
试题名称 :大学物理Ⅱ2 (A 卷) 共 4 页 第 2 页
5、一弹簧振子作简谐振动,总能量为 E1,如果简谐振动振幅增加为原来的两倍,重物的质量
增为原来的四倍,则它的总能量 E2 变为
(A) E1/4.
--AAO12
为________________________________.
3、(3 分)如图所示,波源 S1 和 S2 发出的波在 P 点相遇,P 点距波源 S1 和 S2 的距离分别为 3和 103 ,为两列波在介质中的波长,若

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为(A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零.[E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ. (C) lI B π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ. [ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为a(A) R 140πμ. (B) R120πμ. (C) 0. (D) R 140μ. [ ] 8、一个电流元l I d 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0.(B) 2/32220)/(d )4/(z y x l Iy ++π-μ.(C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B 及3B ,则O 点的磁感强度的大小(B) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0. (D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3= 0. (C) B ≠0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠0,因为虽然B 3= 0,但021≠+B B . [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为B 3≠ 0,021≠+B B ,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B 1≠ 0、B2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d 1 2C q 4(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =⎰⋅L l B ,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B ,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B ,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B ,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅L l Bd(A) I 0μ. (B) I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则 (A) 回路L 内的∑I 不变,L 上各点的B 不变. (B) 回路L 内的∑I 不变,L 上各点的B 改变. (C) 回路L 内的∑I 改变,L 上各点的B 不变. (D) 回路L 内的∑I 改变,L 上各点的B 改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ]27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:L 1 2 I 3 (a) (b)⊙(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ] 28、如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C)qB m y v 2-=. (D) qBm y v -=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变.(C) 其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ ]×× ×33、一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v .(D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22210πμ. (B) Rr I I 22210μ. (C) rR I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将:(A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为(A) 2/32IB Na . (B) 4/32IB Na .(C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1 I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ] 42、图示一测定水平方向匀强磁场的磁感强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A) 6m . (B) 3m /2.(C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A) 向着长直导线平移.(B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:BI 1 I I a(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ] 48、关于稳恒电流磁场的磁场强度H ,下列几种说法中哪个是正确的? (A) H 仅与传导电流有关. (B) 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零. (C) 若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的H 通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ 0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ]52、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.a M O P(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ ]53、顺磁物质的磁导率:(A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A) 磁感强度大小为B = μ0 μ r NI .(B) 磁感强度大小为B = μ r NI / l .(C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变.(C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍.[ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.[ ]57、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]B I O (D)I O (C)O (B)58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.[ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到? (A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈. (C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出. [ ]Ib d b d bcd v v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21.(D) ω abB | cosω t |. (E) ω abB | sin ω t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0.(B) 21v Bl .(C) v Bl . (D) 2v Bl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 67、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]B ☜ t O (A) ☜ tO (C) ☜ t O (B) ☜ tO (D)70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动.(B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] ca b d N M B76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ] 78、电位移矢量的时间变化率t D d /d 的单位是A )库仑/米2 (B )库仑/秒C )安培/米2 (D )安培•米279、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=__________.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(μ0 =4π×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)。

电磁学2毕奥-萨伐尔定律

dl a
β lr
β dB
a
P
§4-3 毕奥
萨伐尔定律的应用
1. 载流直导线的磁场
dB 的方向: I dl × r 的方向
dB
的大小:
dB
=
μo

I
dl sina
r2
几何关系:
I dl
sin a =sin ( 900 +β ) dl a
= cosβ l = a tgβ
β lr
dl = a sec 2β dβ r = a secβ
I dl
r
IR
θ x
y dB θ P x
By= Bz=0
Idl r z
dB
B = dB x = dB
sinθ
=
μ

o
I r
2
sinθ
dl
=
μo

I r
2
sinθ
dl
sinθ
=
R r
I dl
r
r = (x 2 +R2 )1 2 I R
θ x
y dB θ x
z
B=
μo

I r
2
sinθ
dl
=
×(
r r
)
B
=
μ

o
I dl × r3
r
用矢量形式表示的毕奥 萨伐尔定律
dB =
μ o I dl × r
4π r 3
=
μo

I dl r2
×(
r r
)
B
=
μ

o
I dl × r3

中国海洋大学 大学物理3 期末考试试题和答案52

大学物理Ⅱ2B 参考答案
一、选择题(24 分,每题 3 分)
1、C 2、C 3、C 4、B 5、E 6、B 7、C
二、填空题(共 23 分)
1、2v /(分)
L
、(分)
8、A
t
3、22.6 J·m-3
(3 分)
4、电磁波能流密度矢量
S EH
(2 分) (1 分)
5、2-1 = 3-2=2/3
2分
5、(5 分)解:
EK p2 /(2me ) (h / )2 /(2me )
3

=5.0×10-6 eV
2分
四、问答题(共 10 分)
1、(5 分)解:(1) x = 0 点
0

1 2

1分
x=2点
2

1 ; 2
1分
y
x =3 点 3 ;
(2) 如图所示.
1分 2分
0 时刻,O 处质点
0 Acos , 0 v0 A sin ,

1
3分
2
又 t = 2 s,O 处质点位移为
A / 2 Acos(4 1 ) 2
所以
1 4 1 , = 1/16 Hz
2分
4
2
振动方程为
y0

A cos(t
/8
旋转矢量图见图
2分
振动曲线见图
3分
1T 5T
12
12
1?
x1 2
x
x3
x1
x3
t
7 ?
6
6
1x2 -A
T
1 12
T
T T 3T T 4 24

中国海洋大学物理学专业人才培养方案


毕业论文
Thesis
Career development education of 大学生职业发展教育 III
二、毕业生能力要求
1. 具备良好的人文情怀、职业素养和正确的价值取向; 2. 具备良好的物理理论基础和知识运用能力,具有利用物理知识解决海洋科学中部分问题的能力; 3. 具备良好物理实验技能和数据处理能力; 4. 具备初步的科学研究能力。
三、支撑学科
本专业依托的一级学科为物理学(0702),光学工程(0803)。
选修
071312201207
071302202201
2.专业知识课程
修课 要求
课程代码
071303101245
071313101247
必修
071313101249
071303201254
071323221213 071302101227 071302101229 084303201263
071303201223
Laser Opto-Electronic Technology
071313211201
光度学与色度学
Luminosity and Chroma
071313211215
光纤通信
Optical Fiber Communication
071313211223
3.工作技能课程
修课 要求
课程代码
008904103998
11.固体物理(48 课时,3 学分)
12. 物理学实验 1(48 课时,1.5 学分)
13. 物理学实验 2(48 课时,1.5 学分) 15. 物理学实验 4(48 课时,1.5 学分)
六、专业特色课程
14. 物理学实验 3(48 课时,1.5 学分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业年级 学号 姓名 授课教师 分数 题号 一、选择题
二.简答题
三.计算题
四.证明题
分数
一、选择题(21分,每题3分)
1、 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB
两板间的电势差U AB 为
(A)
d S q q 0212ε+. (B) d S q q 02
14ε+. [ ] (C) d S q q 021
2ε-. (D) d S
q q 02
14ε-. 2、 真空中一半径为R 的球面均匀带电Q ,在球心O 处有一电荷为q 的点电荷,如图所
示.设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处
的电势为
(A) r
q
04επ (B) ⎪⎭⎫ ⎝⎛+πR Q r q 041ε. [ ] (C)
r Q
q 04επ+ (D)
⎪⎭

⎝⎛-+πR q Q r q 041ε. 3、载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足: [ ] (A) B R = 2 B r . (B) B R = B r .
(C) 2B R = B r . (D) B R = 4 B r .
4、平行板电容器的两板都是半径为R 的圆形导体片,若两板上的电荷面密度为
t ωσσsin 0=,则两板间的位移电流为 []
(A )0ωσ; (B )t R ωωσπcos 02

( C )t R ωωσπsin 02; ( D )02
ωσπR 。

5、在图示三种透明材料构成的牛顿环装置中,用单色光垂直照
射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为
(A) 全明. (B ) 全暗. [ ]
(C)右半部明,左半部暗. (D)右半部暗,左半部明.
d
B A S S q 1
q 2
Q P O R q r
P 1.52
1.75 1.52 图中数字为各处的折射
λ 1.62
1.62
授课教师
命题教师或命
题负责人签字
院系负责
人签字
年月日中国海洋大学命题专用纸(附页A)
2006-2007学年第 2 学期试题名称:大学物理I3(A)共6 页第2 页
3、在单缝衍射中,为什么衍射角 愈大(级数愈大)的那些明条纹的亮度愈小?
.
4、在某个惯性系中有两个事件同时发生在不同地点,在有相对运动的其他惯性系中,
讨论这两个事件发生的时间关系和空间关系。

5、德布罗意波的波函数与经典波的波函数的本质区别是什么?
中国海洋大学命题专用纸(附页C)
2006-2007学年第 2 学期试题名称:大学物理I3(A)共 6 页第 4 页
3、(12分)用橙黄色的平行光垂直照射一宽为a=0.60mm的单缝,缝后凸透镜的焦距f=40.0cm,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm处的P点为一明条纹;求:(1)入射光的波长;(2)P点处条纹的级数;(3)从P点看,对该光波而言,狭缝处的波面可分成几个半波带?
4、(10分)实验发现基态氢原子可吸收能量为12.75eV 的光子.
(1)试问氢原子吸收光子后将被激发到哪个能级?
(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上
中国海洋大学命题专用纸(附页E)。

相关文档
最新文档